Research Article
BibTex RIS Cite

Experimental Analysis of a Parabolic Trough Collector Performance Under Mediterranean Climate Conditions

Year 2021, , 873 - 886, 31.05.2021
https://doi.org/10.31202/ecjse.884283

Abstract

In this study, a novel non-tracking parabolic trough collector (PTC) is developed and experimentally investigated under North Cyprus climate conditions for residential water heating applications. Within the study, impact of solar radiation (SR) and water volumetric flow rate (VFR) on the system performance are evaluated based on the testing results. Experiments were performed in first and third weeks of April in Famagusta, in which SR is limited due to the rain and cloudy sky. System is tested with water VFRs of 15 L/h and 20 L/h. During the tests, collector inlet/outlet temperatures also water tank and ambient temperatures were measured. Furthermore, solar intensity was also measured and recorded. Average SR on PTC surface, during the testing with 15 L/h and 20 L/h, was determined as 654.5 W and 723.3 W respectively. Study results showed that the useful heat gain from PTC was 285.2 W and 233.7 W, for the same order of VFRs. Moreover, the average thermal efficiency of the system was found as 44% and 33% for the VFRs of 15 L/h and 20 L/h respectively.

Supporting Institution

Bu calisma herhangi bir kurum veya kurulus tarafindan desteklenmemistir.

Project Number

-

Thanks

-

References

  • Akbay, O., Yılmaz F., Thermodynamic analysis and performance comparison of flash binary geothermal power generation plant, El-Cezerî Journal of Science and Engineering, 2021, 8(1); 445-461.
  • BP Energy Outlook 2018 edition. https://www.bp.com/content/dam/bp/business-sites/en/global/corporate/pdfs/energy-economics/energy-outlook/bp-energy-outlook-2018.pdf. (Access date: 08.02.2021).
  • Karafil, A., Özbay, H., Design of stand-alone PV system on a farm house in Bilecik City, Turkey, El-Cezerî Journal of Science and Engineering, 2018, 5(3); 909-916.
  • Global CO2 emissions in 2019. https://www.iea.org/articles/global-co2-emissions-in-2019. (Access date: 08:02.2021)
  • Görgülü, S., Determination of biogas potential from animal and some agricultural wastes in Burdur Province, El-Cezerî Journal of Science and Engineering, 2019, 6(3); 543-557.
  • Yuksel, Y., E. Thermodynamic and performance evaluation of an integrated geothermal energy based multigeneration plant, El-Cezerî Journal of Science and Engineering, 2020, 7 (2); 381-401.
  • Özen D. N., Yağcıoğlu K., Thermodynamic and exergy analysis of an absorption cooling system for different refrigerants, El-Cezerî Journal of Science and Engineering, 2020, 7(1); 93-103.
  • Ktistis, P. K., Agathokleous, R. A., Kalogirou S. A., Experimental performance of a parabolic trough collector system for an industrial process heat application, Energy, 2021, 215, 119288.
  • Bernard, S. S., Suresh, G., Ahmed, M. D. J., Mageshwaran, G., Madanagopal, V., Karthikeya J., Performance analysis of MWCNT fluid parabolic trough collector for whole year, Materials Today: Proceedings, 2011, In Press. https://doi.org/10.1016/j.matpr.2020.05.289
  • Lamrani, B., Kuznik, F., Draoui, A., Thermal performance of a coupled solar parabolic trough collector latent heat storage unit for solar water heating in large buildings, Renewable Energy, 2020, 162: 411-426.
  • Soudani, M. E., Aiadi, K. E., Bechki, D., Water heating by parabolic trough collector with storage in the Ouargla region of Algerian Sahara, Materials Today: Proceedings, 2020, 24: 137-139.
  • Donga, R., Kumar, S., Kumar, A., Performance evaluation of parabolic trough collector with receiver position error, Journal of Thermal Engineering, 2021, 7(1): 271-290.
  • Afsharpanah, F., SheShpoli, A. Z., Pakzad, K., Ajarostaghi, S. S. M., Numerical investigation of non-uniform heat transfer enhancement in parabolic trough solar collectors using dual modified twisted-tape inserts, Journal of Thermal Engineering, 2021, 7(1): 133-147.
  • Balotaki, H. K., Saidi, M. H., Experimental investigation of dual-purpose solar collector using with rectangular channels, Journal of Thermal Engineering, 2017, 3(1): 1052-1059.
  • Bhusal, Y., Hassanzadeh, A., Jiang, L., Winston, R., Technical and economic analysis of a novel low-cost concentrated medium-temperature solar collector, Renewable Energy, 2020 146: 968-985.
  • Qui, G., Ma, Y., Song, W., Cai, W., Comparative study on solar flat-plate collectors coupled with three types of reflectors not requiring solar tracking for space heating, Renewable Energy, 2021, 169: 104-116.
  • Haran, V. H., Venkataramaiah, P., Mathematical modelling and analysis of parabolic collector. Materials Today: Proceedings, 2021, In Press. https://doi.org/10.1016/j.matpr.2020.11.465
  • Barbosa, E. G., Martins, M. A., Viana de Araujo, M. E., et al., Experimental evaluation of a stationary parabolic trough solar collector: Influence of the concentrator and heat transfer fluid, Journal of Cleaner Production, 2020, 276, 124174.
  • Mokheimer, E. M. A., Dabwan, Y. N., Habib, M. A., Said, S. A. M., and Al-Sulaiman, F. A., Techno-economic performance analysis of parabolic trough collector in Dhahran, Saudi Arabia, Energy Conversion and Management, 2014, 86: 622–633.
  • Kasaeian, A., Daviran, S., Azarian, R. D., and Rashidi, A., Performance evaluation and nanofluid using capability study of a solar parabolic trough collector, Energy Conversion and Management, 2015, 89: 368–375.
  • Duffie, J. A. and Beckman, W. A., Solar Engineering of Thermal Processes, 3rd Edition, John Wiley & Sons, Inc., Hoboken, New Jersey (2006).
  • Abbood, M., Radhi, R. and Shaheed, A., Design, construction, and testing of a parabolic trough solar concentrator system for hot water and moderate temperature steam generation, Kufa Journal of Engineering, 2018, 9(1): 42–59.
  • Temperature Meter PCE-T390. https://www.pce-instruments.com/turkish/oel_uem-teknolojisi/oel_uem-cihazlarae/isae_-oel_uem-cihazae_-pce-instruments-isae_-oel_uem-cihazae_-pce-t390-det_2531023.htm. (Access date: 10.02.2021)
  • Jouybari, H. J., Saedodin, S., Zamzamian, A., Nimvari, M. E. and Wongwises, S., Effects of porous material and nanoparticles on the thermal performance of a flat plate solar collector: An experimental study, Renewable Energy, 2017, 114: 1407–1418.
  • El Khadraoui, A., Bouadila, S., Kooli, S., Guizani, A. and Farhat, A., Solar air heater with phase change material: An energy analysis and a comparative study, Applied Thermal Engineering, 2016, 107: 1057–1064.
  • Buker, M. S., Mempouo, B., Riffat, S. B., Performance evaluation and techno-economic analysis of a novel building integrated PV/T roof collector: An experimental validation, Energy and Buildings, 2014, 76: 164-175.
  • Doğramacı, P. A. and Aydın, D., Comparative experimental investigation of novel organic materials for direct evaporative cooling applications in hot-dry climate, Journal of Building Engineering, 2020, 30, 101240.

Parabolik Bir Güneş Kollektörünün Akdeniz Iklim Koşullarında Deneysel Olarak İncelenmesi

Year 2021, , 873 - 886, 31.05.2021
https://doi.org/10.31202/ecjse.884283

Abstract

Bu çalışmada, konutlarda sıcak su üretimi amaçlı, hareketsiz tip parabolik kollektör geliştirilmiş ve Kuzey Kıbrıs iklim koşullarında deneysel olarak incelenmiştir. Çalışma kapsamında güneş ışınımı miktarının ve sirkülasyon suyu debisinin sistem performansına etkisi deneysel sonuçlardan faydalanarak analiz edilmiştir. Deneyler, bulut ve yağış etkisinin güneş ışınımı etkinliğini azalttığı Nisan ayının birinci ve üçüncü haftasında Gazi Magusa’da gerçekleştirilmiştir. Sistem, su hacimsel debisinin 15 L/s ve 20 L/s olduğu koşullarda test edilmiştir. Deneyler sırasında, kollektör giriş/çıkış sıcaklıkları, tanktaki su sıcaklığı ve çevre sıcaklığı ölçülmüştür. Ayrıca güneş ışınımı ölçülmüş ve kayıt edilmiştir. 15 L/h ve 20 L/h çalışma koşulları altında parabolik kollektör yüzeyindeki ortalama güneş ışınımı miktarı 654.5 W ve 723.3 W olarak belirlenmiştir. Çalışma sonuçlarına göre parabolik kollektörden elde edilen ortalama ısı kazancı ise aynı çalışma koşulları için 285.2 W ve 233.7 W olarak hesaplanmıştır. Buna göre, 15 L/h ve 20 L/h su hacimsel debilerinin kullanıldığı koşullar için parabolik kollektör ortalama ısıl verimi 44% ve 33% olarak hesaplanmıştır

Project Number

-

References

  • Akbay, O., Yılmaz F., Thermodynamic analysis and performance comparison of flash binary geothermal power generation plant, El-Cezerî Journal of Science and Engineering, 2021, 8(1); 445-461.
  • BP Energy Outlook 2018 edition. https://www.bp.com/content/dam/bp/business-sites/en/global/corporate/pdfs/energy-economics/energy-outlook/bp-energy-outlook-2018.pdf. (Access date: 08.02.2021).
  • Karafil, A., Özbay, H., Design of stand-alone PV system on a farm house in Bilecik City, Turkey, El-Cezerî Journal of Science and Engineering, 2018, 5(3); 909-916.
  • Global CO2 emissions in 2019. https://www.iea.org/articles/global-co2-emissions-in-2019. (Access date: 08:02.2021)
  • Görgülü, S., Determination of biogas potential from animal and some agricultural wastes in Burdur Province, El-Cezerî Journal of Science and Engineering, 2019, 6(3); 543-557.
  • Yuksel, Y., E. Thermodynamic and performance evaluation of an integrated geothermal energy based multigeneration plant, El-Cezerî Journal of Science and Engineering, 2020, 7 (2); 381-401.
  • Özen D. N., Yağcıoğlu K., Thermodynamic and exergy analysis of an absorption cooling system for different refrigerants, El-Cezerî Journal of Science and Engineering, 2020, 7(1); 93-103.
  • Ktistis, P. K., Agathokleous, R. A., Kalogirou S. A., Experimental performance of a parabolic trough collector system for an industrial process heat application, Energy, 2021, 215, 119288.
  • Bernard, S. S., Suresh, G., Ahmed, M. D. J., Mageshwaran, G., Madanagopal, V., Karthikeya J., Performance analysis of MWCNT fluid parabolic trough collector for whole year, Materials Today: Proceedings, 2011, In Press. https://doi.org/10.1016/j.matpr.2020.05.289
  • Lamrani, B., Kuznik, F., Draoui, A., Thermal performance of a coupled solar parabolic trough collector latent heat storage unit for solar water heating in large buildings, Renewable Energy, 2020, 162: 411-426.
  • Soudani, M. E., Aiadi, K. E., Bechki, D., Water heating by parabolic trough collector with storage in the Ouargla region of Algerian Sahara, Materials Today: Proceedings, 2020, 24: 137-139.
  • Donga, R., Kumar, S., Kumar, A., Performance evaluation of parabolic trough collector with receiver position error, Journal of Thermal Engineering, 2021, 7(1): 271-290.
  • Afsharpanah, F., SheShpoli, A. Z., Pakzad, K., Ajarostaghi, S. S. M., Numerical investigation of non-uniform heat transfer enhancement in parabolic trough solar collectors using dual modified twisted-tape inserts, Journal of Thermal Engineering, 2021, 7(1): 133-147.
  • Balotaki, H. K., Saidi, M. H., Experimental investigation of dual-purpose solar collector using with rectangular channels, Journal of Thermal Engineering, 2017, 3(1): 1052-1059.
  • Bhusal, Y., Hassanzadeh, A., Jiang, L., Winston, R., Technical and economic analysis of a novel low-cost concentrated medium-temperature solar collector, Renewable Energy, 2020 146: 968-985.
  • Qui, G., Ma, Y., Song, W., Cai, W., Comparative study on solar flat-plate collectors coupled with three types of reflectors not requiring solar tracking for space heating, Renewable Energy, 2021, 169: 104-116.
  • Haran, V. H., Venkataramaiah, P., Mathematical modelling and analysis of parabolic collector. Materials Today: Proceedings, 2021, In Press. https://doi.org/10.1016/j.matpr.2020.11.465
  • Barbosa, E. G., Martins, M. A., Viana de Araujo, M. E., et al., Experimental evaluation of a stationary parabolic trough solar collector: Influence of the concentrator and heat transfer fluid, Journal of Cleaner Production, 2020, 276, 124174.
  • Mokheimer, E. M. A., Dabwan, Y. N., Habib, M. A., Said, S. A. M., and Al-Sulaiman, F. A., Techno-economic performance analysis of parabolic trough collector in Dhahran, Saudi Arabia, Energy Conversion and Management, 2014, 86: 622–633.
  • Kasaeian, A., Daviran, S., Azarian, R. D., and Rashidi, A., Performance evaluation and nanofluid using capability study of a solar parabolic trough collector, Energy Conversion and Management, 2015, 89: 368–375.
  • Duffie, J. A. and Beckman, W. A., Solar Engineering of Thermal Processes, 3rd Edition, John Wiley & Sons, Inc., Hoboken, New Jersey (2006).
  • Abbood, M., Radhi, R. and Shaheed, A., Design, construction, and testing of a parabolic trough solar concentrator system for hot water and moderate temperature steam generation, Kufa Journal of Engineering, 2018, 9(1): 42–59.
  • Temperature Meter PCE-T390. https://www.pce-instruments.com/turkish/oel_uem-teknolojisi/oel_uem-cihazlarae/isae_-oel_uem-cihazae_-pce-instruments-isae_-oel_uem-cihazae_-pce-t390-det_2531023.htm. (Access date: 10.02.2021)
  • Jouybari, H. J., Saedodin, S., Zamzamian, A., Nimvari, M. E. and Wongwises, S., Effects of porous material and nanoparticles on the thermal performance of a flat plate solar collector: An experimental study, Renewable Energy, 2017, 114: 1407–1418.
  • El Khadraoui, A., Bouadila, S., Kooli, S., Guizani, A. and Farhat, A., Solar air heater with phase change material: An energy analysis and a comparative study, Applied Thermal Engineering, 2016, 107: 1057–1064.
  • Buker, M. S., Mempouo, B., Riffat, S. B., Performance evaluation and techno-economic analysis of a novel building integrated PV/T roof collector: An experimental validation, Energy and Buildings, 2014, 76: 164-175.
  • Doğramacı, P. A. and Aydın, D., Comparative experimental investigation of novel organic materials for direct evaporative cooling applications in hot-dry climate, Journal of Building Engineering, 2020, 30, 101240.
There are 27 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Makaleler
Authors

Mohamed Alibar 0000-0003-3318-2368

Devrim Aydin 0000-0002-5292-7567

Project Number -
Publication Date May 31, 2021
Submission Date February 22, 2021
Acceptance Date May 23, 2021
Published in Issue Year 2021

Cite

IEEE M. Alibar and D. Aydin, “Experimental Analysis of a Parabolic Trough Collector Performance Under Mediterranean Climate Conditions”, ECJSE, vol. 8, no. 2, pp. 873–886, 2021, doi: 10.31202/ecjse.884283.