Research Article
BibTex RIS Cite

Az Miktarda Bizmut Eklenen Yarıiletken Alaşımlarının Optik Parametreleri

Year 2020, , 1355 - 1361, 30.09.2020
https://doi.org/10.31202/ecjse.776129

Abstract

Az miktarda bizmut (Bi) içeren III-V yarıiletken alaşımları üzerine yapılan araştırmalar ve optoelektronik uygulamaları son zamanlarda artmıştır. Bu alaşımlar, ev sahibi olarak seçilen yarıiletkene az miktarda Bi eklenerek elde edilirler. Bismut’un eklenmesi yarıiletken alaşımların enerji bant aralığını azaltır. Bu çalışmada optoelektronik cihazlarda kullanılan InAs1−𝑥Bi𝑥, InP1-xBix, ve InSb1−𝑥Bi𝑥 alaşım sistemlerinin bant aralığı ve optik özellikleri araştırılmıştır. Yarı iletkenlerin bu çalışmada incelenen optik özellikleri, cihaz performansının artırılması ve verimliliği için önemlidir. Kırılma indisi, yarı iletken alaşımların doğrudan bant aralığına bağlıdır. In-V-Bi yarı iletken elde etmek ve bant aralığını değiştirmek için binary InAs, InP, InSb'ye bizmut eklenerek geliştirilebilir. Bu çalışmada, önerilen In-V-Bi alaşımlarının kırılma indeksleri ve optik parametreleri araştırılmıştır.

References

  • Alberi, K., J. Wu, W. Walukiewicz, K. Yu, O. Dubon, S. Watkins, et al., Valence-band anticrossing in mismatched III-V semiconductor alloys. Physical Review B,, 2007. 75(4): p. 045203.
  • Berding, M.A., A. Sher, A.B. Chen, and W. Miller, Structural properties of bismuthbearing semiconductor alloys. Journal of Applied Physics, 1988. 63(1): p. 107-115.
  • D. P. Samajdar, T.D.D., S. Dhar, Physics of Semiconductor Devices. 2014, Cham: Springer.
  • Polak, M., P. Scharoch, and R. Kudrawiec, First-principles calculations of bismuth induced changes in the band structure of dilute Ga–V–Bi and In–V–Bi alloys: chemical trends versus experimental data. Semiconductor Science and Technology, 2015. 30(9): p. 094001.
  • Zhang, X., P. Lu, L. Han, Z. Yu, J. Chen, and S. Wang, Structural and electronic properties of InPBi alloys. Modern Physics Letters B, 2014. 28(17): p. 1450140.
  • Francoeur, S., M.-J. Seong, A. Mascarenhas, S. Tixier, M. Adamcyk, and T. Tiedje, Band gap of GaAs1−xBix, 0< x < 3.6%. Applied Physics Letters, 2003. 82(22): p. 3874–3876.
  • X. Chen, W.S., D. Liang et al., Opt. Mater. Express 2018. 8: p. 1184.
  • X. Zhang, P.L., L. Han et al., Mod. Phys. Lett. B 2014. 28.
  • G.N. Wei, X.D., Q. Feng et al., Sci. China Phys. Mech. Astron. , 2017. 60(047022).
  • Kopaczek, J., R. Kudrawiec, M. Polak, P. Scharoch, M. Birkett, T. Veal, et al., Contactless electroreflectance and theoretical studies of band gap and spin-orbit splitting in InP1−xBix dilute bismide with x ≤ 0.034. 0.034. Applied Physics Letters, 2014. 105(22): p. 222104.
  • Köksal, K., B. Gönül, and M. Oduncuoğlu, Critical layer thickness of GaIn(N)As(Sb) QWs on GaAs and InP substrates for (001) and (111) orientations. The European Physical Journal B, 2009. 69(2): p. 211-218.
  • Pan, W., P. Wang, X. Wu, K. Wang, J. Cui, L. Yue, et al., Growth and material properties of InPBi thin films using gas source molecular beam epitaxy. Journal of Alloys and Compounds, 2016: p. 777-783.
  • Naceur, H.B., T. Mzoughi, I. Moussa, L. Nguyen, A. Rebey, and B. El Jani, Surfactant effect of bismuth in atmospheric pressure MOVPE growth of InAs layers on (100) GaAs substrates. Physica E: Low-dimensional Systems and Nanostructures, 2010. 43(1): p. 106-110.
  • Oduncuoğlu, M. and B. Gönül, A theoretical comparison of the 1.3μm doped InxGa1−xNyAs1−y/GaAs quantum well lasers for different x/y concentrations. Physica E: Low-dimensional Systems and Nanostructures, 2005. 27(1): p. 253-261.
  • Adachi, S., Optical dispersion relations for GaP, GaAs, GaSb, InP, InAs, InSb, AlxGa1- xAs, and In1-xGax AsyP1-y Journal of Applied Physics, 1989. 66.

Optical Properties of Dilute Bismuth of Semiconductor Alloys

Year 2020, , 1355 - 1361, 30.09.2020
https://doi.org/10.31202/ecjse.776129

Abstract

The research on dilute bismuth containing III-V semiconductor alloys and its applications are studied. These alloys are obtained by incorporating a small amount of Bi in the host semiconductor. The presence of Bi reduced the energy bandgap of the alloys. The bandgap and optical properties of InAs1−𝑥Bi𝑥, InP1-xBix, and InSb1−𝑥Bi𝑥 alloy systems are investigated for optoelectronic devices. The optical properties of semiconductors are important to change the properties of device performance. The refractive index strongly depends on the direct bandgap of the semiconductor alloys. The bandgap of the In-V-Bi semiconductor layer can be engineered by means of adding bismuth into InAs, InP, InSb. In this work, the refractive indices and the optical parameters of the In-V-Bi alloys are investigated.

References

  • Alberi, K., J. Wu, W. Walukiewicz, K. Yu, O. Dubon, S. Watkins, et al., Valence-band anticrossing in mismatched III-V semiconductor alloys. Physical Review B,, 2007. 75(4): p. 045203.
  • Berding, M.A., A. Sher, A.B. Chen, and W. Miller, Structural properties of bismuthbearing semiconductor alloys. Journal of Applied Physics, 1988. 63(1): p. 107-115.
  • D. P. Samajdar, T.D.D., S. Dhar, Physics of Semiconductor Devices. 2014, Cham: Springer.
  • Polak, M., P. Scharoch, and R. Kudrawiec, First-principles calculations of bismuth induced changes in the band structure of dilute Ga–V–Bi and In–V–Bi alloys: chemical trends versus experimental data. Semiconductor Science and Technology, 2015. 30(9): p. 094001.
  • Zhang, X., P. Lu, L. Han, Z. Yu, J. Chen, and S. Wang, Structural and electronic properties of InPBi alloys. Modern Physics Letters B, 2014. 28(17): p. 1450140.
  • Francoeur, S., M.-J. Seong, A. Mascarenhas, S. Tixier, M. Adamcyk, and T. Tiedje, Band gap of GaAs1−xBix, 0< x < 3.6%. Applied Physics Letters, 2003. 82(22): p. 3874–3876.
  • X. Chen, W.S., D. Liang et al., Opt. Mater. Express 2018. 8: p. 1184.
  • X. Zhang, P.L., L. Han et al., Mod. Phys. Lett. B 2014. 28.
  • G.N. Wei, X.D., Q. Feng et al., Sci. China Phys. Mech. Astron. , 2017. 60(047022).
  • Kopaczek, J., R. Kudrawiec, M. Polak, P. Scharoch, M. Birkett, T. Veal, et al., Contactless electroreflectance and theoretical studies of band gap and spin-orbit splitting in InP1−xBix dilute bismide with x ≤ 0.034. 0.034. Applied Physics Letters, 2014. 105(22): p. 222104.
  • Köksal, K., B. Gönül, and M. Oduncuoğlu, Critical layer thickness of GaIn(N)As(Sb) QWs on GaAs and InP substrates for (001) and (111) orientations. The European Physical Journal B, 2009. 69(2): p. 211-218.
  • Pan, W., P. Wang, X. Wu, K. Wang, J. Cui, L. Yue, et al., Growth and material properties of InPBi thin films using gas source molecular beam epitaxy. Journal of Alloys and Compounds, 2016: p. 777-783.
  • Naceur, H.B., T. Mzoughi, I. Moussa, L. Nguyen, A. Rebey, and B. El Jani, Surfactant effect of bismuth in atmospheric pressure MOVPE growth of InAs layers on (100) GaAs substrates. Physica E: Low-dimensional Systems and Nanostructures, 2010. 43(1): p. 106-110.
  • Oduncuoğlu, M. and B. Gönül, A theoretical comparison of the 1.3μm doped InxGa1−xNyAs1−y/GaAs quantum well lasers for different x/y concentrations. Physica E: Low-dimensional Systems and Nanostructures, 2005. 27(1): p. 253-261.
  • Adachi, S., Optical dispersion relations for GaP, GaAs, GaSb, InP, InAs, InSb, AlxGa1- xAs, and In1-xGax AsyP1-y Journal of Applied Physics, 1989. 66.
There are 15 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Makaleler
Authors

Murat Oduncuoglu 0000-0002-3130-5646

Publication Date September 30, 2020
Submission Date July 31, 2020
Acceptance Date September 4, 2020
Published in Issue Year 2020

Cite

IEEE M. Oduncuoglu, “Optical Properties of Dilute Bismuth of Semiconductor Alloys”, ECJSE, vol. 7, no. 3, pp. 1355–1361, 2020, doi: 10.31202/ecjse.776129.