Research Article
BibTex RIS Cite

Evaluation of Performance of HFC-R134a/HFO-1234yf Binary Mixtures Used as Refrigerant in a Heat Pump System

Year 2020, , 1440 - 1449, 30.09.2020
https://doi.org/10.31202/ecjse.734445

Abstract

The use of heat pumps is increasing day by day. So, various refrigerants have been used in the heat pump systems so far. Therefore many studies and arrangements have been made to reduce the environmental effects of refrigerants. The refrigerant mixtures that obtaining from the hydrofluorocarbons (HFCs) and the hydrofluoroolefins (HFOs) are started to be used to reduce of global warming potential of the HFCs and remove flammability of the HFOs in these days. In this study, the performance of R134a/R1234yf (HFC/HFO) mixture in the heat pump was theoretically investigated for different R1234yf mass fractions (from 0.0 to 1.0). The analysis of R134a/R1234yf mixture for different R1234yf mass fraction has made for three different evaporator temperature (-10 oC, -5 oC and 0 oC) and a constant condenser temperature (35 oC). When the R1234yf mass fraction increases from 0.0 to 1.0 the COP value decreases by 2.44% (at the -5 oC evaporator temperature). The R1234yf mass fraction must be 0.9 for the R134a/R1234yf mixture to have lower GWP than 150. Because R134a is has high GWP.

References

  • [1] E. Dikmen, A. Şencan Şahin, Ö. İ. Deveci, and E. Akdağ, “Comparative Performance Analysis of Cascade Refrigeration System Using Low GWP Refrigerants,” El-Cezerî J. Sci. Eng., vol. 7, no. 1, pp. 338–345, 2020.
  • [2] J. M. Calm, “The next generation of refrigerants - Historical review, considerations, and outlook,” International Journal of Refrigeration, vol. 31, no. 7. Elsevier, pp. 1123–1133, 01-Nov-2008.
  • [3] R. Ciconkov, “Refrigerants: There is still no vision for sustainable solutions,” International Journal of Refrigeration, vol. 86. Elsevier Ltd, pp. 441–448, 01-Feb-2018.
  • [4] E. Sertaç, “Increase of System Efficiencies by Using R442a and R453a Refrigerants in Systems Which Use R404a,” Dicle University, 2018.
  • [5] L. Zhang, J. Zhao, L. Yue, H. Zhou, and C. Ren, “Cycle performance evaluation of various R134a/hydrocarbon blend refrigerants applied in vapor-compression heat pumps,” Adv. Mech. Eng., vol. 11, no. 1, p. 168781401881956, Jan. 2019.
  • [6] B. Feng, Z. Yang, and R. Zhai, “Experimental study on the influence of the flame retardants on the flammability of R1234yf,” Energy, vol. 143, pp. 212–218, Jan. 2018.
  • [7] A. Mota-Babiloni, J. Navarro-Esbrí, Á. Barragán, F. Molés, and B. Peris, “Drop-in energy performance evaluation of R1234yf and R1234ze(E) in a vapor compression system as R134a replacements,” Appl. Therm. Eng., vol. 71, no. 1, pp. 259–265, Oct. 2014.
  • [8] A. Sethi, E. Vera Becerra, and S. Yana Motta, “Low GWP R134a replacements for small refrigeration (plug-in) applications,” Int. J. Refrig., vol. 66, pp. 64–72, Jun. 2016.
  • [9] A. Mota-Babiloni, J. M. Belman-Flores, P. Makhnatch, J. Navarro-Esbrí, and J. M. Barroso-Maldonado, “Experimental exergy analysis of R513A to replace R134a in a small capacity refrigeration system,” Energy, vol. 162, pp. 99–110, Nov. 2018.
  • [10] Y. Lee, D. G. Kang, and D. Jung, “Performance of virtually non-flammable azeotropic HFO1234yf/HFC134a mixture for HFC134a applications,” Int. J. Refrig., vol. 36, no. 4, pp. 1203–1207, Jun. 2013.
  • [11] C. Aprea, A. Greco, and A. Maiorino, “An experimental investigation of the energetic performances of HFO1234yf and its binary mixtures with HFC134a in a household refrigerator,” Int. J. Refrig., vol. 76, pp. 109–117, Apr. 2017.
  • [12] A. Mota-Babiloni, P. Makhnatch, R. Khodabandeh, and J. Navarro-Esbrí, “Experimental assessment of R134a and its lower GWP alternative R513A,” Int. J. Refrig., vol. 74, pp. 680–686, Feb. 2017.
  • [13] R. Llopis, D. Sánchez, R. Cabello, J. Catalán-Gil, and L. Nebot-Andrés, “Experimental analysis of R-450A and R-513A as replacements of R-134a and R-507A in a medium temperature commercial refrigeration system,” Int. J. Refrig., vol. 84, pp. 52–66, Dec. 2017.
  • [14] C. Aprea, A. Greco, and A. Maiorino, “HFOs and their binary mixtures with HFC134a working as drop-in refrigerant in a household refrigerator: Energy analysis and environmental impact assessment,” Appl. Therm. Eng., vol. 141, pp. 226–233, Aug. 2018.
  • [15] Z. Meng, H. Zhang, M. Lei, Y. Qin, and J. Qiu, “Performance of low GWP R1234yf/R134a mixture as a replacement for R134a in automotive air conditioning systems,” Int. J. Heat Mass Transf., vol. 116, pp. 362–370, 2018.
  • [16] M. Yang, H. Zhang, Z. Meng, and Y. Qin, “Experimental study on R1234yf/R134a mixture (R513A) as R134a replacement in a domestic refrigerator,” Appl. Therm. Eng., vol. 146, pp. 540–547, Jan. 2019.

Bir Isı Pompası Sisteminde Soğutucu Olarak Kullanılan HFC-R134a / HFO-1234yf İkili Karışımların Performansının Değerlendirilmesi

Year 2020, , 1440 - 1449, 30.09.2020
https://doi.org/10.31202/ecjse.734445

Abstract

Isı pompalarının kullanımı gün geçtikçe artmaktadır. Bu nedenle, şimdiye kadar ısı pompası sistemlerinde çeşitli soğutucu akışkanlar kullanılmıştır. Bu yüzden, soğutucu akışkanların çevresel etkilerini azaltmak için birçok çalışma ve düzenleme yapılmıştır. Hidroflorokarbonlardan (HFC) ve hidrofloroolefinlerden (HFO) elde edilen soğutucu akışkan karışımları, HFC’larin küresel ısınma potansiyelini azaltmak ve HFO’lerin yanıcılığını gidermek için bu günlerde kullanılmaya başlanmıştır. Bu çalışmada, bir ısı pompasında R134a/R1234yf (HFC / HFO) karışımının performansı teorik olarak farklı R1234yf kütle karışım oranı (0.0 - 1.0) için araştırılmıştır. Farklı R1234yf kütle karışım oranı için R134a / R1234yf karışımının analizi, üç farklı evaporatör sıcaklığı (-10 oC, -5 oC ve 0 oC) ve sabit bir kondenser sıcaklığı (35 oC) için yapılmıştır. R1234yf kütle karışım oranı 0.0’dan 1.0'e yükseldiğinde, COP değeri % 2.44 azalmaktadır (-5 oC evaporatör sıcaklığında). R134a / R1234yf karışımının 150’den düşük GWP oranına sahip olması için R1234yf kütle karışım oranı 0.9 olmalıdır. Çünkü R134a yüksek GWP oranına sahiptir.

References

  • [1] E. Dikmen, A. Şencan Şahin, Ö. İ. Deveci, and E. Akdağ, “Comparative Performance Analysis of Cascade Refrigeration System Using Low GWP Refrigerants,” El-Cezerî J. Sci. Eng., vol. 7, no. 1, pp. 338–345, 2020.
  • [2] J. M. Calm, “The next generation of refrigerants - Historical review, considerations, and outlook,” International Journal of Refrigeration, vol. 31, no. 7. Elsevier, pp. 1123–1133, 01-Nov-2008.
  • [3] R. Ciconkov, “Refrigerants: There is still no vision for sustainable solutions,” International Journal of Refrigeration, vol. 86. Elsevier Ltd, pp. 441–448, 01-Feb-2018.
  • [4] E. Sertaç, “Increase of System Efficiencies by Using R442a and R453a Refrigerants in Systems Which Use R404a,” Dicle University, 2018.
  • [5] L. Zhang, J. Zhao, L. Yue, H. Zhou, and C. Ren, “Cycle performance evaluation of various R134a/hydrocarbon blend refrigerants applied in vapor-compression heat pumps,” Adv. Mech. Eng., vol. 11, no. 1, p. 168781401881956, Jan. 2019.
  • [6] B. Feng, Z. Yang, and R. Zhai, “Experimental study on the influence of the flame retardants on the flammability of R1234yf,” Energy, vol. 143, pp. 212–218, Jan. 2018.
  • [7] A. Mota-Babiloni, J. Navarro-Esbrí, Á. Barragán, F. Molés, and B. Peris, “Drop-in energy performance evaluation of R1234yf and R1234ze(E) in a vapor compression system as R134a replacements,” Appl. Therm. Eng., vol. 71, no. 1, pp. 259–265, Oct. 2014.
  • [8] A. Sethi, E. Vera Becerra, and S. Yana Motta, “Low GWP R134a replacements for small refrigeration (plug-in) applications,” Int. J. Refrig., vol. 66, pp. 64–72, Jun. 2016.
  • [9] A. Mota-Babiloni, J. M. Belman-Flores, P. Makhnatch, J. Navarro-Esbrí, and J. M. Barroso-Maldonado, “Experimental exergy analysis of R513A to replace R134a in a small capacity refrigeration system,” Energy, vol. 162, pp. 99–110, Nov. 2018.
  • [10] Y. Lee, D. G. Kang, and D. Jung, “Performance of virtually non-flammable azeotropic HFO1234yf/HFC134a mixture for HFC134a applications,” Int. J. Refrig., vol. 36, no. 4, pp. 1203–1207, Jun. 2013.
  • [11] C. Aprea, A. Greco, and A. Maiorino, “An experimental investigation of the energetic performances of HFO1234yf and its binary mixtures with HFC134a in a household refrigerator,” Int. J. Refrig., vol. 76, pp. 109–117, Apr. 2017.
  • [12] A. Mota-Babiloni, P. Makhnatch, R. Khodabandeh, and J. Navarro-Esbrí, “Experimental assessment of R134a and its lower GWP alternative R513A,” Int. J. Refrig., vol. 74, pp. 680–686, Feb. 2017.
  • [13] R. Llopis, D. Sánchez, R. Cabello, J. Catalán-Gil, and L. Nebot-Andrés, “Experimental analysis of R-450A and R-513A as replacements of R-134a and R-507A in a medium temperature commercial refrigeration system,” Int. J. Refrig., vol. 84, pp. 52–66, Dec. 2017.
  • [14] C. Aprea, A. Greco, and A. Maiorino, “HFOs and their binary mixtures with HFC134a working as drop-in refrigerant in a household refrigerator: Energy analysis and environmental impact assessment,” Appl. Therm. Eng., vol. 141, pp. 226–233, Aug. 2018.
  • [15] Z. Meng, H. Zhang, M. Lei, Y. Qin, and J. Qiu, “Performance of low GWP R1234yf/R134a mixture as a replacement for R134a in automotive air conditioning systems,” Int. J. Heat Mass Transf., vol. 116, pp. 362–370, 2018.
  • [16] M. Yang, H. Zhang, Z. Meng, and Y. Qin, “Experimental study on R1234yf/R134a mixture (R513A) as R134a replacement in a domestic refrigerator,” Appl. Therm. Eng., vol. 146, pp. 540–547, Jan. 2019.
There are 16 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Makaleler
Authors

Ragıp Yıldırım 0000-0003-0902-3420

Abdullah Yıldız 0000-0003-4831-0975

Publication Date September 30, 2020
Submission Date May 8, 2020
Acceptance Date July 20, 2020
Published in Issue Year 2020

Cite

IEEE R. Yıldırım and A. Yıldız, “Evaluation of Performance of HFC-R134a/HFO-1234yf Binary Mixtures Used as Refrigerant in a Heat Pump System”, ECJSE, vol. 7, no. 3, pp. 1440–1449, 2020, doi: 10.31202/ecjse.734445.