Research Article
BibTex RIS Cite

Thermodynamic Analysis and Performance Comparison of Flash Binary Geothermal Power Generation Plant

Year 2021, , 445 - 461, 31.01.2021
https://doi.org/10.31202/ecjse.808435

Abstract

In this study, the thermodynamic analysis of the geothermal energy-assisted flash binary power generation cycle has been examined and compared according to different fluids. This study consists of a direct steam turbine and an organic Rankine cycle, and also performance comparison is investigated using n-butane, isobutane, and isopentane working fluids in the organic Rankine cycle. The energy and exergy efficiencies as well as the total irreversibility of the proposed system are investigated for three different fluids. In addition, the effects of changes in parameters such as environmental temperature, geothermal water outlet temperature, and pressure values on system efficiencies and power generation are investigated parametrically and the results are presented graphically. According to the analysis results, the total power generation rates are calculated as 3624 kW for n-butane, 3613 kW for isobutane, and 3495 kW for isopentane. Moreover, for the entire system, the highest energy and exergy efficiencies are calculated at 13.49% and 51.97% for the n-butane fluid, respectively.

References

  • [1] World Banka Data. International Energy Agency, (IEA) Fossil fuel energy consumption (% of total) | https://data.worldbank.org/indicator/eg.use.comm.fo.zs (Erişim tarihi: September 28, 2019).
  • [2] Bahçeci S, Daldaban F. Economic analysis of demand side management with residential pv system and energy storage system. El-Cezeri J Sci Eng 2020;7:67–78.
  • [3] Renewables–Global Energy Review 2020 – Analysis - IEA n.d. https://www.iea.org/reports/global-energy-review-2020/renewables (Erişim tarihi: September 10, 2020).
  • [4] Yilmaz, Ceyhun; Koyuncu I. Thermoeconomic modeling and artificial neural network optimization of Afyon geothermal power plant,. Renew Energy 2020:135577.
  • [5] Siddiqui O, Dincer I. Exergetic Performance Investigation of Varying Flashing From Single to Quadruple for Geothermal Power Plants. Artic J Energy Resour Technol 2019.
  • [6] Gnaifaid H, Ozcan H. Development and multiobjective optimization of an integrated flash-binary geothermal power plant with reverse osmosis desalination and absorption refrigeration for multi-generation. Geothermics 2021;89:101949.
  • [7] Altun AF, Kilic M. Thermodynamic performance evaluation of a geothermal ORC power plant. Renew Energy 2020;148:261–74.
  • [8] Moya D, Aldás C, Kaparaju P. Geothermal energy: Power plant technology and direct heat applications 2018.
  • [9] Ratlamwala TAH, Dincer I, Gadalla MA. Thermodynamic analysis of a novel integrated geothermal based power generation-quadruple effect absorption cooling-hydrogen liquefaction system. Int J Hydrogen Energy 2012;37:5840–9.
  • [10] Yuksel YE, Ozturk M, Dincer I. Energetic and exergetic performance evaluations of a geothermal power plant based integrated system for hydrogen production. Int J Hydrogen Energy 2018;43:78–90.
  • [11] Yilmaz C, Kanoglu M. Thermodynamic evaluation of geothermal energy powered hydrogen production by PEM water electrolysis. Energy 2014;69:592–602.
  • [12] Coskun C, Oktay Z, Dincer I. Thermodynamic analyses and case studies of geothermal based multi-generation systems 2012.
  • [13] Gholizadeh T, Vajdi M, Rostamzadeh H. A new trigeneration system for power, cooling, and freshwater production driven by a flash-binary geothermal heat source. Renew Energy 2020;148:31–43.
  • [14] Cao Y, Mihardjo LW, Dahari M, Ghaebi H, Parikhani T, Mohamed AM. An innovative double-flash binary cogeneration cooling and power (CCP) system: Thermodynamic evaluation and multi-objective optimization. Energy 2021;214:118864..
  • [15] Ozturk M, Dincer I. Development of a combined flash and binary geothermal system integrated with hydrogen production for blending into natural gas in daily applications. Energy Convers Manag 2021;227:113501.
  • [16] Yuksel YE. Thermodynamic and performance evaluation of an integrated geothermal energy based multigeneration plant. El-Cezeri J Sci Eng 2020;7:381–401.
  • [17] Gschrey B, Zeiger B. Information for technicians and users of refrigeration , air conditioning and heat pump equipment containing fluorinated greenhouse gases, 2015.
  • [18] Calm JM, Hourahan GC. Refrigerant Data Summary. Eng Syst 2001;18.
  • [19] Klein S. Engineering equation solver (EES), AcademicCommercial, V10.644. 2018. Madison, USA, F-chart software 2019.
  • [20] Çengel YA, Boles MA. Thermodynamics : an engineering approach. 8th ed. Mc. New York: McGraw-Hil;2015; 2015.
  • [21] Kotas TJ. The exergy method of thermal plant analysis. 1st ed. London: Butterworth-Heinemann; 1985.
  • [22] Dincer I, Rosen M. EXERGY : Energy, Environment and Sustainable Development. 2nd Ed. Oxford, UK: Elsevier Science; 2013.

Flaş İkili Jeotermal Güç Üretim Santralinin Termodinamik Analizi ve Performans Karşılaştırması

Year 2021, , 445 - 461, 31.01.2021
https://doi.org/10.31202/ecjse.808435

Abstract

Bu çalışmada, jeotermal enerji destekli flaş ikili güç üretim çevriminin termodinamik analizi farklı akışkanlara göre incelenmiş ve karşılaştırılmıştır. Bu çalışma, bir direk buhar türbini ve bir adet organik Rankine çevriminden meydana gelmektedir ve organik Rankine çevriminde n-bütan, izobütan ve izopentan soğutucu akışkanları kullanılarak performans karşılaştırılması incelenmiştir. Önerilen sistemin enerji ve ekserji verimlilikler ve ayrıca toplam tersinmezlikleri üç farklı akışkan türü için araştırılmıştır. Ayrıca, çevre sıcaklığı, jeotermal su çıkış sıcaklık ve basınç değerleri gibi parametrelerin değişiminin sistem verimlilikleri ve güç üretimi üzerine etkileri parametrik olarak araştırılmış ve sonuçlar grafiksel olarak sunulmuştur. Analiz sonuçlarına göre, toplam güç üretimi n-bütan için 3624 kW, izobütan için 3613 kW ve izopentan için 3495 kW olarak hesaplanmıştır. Dahası, tüm sistem için, en yüksek enerji ve ekserji verimlilikleri n-bütan akışkanında sırasıyla 13.49% ve 51.97% olarak hesaplanmıştır

References

  • [1] World Banka Data. International Energy Agency, (IEA) Fossil fuel energy consumption (% of total) | https://data.worldbank.org/indicator/eg.use.comm.fo.zs (Erişim tarihi: September 28, 2019).
  • [2] Bahçeci S, Daldaban F. Economic analysis of demand side management with residential pv system and energy storage system. El-Cezeri J Sci Eng 2020;7:67–78.
  • [3] Renewables–Global Energy Review 2020 – Analysis - IEA n.d. https://www.iea.org/reports/global-energy-review-2020/renewables (Erişim tarihi: September 10, 2020).
  • [4] Yilmaz, Ceyhun; Koyuncu I. Thermoeconomic modeling and artificial neural network optimization of Afyon geothermal power plant,. Renew Energy 2020:135577.
  • [5] Siddiqui O, Dincer I. Exergetic Performance Investigation of Varying Flashing From Single to Quadruple for Geothermal Power Plants. Artic J Energy Resour Technol 2019.
  • [6] Gnaifaid H, Ozcan H. Development and multiobjective optimization of an integrated flash-binary geothermal power plant with reverse osmosis desalination and absorption refrigeration for multi-generation. Geothermics 2021;89:101949.
  • [7] Altun AF, Kilic M. Thermodynamic performance evaluation of a geothermal ORC power plant. Renew Energy 2020;148:261–74.
  • [8] Moya D, Aldás C, Kaparaju P. Geothermal energy: Power plant technology and direct heat applications 2018.
  • [9] Ratlamwala TAH, Dincer I, Gadalla MA. Thermodynamic analysis of a novel integrated geothermal based power generation-quadruple effect absorption cooling-hydrogen liquefaction system. Int J Hydrogen Energy 2012;37:5840–9.
  • [10] Yuksel YE, Ozturk M, Dincer I. Energetic and exergetic performance evaluations of a geothermal power plant based integrated system for hydrogen production. Int J Hydrogen Energy 2018;43:78–90.
  • [11] Yilmaz C, Kanoglu M. Thermodynamic evaluation of geothermal energy powered hydrogen production by PEM water electrolysis. Energy 2014;69:592–602.
  • [12] Coskun C, Oktay Z, Dincer I. Thermodynamic analyses and case studies of geothermal based multi-generation systems 2012.
  • [13] Gholizadeh T, Vajdi M, Rostamzadeh H. A new trigeneration system for power, cooling, and freshwater production driven by a flash-binary geothermal heat source. Renew Energy 2020;148:31–43.
  • [14] Cao Y, Mihardjo LW, Dahari M, Ghaebi H, Parikhani T, Mohamed AM. An innovative double-flash binary cogeneration cooling and power (CCP) system: Thermodynamic evaluation and multi-objective optimization. Energy 2021;214:118864..
  • [15] Ozturk M, Dincer I. Development of a combined flash and binary geothermal system integrated with hydrogen production for blending into natural gas in daily applications. Energy Convers Manag 2021;227:113501.
  • [16] Yuksel YE. Thermodynamic and performance evaluation of an integrated geothermal energy based multigeneration plant. El-Cezeri J Sci Eng 2020;7:381–401.
  • [17] Gschrey B, Zeiger B. Information for technicians and users of refrigeration , air conditioning and heat pump equipment containing fluorinated greenhouse gases, 2015.
  • [18] Calm JM, Hourahan GC. Refrigerant Data Summary. Eng Syst 2001;18.
  • [19] Klein S. Engineering equation solver (EES), AcademicCommercial, V10.644. 2018. Madison, USA, F-chart software 2019.
  • [20] Çengel YA, Boles MA. Thermodynamics : an engineering approach. 8th ed. Mc. New York: McGraw-Hil;2015; 2015.
  • [21] Kotas TJ. The exergy method of thermal plant analysis. 1st ed. London: Butterworth-Heinemann; 1985.
  • [22] Dincer I, Rosen M. EXERGY : Energy, Environment and Sustainable Development. 2nd Ed. Oxford, UK: Elsevier Science; 2013.
There are 22 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Makaleler
Authors

Oguzhan Akbay This is me 0000-0002-3307-8918

Fatih Yılmaz 0000-0002-4401-4266

Publication Date January 31, 2021
Submission Date October 9, 2020
Acceptance Date December 10, 2020
Published in Issue Year 2021

Cite

IEEE O. Akbay and F. Yılmaz, “Flaş İkili Jeotermal Güç Üretim Santralinin Termodinamik Analizi ve Performans Karşılaştırması”, ECJSE, vol. 8, no. 1, pp. 445–461, 2021, doi: 10.31202/ecjse.808435.