Kızıldere Formasyonu (İskenderun-Arsuz/HATAY) Kumtaşlarında Micro-CT yöntemiyle Mikroporozite Belirlenmesi
Year 2021,
, 718 - 727, 31.05.2021
Melda Avcu
Meryem Yeşilot Kaplan
Abstract
Bu çalışmanın amacı Arsuz-İskenderun (Hatay) yöresinde gözlemlenen kumtaşlarının mikroporozitesini Micro-CT ve görüntü işleme yöntemleriyle belirlemek ve makro porozite değerleriyle karşılaştırmaktır. Kızıldere formasyonu kumtaşları-kiltaşları ile ardışımlıdır ve evaporitik birimlerden oluşan Haymaseki üyesini üzerlemektedir. Kumtaşlarında bağlayıcı malzeme kalsit çimentodur ve temel kayaya ait ultrabazik-bazik kayaç kırıntıları hakimdir ve litarenit olarak isimlendirilmişlerdir. Micro-CT analizlerine göre kapalı porozite % 4.22, açık porozite % 35.46 ve toplam porozite ise % 38.18’dir. Micro-CT yöntemiyle elde edilen iki boyutlu 188 adet görüntünün işlenmesi ile toplam porozite belirlenmiştir. Açık kod kaynaklı Fiji/Imagej programıyla yapılan analizlerde kumtaşlarında porozite % 20-45 arasında değişmektedir. Kuyu logları porozitesiyle bu değerler karşılaştırılmıştır ve Micro-CT analiz sonuçlarıyla benzer olduğu belirlenmiştir. Görüntü işleme yöntemleri ve Micro-CT yöntemiyle kayaçların porozite değerlerinin hesaplanması diğer yöntemlere göre daha pratik, tahribatsız ve ekonomiktir. Kızıldere formasyonuna ait kumtaşlarının porozite değerleri formasyonun hazne kaya olabileceğini göstermektedir.
References
- [1]. Loyd, S.J., Corsetti, F.A., Eiler, J.M., Tripati, A.K., “Determining the diagenetic conditions of concretion formation: assessing temperatures and pore waters using clumped isotopes”, Journal of Sedimentary Research, 2012, 82, 1006-1016.
- [2]. Wang, J., Cao, Y., Liu, K., Liu, J., Xue, X., Xu, Q., “Pore fluid evolution, distribution and water-rock interactions of carbonate cements in red-bed sandstone reservoirs in the Dongying Depression, China”, Marine and Petroleum Geology, 2016, 72, 279-294.
- [3]. Carvalho, M. V. F., Ros, L. F. D., Gomes, N. S., “Carbonate cementation patterns and diagenetic reservoir facies in the Campos basin cretaceous turbidites, offshore eastern Brazil”, Marine and Petroleum Geology, 1995, 12(7), 741–758.
- [4]. Taghavi A.A., Mørk A., Emadi M.A., “Sequence stratigraphically controlled diagenesis governs reservoir quality in the carbonate Dehluran Field, southwest Iran”, Petroleum Geoscience, 2006, 12, 115–126.
- [5]. Lai J., Wang G., Chen J., Wang S., Zhou Z., Fan X., “Origin and distribution of carbonate cement in tight sandstones: The Upper Triassic Yanchang Formation Chang 8 oil layer in west Ordos Basin, China”, Geofluids, 2017: 8681753.
- [6]. Mayo, S., Josh, M., Nesterets, Y., Esteban, L., Pervukhina, M., Clennell, M. B.,Maksimenko,A. Hall, C., “Quantitative micro-porosity characterization using synchrotron micro-CT and xenon K-edge subtraction in sandstones, carbonates, shales and coal”, Fuel, 2015, 154, 167-173.
- [7]. Munawar, M. J., Lin, C., Cnudde, V., Bultreys, T., Dong, C., Zhang, X., Boaver, W.D., Zahid, M. A., Wu, Y., “Petrographic characterization to build an accurate rock model using micro-CT: Case study on low-permeable to tight turbidite sandstone from Eocene Shahejie Formation”, Micron, 2018, 109, 22-33.
- [8]. Xiao, D., Jiang, S., Thul, D., Lu, S., Zhang, L., Li, B., “Impacts of clay on pore structure, storage and percolation of tight sandstones from the Songliao Basin, China: implications for genetic classification of tight sandstone reservoirs”, Fuel, 2018,211, 390-404.
- [9]. Zhang, N., Zhao, F., Guo, P., Li, J., Gong, W., Guo, Z., Sun, X., “Nanoscale pore structure characterization and permeability of mudrocks and fine-grained sandstones in coal reservoirs by scanning electron microscopy, mercury intrusion porosimetry, and low-field nuclear magnetic resonance”, Geofluids, 2018.
- [10]. Xia, Y., Cai, J., Perfect, E., Wei, W., Zhang, Q., Meng, Q., “Fractal dimension, lacunarity and succolarity analyses on CT images of reservoir rocks for permeability prediction”, Journal of Hydrology, 579, 2019, 124198.
- [11]. Zahid, M. A., Chunmei, D., Golab, A. N., Lin, C., Zhang, X., Ge, X., Songtao, W., Munawar M.J., Ma, C., and Knuefing, L., “Pore size distribution and reservoir characterization: evaluation for the Eocene beach-bar sequence, Dongying Depression, China”, Arabian Journal of Geosciences, 2019, 12(21), 1-14.
- [12]. Xi, K., Cao, Y., Haile, B. G., Zhu, R., Jahren, J., Bjørlykke, K., Zhang, X., Hellevang, H., “How does the pore-throat size control the reservoir quality and oiliness of tight sandstones? The case of the Lower Cretaceous Quantou Formation in the southern Songliao Basin, China”, Marine and Petroleum Geology, 2016, 76, 1-15.
- [13]. Gao, H., Cao, J., Wang, C., He, M., Dou, L., Huang, X., Li, T., “Comprehensive characterization of pore and throat system for tight sandstone reservoirs and associated permeability determination method using SEM, rate-controlled mercury and high pressure mercury”, Journal of Petroleum Science and Engineering, 2019, 174, 514-524.
- [14]. Liu, D., Gu, Z., Liang, R., Su, J., Ren, D., Chen, B., Huang, C., Yang, C., “Impacts of pore-throat system on fractal characterization of tight sandstones”, Geofluids, 2020.
- [15]. Piri, M., & Blunt, M. J., “Three-dimensional mixed-wet random pore-scale network modeling of two-and three-phase flow in porous media I. Model description”, Physical Review E, 2005, 71(2), 026301.
- [16]. Al-Kharusi, A. S., Blunt, M. J., “Network extraction from sandstone and carbonate pore space images. Journal of petroleum science and engineering”, 2007, 56(4), 219-231.
- [17]. Dong, H., Blunt, M. J., “Pore-network extraction from micro-computerized-tomography images”, Physical review E, 2009, 80(3), 036307.
- [18]. He, M., Zhou, Y., Wu, K., Hu, Y., Feng, D., Zhang, T.,Liu, Q., Li, X., “Pore network modeling of thin water film and its influence on relative permeability curves in tight formations”, Fuel, 289, 2020, 119828.
- [19]. Tendam, A., “İskenderun Havzasındaki Sedimantasyon ve Fasiyesleri”, Türkiye Jeoloji Kurulu Bülteni, Ankara, 1951, 2, 5-66.
- [20]. Schmidt, G.C., Stratigraphic Nomenclature for the Adana Region Petroleum District VII. Petroleum Administration Bulletin, 1961, 6, 47-63.
- [21]. Sigal, J., “I. ve VII. Bölgeler Stratigrafi Etüdü (I.F.P. 1962-1963)”, TPAO , 1963, Rap No. 300.
- [22]. İprepoğlu, İ., Akarsu, İ., “Misis Dağları ve İskenderun Körfezi Civarı Hakkında Jeolojik Rapor”. TPAO. 1964, Rap.No.280.
- [23]. Kozlu, H., “İskenderun Baseni Jeolojisi ve Petrol Olanakları”, TPAO, 1982, Rapor No.1921.
- [24]. Kozlu, H., “Structural Development and Stratigraphy of Misis–Andirin Region”, In Proceedings of the 7th Petroleum Congress of Turkey. Turkish Association of Petroleum Geologists, 1987,104-116.
- [25]. Kılınç, E., Yeşilot Kaplan M. “Paleoenvironmental Conditions, Geochemistry and Hydrocarbon Potential of Kızıldere Formation Hatay–Turkey”, Fresenius Environmental Bulletin, 2019, 28, 3519-3526.
- [26]. Öztürk, E., “İskenderun Körfezi Miyosen Yaşlı İstiflerin Yer Altı Jeolojisi ve Hazne Kayaç Özelliklerinin İncelenmesi”, Ankara Üniversitesi, Fen Bilimleri Enstitisü Yüksek Lisans Tezi, 94 s, 2005.
Determination of Microporosity in Kizildere Formation Sandstones by Micro-CT method (Iskenderun-Arsuz / HATAY)
Year 2021,
, 718 - 727, 31.05.2021
Melda Avcu
Meryem Yeşilot Kaplan
Abstract
The aim of study is to determine the microporosity of sandstones in Arsuz-Iskenderun (Hatay) region by Micro-CT and image processing methods and to compare the macro porosity. The Kizildere formation is sequenced with sandstones-claystones and overlies the Haymaseki member consisting of evaporitic units. The cement in sandstones is calcite and ultrabasic-basic rock fragments of the basement rock are dominant and are named as litharenite, closed porosity is 4.22%, open porosity is 35.46% and total porosity is 38.18% according to Micro-CT analysis. Porosity in sandstones varies between 20-45% in the analysis with the open source software Fiji / Imagej. These values were compared with the porosity of the well logs and determined to be similar to the Micro-CT analysis results. Calculation of porosity values of rocks with image processing methods and Micro-CT method is more practical, non-destructive and economical than other methods. The porosity values of the sandstones of the Kizildere formation indicate that the formation may be a reservoir rock.
References
- [1]. Loyd, S.J., Corsetti, F.A., Eiler, J.M., Tripati, A.K., “Determining the diagenetic conditions of concretion formation: assessing temperatures and pore waters using clumped isotopes”, Journal of Sedimentary Research, 2012, 82, 1006-1016.
- [2]. Wang, J., Cao, Y., Liu, K., Liu, J., Xue, X., Xu, Q., “Pore fluid evolution, distribution and water-rock interactions of carbonate cements in red-bed sandstone reservoirs in the Dongying Depression, China”, Marine and Petroleum Geology, 2016, 72, 279-294.
- [3]. Carvalho, M. V. F., Ros, L. F. D., Gomes, N. S., “Carbonate cementation patterns and diagenetic reservoir facies in the Campos basin cretaceous turbidites, offshore eastern Brazil”, Marine and Petroleum Geology, 1995, 12(7), 741–758.
- [4]. Taghavi A.A., Mørk A., Emadi M.A., “Sequence stratigraphically controlled diagenesis governs reservoir quality in the carbonate Dehluran Field, southwest Iran”, Petroleum Geoscience, 2006, 12, 115–126.
- [5]. Lai J., Wang G., Chen J., Wang S., Zhou Z., Fan X., “Origin and distribution of carbonate cement in tight sandstones: The Upper Triassic Yanchang Formation Chang 8 oil layer in west Ordos Basin, China”, Geofluids, 2017: 8681753.
- [6]. Mayo, S., Josh, M., Nesterets, Y., Esteban, L., Pervukhina, M., Clennell, M. B.,Maksimenko,A. Hall, C., “Quantitative micro-porosity characterization using synchrotron micro-CT and xenon K-edge subtraction in sandstones, carbonates, shales and coal”, Fuel, 2015, 154, 167-173.
- [7]. Munawar, M. J., Lin, C., Cnudde, V., Bultreys, T., Dong, C., Zhang, X., Boaver, W.D., Zahid, M. A., Wu, Y., “Petrographic characterization to build an accurate rock model using micro-CT: Case study on low-permeable to tight turbidite sandstone from Eocene Shahejie Formation”, Micron, 2018, 109, 22-33.
- [8]. Xiao, D., Jiang, S., Thul, D., Lu, S., Zhang, L., Li, B., “Impacts of clay on pore structure, storage and percolation of tight sandstones from the Songliao Basin, China: implications for genetic classification of tight sandstone reservoirs”, Fuel, 2018,211, 390-404.
- [9]. Zhang, N., Zhao, F., Guo, P., Li, J., Gong, W., Guo, Z., Sun, X., “Nanoscale pore structure characterization and permeability of mudrocks and fine-grained sandstones in coal reservoirs by scanning electron microscopy, mercury intrusion porosimetry, and low-field nuclear magnetic resonance”, Geofluids, 2018.
- [10]. Xia, Y., Cai, J., Perfect, E., Wei, W., Zhang, Q., Meng, Q., “Fractal dimension, lacunarity and succolarity analyses on CT images of reservoir rocks for permeability prediction”, Journal of Hydrology, 579, 2019, 124198.
- [11]. Zahid, M. A., Chunmei, D., Golab, A. N., Lin, C., Zhang, X., Ge, X., Songtao, W., Munawar M.J., Ma, C., and Knuefing, L., “Pore size distribution and reservoir characterization: evaluation for the Eocene beach-bar sequence, Dongying Depression, China”, Arabian Journal of Geosciences, 2019, 12(21), 1-14.
- [12]. Xi, K., Cao, Y., Haile, B. G., Zhu, R., Jahren, J., Bjørlykke, K., Zhang, X., Hellevang, H., “How does the pore-throat size control the reservoir quality and oiliness of tight sandstones? The case of the Lower Cretaceous Quantou Formation in the southern Songliao Basin, China”, Marine and Petroleum Geology, 2016, 76, 1-15.
- [13]. Gao, H., Cao, J., Wang, C., He, M., Dou, L., Huang, X., Li, T., “Comprehensive characterization of pore and throat system for tight sandstone reservoirs and associated permeability determination method using SEM, rate-controlled mercury and high pressure mercury”, Journal of Petroleum Science and Engineering, 2019, 174, 514-524.
- [14]. Liu, D., Gu, Z., Liang, R., Su, J., Ren, D., Chen, B., Huang, C., Yang, C., “Impacts of pore-throat system on fractal characterization of tight sandstones”, Geofluids, 2020.
- [15]. Piri, M., & Blunt, M. J., “Three-dimensional mixed-wet random pore-scale network modeling of two-and three-phase flow in porous media I. Model description”, Physical Review E, 2005, 71(2), 026301.
- [16]. Al-Kharusi, A. S., Blunt, M. J., “Network extraction from sandstone and carbonate pore space images. Journal of petroleum science and engineering”, 2007, 56(4), 219-231.
- [17]. Dong, H., Blunt, M. J., “Pore-network extraction from micro-computerized-tomography images”, Physical review E, 2009, 80(3), 036307.
- [18]. He, M., Zhou, Y., Wu, K., Hu, Y., Feng, D., Zhang, T.,Liu, Q., Li, X., “Pore network modeling of thin water film and its influence on relative permeability curves in tight formations”, Fuel, 289, 2020, 119828.
- [19]. Tendam, A., “İskenderun Havzasındaki Sedimantasyon ve Fasiyesleri”, Türkiye Jeoloji Kurulu Bülteni, Ankara, 1951, 2, 5-66.
- [20]. Schmidt, G.C., Stratigraphic Nomenclature for the Adana Region Petroleum District VII. Petroleum Administration Bulletin, 1961, 6, 47-63.
- [21]. Sigal, J., “I. ve VII. Bölgeler Stratigrafi Etüdü (I.F.P. 1962-1963)”, TPAO , 1963, Rap No. 300.
- [22]. İprepoğlu, İ., Akarsu, İ., “Misis Dağları ve İskenderun Körfezi Civarı Hakkında Jeolojik Rapor”. TPAO. 1964, Rap.No.280.
- [23]. Kozlu, H., “İskenderun Baseni Jeolojisi ve Petrol Olanakları”, TPAO, 1982, Rapor No.1921.
- [24]. Kozlu, H., “Structural Development and Stratigraphy of Misis–Andirin Region”, In Proceedings of the 7th Petroleum Congress of Turkey. Turkish Association of Petroleum Geologists, 1987,104-116.
- [25]. Kılınç, E., Yeşilot Kaplan M. “Paleoenvironmental Conditions, Geochemistry and Hydrocarbon Potential of Kızıldere Formation Hatay–Turkey”, Fresenius Environmental Bulletin, 2019, 28, 3519-3526.
- [26]. Öztürk, E., “İskenderun Körfezi Miyosen Yaşlı İstiflerin Yer Altı Jeolojisi ve Hazne Kayaç Özelliklerinin İncelenmesi”, Ankara Üniversitesi, Fen Bilimleri Enstitisü Yüksek Lisans Tezi, 94 s, 2005.