-oriented 0.70 Pb (Mg1/3Nb2/3) O3–0.30 PbTiO3 single crystals". Materials Letters 2006, 60 (13-14): 1634-1639." />
Research Article
BibTex RIS Cite

Flash Sintering Effect on PMN-PT Ceramics

Year 2021, , 793 - 799, 31.05.2021
https://doi.org/10.31202/ecjse.887859

Abstract

Densification of PMN-PT piezoelectric ceramic powder is carried out by electric field assisted/flash sintering method. The composition selected in PMN-PT materials system is 0.67[Pb(Mg1/3Nb2/3)O3]−0.33(PbTiO3). During flash sintering experiment, 200 V/mm electric field is applied on sample with 0.1 amp current cutoff value. Flash sintering is accomplished in less than 90 sec at ~700 °C. Relative density for sintered sample is measured approximately 94 % which is reasonable value comparing with literature. SEM microstructure illustration exhibits proper consolidation morphology which is agreement with the relative density measurement. According to XRD analysis, the said materials system shows consistency in rhombohedral perovskite crystal structure and preserve its chemical and physical composition during whole experimental cycle. By electric field assisted/flash sintering technique, the sintering temperature is decreased from 1200 °C to 700 °C along with a decrement in sintering time from 2 hours to 90 seconds. PMN-PT is properly produced by flash sintering method for the first time with respect to open literature. Hence, this densification method will gain importance to reduce toxic Pb emission aroused at high temperature processes.

Supporting Institution

Scientific Research Projects Coordination Unit (SRPCU) of Selcuk University / Scientific Research Projects at Konya Technical University

Project Number

18401032 / 191019035

Thanks

The authors wish to thank Dr. Volkan KALEM (Metallurgical and Materials Engineering Department at Konya Technical University) for providing PMN-PT powder.

References

  • [1]. Capobianco, J. A., Shih, W. Y., Yuan, Q.-A., Adams, G. P., Shih, W.-H., "Label-free, all-electrical, in situ human epidermal growth receptor 2 detection". Review of Scientific Instruments 2008, 79 (7): 076101
  • [2]. Chen, K.-P., Zhang, X.-W., Zhao, X.-Y., Luo, H.-S., "Field-induced effect in the< 111>-oriented 0.70 Pb (Mg1/3Nb2/3) O3–0.30 PbTiO3 single crystals". Materials Letters 2006, 60 (13-14): 1634-1639.
  • [3]. Shvartsman, V., Kholkin, A. L., Verdier, C., Lupascu, D. C., "Fatigue-induced evolution of domain structure in ferroelectric lead zirconate titanate ceramics investigated by piezoresponse force microscopy". Journal of applied physics 2005, 98 (9): 094109.
  • [4]. Zhang, Q., Zhao, J., Cross, L., "Aging of the dielectric and piezoelectric properties of relaxor ferroelectric lead magnesium niobate–lead titanate in the electric field biased state". Journal of applied physics 1996, 79 (6): 3181-3187.
  • [5]. Park, S.-E., Shrout, T. R., "Ultrahigh strain and piezoelectric behavior in relaxor based ferroelectric single crystals". Journal of Applied Physics 1997, 82 (4): 1804-1811.
  • [6]. Ye, Z.-G., Dong, M., "Morphotropic domain structures and phase transitions in relaxor-based piezo-/ferroelectric (1− x) Pb (Mg 1/3 Nb 2/3) O 3− x PbTiO 3 single crystals". Journal of Applied Physics 2000, 87 (5): 2312-2319.
  • [7]. Chan, K.; Tsang, W.; Mak, C. L.; Wong, K., "Optical studies of 0.65 PbMg1/3Nb2/3O3–0.35 PbTiO3 thin films". Journal of the European Ceramic Society 2005, 25 (12): 2313-2317.
  • [8]. Yin, Z.-W., Luo, H.-S., Wang, P.-C., Xu, G.-S., "Growth, characterization and properties of relaxor ferroelectric PMN-PT single crystals". Ferroelectrics 1999, 229 (1): 207-216.
  • [9]. Cheng, K. C., Chan, H. L., Choy, C. L., Yin, Q., Luo, H., Yin, Z., "Single crystal PMN-0.33 PT/epoxy 1-3 composites for ultrasonic transducer applications". IEEE transactions on ultrasonics, ferroelectrics, and frequency control 2003, 50 (9): 1177-1183.
  • [10]. Wei, Z., Huang, Y., Tsuboi, T., Nakai, Y., Zeng, J., Li, G., "Optical characteristics of Er3+-doped PMN–PT transparent ceramics". Ceramics International 2012, 38 (4): 3397-3402.
  • [11]. Kalem, V., Shih, W. Y., Shih, W.-H., "Dielectric and piezoelectric properties of PMN-PT ceramics doped with strontium". Ceramics International 2018, 44 (3): 2835-2842.
  • [12]. Düzen, O., Kalem, V., "PMN-PT-PMS Seramiklerinde Sinterleme Sıcaklığı Etkisiyle Yapısal ve Elektriksel Özelliklerin Optimizasyonu". Selçuk Üniversitesi Mühendislik, Bilim ve Teknoloji Dergisi 2017, 5 (2): 144-15.
  • [13]. Shi, J., Lu, X., Shao, J., Fang, B., Zhang, S., Du, Q., Ding, J., Zhao, X., Luo, H., "Effects on structure and properties of BCZT lead-free piezoelectric ceramics by rare-earth doping". Ferroelectrics 2017, 507 (1): 186-197.
  • [14]. Cologna, M., Rashkova, B., Raj, R., "Flash Sintering of Nanograin Zirconia in< 5 s at 850 C". Journal of the American Ceramic Society 2010, 93 (11): 3556-3559.
  • [15]. Yu, M., Grasso, S., Mckinnon, R., Saunders, T., Reece, M. J., "Review of flash sintering: materials, mechanisms and modelling". Advances in Applied Ceramics 2017, 116 (1): 24-60.
  • [16]. Bicer, H., Beyoglu, B., Ozdemir, T. E., Okasinski, J.; Tsakalakos, T., "Direct in situ observation of electric field assisted densification of ZnO by energy dispersive X-ray diffraction". Ceramics International 2019, 45 (6): 7614-7618.
  • [17]. Su, X., Jia, Y., Han, C., Hu, Y., Fu, Z., Liu, K., Yu, Y., Yan, X., Wang, Y., "Flash sintering of lead zirconate titanate ceramics under an alternating current electrical field". Ceramics International 2019, 45 (4): 5168-5173.
  • [18]. Raj, R., "Joule heating during flash-sintering". Journal of the European Ceramic Society 2012, 32 (10): 2293-2301.
  • [19]. Naik, K. S., Sglavo, V. M., Raj, R., "Flash sintering as a nucleation phenomenon and a model thereof". Journal of the European Ceramic Society 2014, 34 (15): 4063-4067.
  • [20]. Serrazina, R., Vilarinho, P. M., Senos, A. M., Pereira, L., Reaney, I. M., Dean, J. S., "Modelling the particle contact influence on the Joule heating and temperature distribution during FLASH sintering". Journal of the European Ceramic Society 2020, 40 (4): 1205-1211.
  • [21]. Akdoğan, E., Şavklıyıldız, İ., Biçer, H., Paxton, W., Toksoy, F., Zhong, Z., Tsakalakos, T., "Anomalous lattice expansion in yttria stabilized zirconia under simultaneous applied electric and thermal fields: A time-resolved in situ energy dispersive x-ray diffractometry study with an ultrahigh energy synchrotron probe". Journal of Applied Physics 2013, 113 (23): 233503.
  • [22]. Gaur, A., Sglavo, V. M., "Flash-sintering of MnCo2O4 and its relation to phase stability". Journal of the European Ceramic Society 2014, 34 (10): 2391-2400.
  • [23]. Todd, R., Zapata-Solvas, E., Bonilla, R., Sneddon, T., Wilshaw, P., "Electrical characteristics of flash sintering: thermal runaway of Joule heating". Journal of the European Ceramic Society 2015, 35 (6): 1865-1877.
  • [24]. Du, Y., Stevenson, A. J., Vernat, D., Diaz, M.; Marinha, D., "Estimating Joule heating and ionic conductivity during flash sintering of 8YSZ". Journal of the European Ceramic Society 2016, 36 (3): 749-759.
  • [25]. Raj, R., "Analysis of the power density at the onset of flash sintering". Journal of the American Ceramic Society 2016, 99 (10): 3226-3232.
  • [26]. Zhao, X., Fang, B., Cao, H., Guo, Y., Luo, H., "Dielectric and piezoelectric performance of PMN–PT single crystals with compositions around the MPB: influence of composition, poling field and crystal orientation". Materials Science and Engineering: B 2002, 96 (3): 254-262.
  • [27]. Jha, S., Lebrun, J., Raj, R., "Phase transformation in the alumina–titania system during flash sintering experiments". Journal of the European Ceramic Society 2016, 36 (3): 733-739.
  • [28]. Avcı U, Güleç A. Effect of Different Sintering Temperatures on Microstructure and Mechanical Properties for Pure Al Material Produced by Powder Metallurgy. El-Cezeri Journal of Science and Engineering. 2021; 8(1): 462-470.

Flash Sinterlemenin PMN-PT Seramikleri Üzerine Etkisi

Year 2021, , 793 - 799, 31.05.2021
https://doi.org/10.31202/ecjse.887859

Abstract

PMN-PT seramik tozların yoğunlaşması çalışması elektrik alan/flash sinterleme metoduyla uygulanmıştır. PMN-PT malzeme sisteminde seçilen kompozisyon 0.67[Pb(Mg1/3Nb2/3)O3]−0.33(PbTiO3) olarak belirlenmiştir. Flash sinterleme deneyi sırasında numune üzerine 200 V/mm elektrik alan 0.1 amper akım kesme değeri ile uygulanmıştır. Flash sinterleme 90 saniyeden daha az bir sürede ve yaklaşık 700 °C tamamlanmıştır. Göreceli yoğunluk değeri yaklaşık 94 % olarak ölçülmüştür ve bu değer literatürdeki değerlere göre makul bir değerdir. SEM mikroyapı örneklemesi uygun katılaşma morfolojisi göstermekte ve göreceli yoğunluk ölçümüyle uyuşmaktadır. XRD analizine göre, bahsedilen malzeme sistemi romboedrik perovskit kristal yapısında devamlılık göstermiştir ve kimyasal ve fiziksel kompozisyonunu bütün deney süresince korumuştur. Elektrik alan yardımlı/flash sinterleme tekniği ile sinterleme sıcaklığı 1200 °C den 700 °C ve sinterleme süresini 2 saatten 90 saniyeye düşürmüştür. PMN-PT açık literatüre göre flash sinterleme metoduyla ilk defa üretilmiştir. Böylelikle bu yoğunlaşma metodu yüksek sıcaklık proseslerde ortaya çıkan toksik Pb salınımı azaltmasıyla önem kazanacaktır.

Project Number

18401032 / 191019035

References

  • [1]. Capobianco, J. A., Shih, W. Y., Yuan, Q.-A., Adams, G. P., Shih, W.-H., "Label-free, all-electrical, in situ human epidermal growth receptor 2 detection". Review of Scientific Instruments 2008, 79 (7): 076101
  • [2]. Chen, K.-P., Zhang, X.-W., Zhao, X.-Y., Luo, H.-S., "Field-induced effect in the< 111>-oriented 0.70 Pb (Mg1/3Nb2/3) O3–0.30 PbTiO3 single crystals". Materials Letters 2006, 60 (13-14): 1634-1639.
  • [3]. Shvartsman, V., Kholkin, A. L., Verdier, C., Lupascu, D. C., "Fatigue-induced evolution of domain structure in ferroelectric lead zirconate titanate ceramics investigated by piezoresponse force microscopy". Journal of applied physics 2005, 98 (9): 094109.
  • [4]. Zhang, Q., Zhao, J., Cross, L., "Aging of the dielectric and piezoelectric properties of relaxor ferroelectric lead magnesium niobate–lead titanate in the electric field biased state". Journal of applied physics 1996, 79 (6): 3181-3187.
  • [5]. Park, S.-E., Shrout, T. R., "Ultrahigh strain and piezoelectric behavior in relaxor based ferroelectric single crystals". Journal of Applied Physics 1997, 82 (4): 1804-1811.
  • [6]. Ye, Z.-G., Dong, M., "Morphotropic domain structures and phase transitions in relaxor-based piezo-/ferroelectric (1− x) Pb (Mg 1/3 Nb 2/3) O 3− x PbTiO 3 single crystals". Journal of Applied Physics 2000, 87 (5): 2312-2319.
  • [7]. Chan, K.; Tsang, W.; Mak, C. L.; Wong, K., "Optical studies of 0.65 PbMg1/3Nb2/3O3–0.35 PbTiO3 thin films". Journal of the European Ceramic Society 2005, 25 (12): 2313-2317.
  • [8]. Yin, Z.-W., Luo, H.-S., Wang, P.-C., Xu, G.-S., "Growth, characterization and properties of relaxor ferroelectric PMN-PT single crystals". Ferroelectrics 1999, 229 (1): 207-216.
  • [9]. Cheng, K. C., Chan, H. L., Choy, C. L., Yin, Q., Luo, H., Yin, Z., "Single crystal PMN-0.33 PT/epoxy 1-3 composites for ultrasonic transducer applications". IEEE transactions on ultrasonics, ferroelectrics, and frequency control 2003, 50 (9): 1177-1183.
  • [10]. Wei, Z., Huang, Y., Tsuboi, T., Nakai, Y., Zeng, J., Li, G., "Optical characteristics of Er3+-doped PMN–PT transparent ceramics". Ceramics International 2012, 38 (4): 3397-3402.
  • [11]. Kalem, V., Shih, W. Y., Shih, W.-H., "Dielectric and piezoelectric properties of PMN-PT ceramics doped with strontium". Ceramics International 2018, 44 (3): 2835-2842.
  • [12]. Düzen, O., Kalem, V., "PMN-PT-PMS Seramiklerinde Sinterleme Sıcaklığı Etkisiyle Yapısal ve Elektriksel Özelliklerin Optimizasyonu". Selçuk Üniversitesi Mühendislik, Bilim ve Teknoloji Dergisi 2017, 5 (2): 144-15.
  • [13]. Shi, J., Lu, X., Shao, J., Fang, B., Zhang, S., Du, Q., Ding, J., Zhao, X., Luo, H., "Effects on structure and properties of BCZT lead-free piezoelectric ceramics by rare-earth doping". Ferroelectrics 2017, 507 (1): 186-197.
  • [14]. Cologna, M., Rashkova, B., Raj, R., "Flash Sintering of Nanograin Zirconia in< 5 s at 850 C". Journal of the American Ceramic Society 2010, 93 (11): 3556-3559.
  • [15]. Yu, M., Grasso, S., Mckinnon, R., Saunders, T., Reece, M. J., "Review of flash sintering: materials, mechanisms and modelling". Advances in Applied Ceramics 2017, 116 (1): 24-60.
  • [16]. Bicer, H., Beyoglu, B., Ozdemir, T. E., Okasinski, J.; Tsakalakos, T., "Direct in situ observation of electric field assisted densification of ZnO by energy dispersive X-ray diffraction". Ceramics International 2019, 45 (6): 7614-7618.
  • [17]. Su, X., Jia, Y., Han, C., Hu, Y., Fu, Z., Liu, K., Yu, Y., Yan, X., Wang, Y., "Flash sintering of lead zirconate titanate ceramics under an alternating current electrical field". Ceramics International 2019, 45 (4): 5168-5173.
  • [18]. Raj, R., "Joule heating during flash-sintering". Journal of the European Ceramic Society 2012, 32 (10): 2293-2301.
  • [19]. Naik, K. S., Sglavo, V. M., Raj, R., "Flash sintering as a nucleation phenomenon and a model thereof". Journal of the European Ceramic Society 2014, 34 (15): 4063-4067.
  • [20]. Serrazina, R., Vilarinho, P. M., Senos, A. M., Pereira, L., Reaney, I. M., Dean, J. S., "Modelling the particle contact influence on the Joule heating and temperature distribution during FLASH sintering". Journal of the European Ceramic Society 2020, 40 (4): 1205-1211.
  • [21]. Akdoğan, E., Şavklıyıldız, İ., Biçer, H., Paxton, W., Toksoy, F., Zhong, Z., Tsakalakos, T., "Anomalous lattice expansion in yttria stabilized zirconia under simultaneous applied electric and thermal fields: A time-resolved in situ energy dispersive x-ray diffractometry study with an ultrahigh energy synchrotron probe". Journal of Applied Physics 2013, 113 (23): 233503.
  • [22]. Gaur, A., Sglavo, V. M., "Flash-sintering of MnCo2O4 and its relation to phase stability". Journal of the European Ceramic Society 2014, 34 (10): 2391-2400.
  • [23]. Todd, R., Zapata-Solvas, E., Bonilla, R., Sneddon, T., Wilshaw, P., "Electrical characteristics of flash sintering: thermal runaway of Joule heating". Journal of the European Ceramic Society 2015, 35 (6): 1865-1877.
  • [24]. Du, Y., Stevenson, A. J., Vernat, D., Diaz, M.; Marinha, D., "Estimating Joule heating and ionic conductivity during flash sintering of 8YSZ". Journal of the European Ceramic Society 2016, 36 (3): 749-759.
  • [25]. Raj, R., "Analysis of the power density at the onset of flash sintering". Journal of the American Ceramic Society 2016, 99 (10): 3226-3232.
  • [26]. Zhao, X., Fang, B., Cao, H., Guo, Y., Luo, H., "Dielectric and piezoelectric performance of PMN–PT single crystals with compositions around the MPB: influence of composition, poling field and crystal orientation". Materials Science and Engineering: B 2002, 96 (3): 254-262.
  • [27]. Jha, S., Lebrun, J., Raj, R., "Phase transformation in the alumina–titania system during flash sintering experiments". Journal of the European Ceramic Society 2016, 36 (3): 733-739.
  • [28]. Avcı U, Güleç A. Effect of Different Sintering Temperatures on Microstructure and Mechanical Properties for Pure Al Material Produced by Powder Metallurgy. El-Cezeri Journal of Science and Engineering. 2021; 8(1): 462-470.
There are 28 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Makaleler
Authors

İlyas Şavklıyıldız 0000-0001-7903-9220

Aysel Demir 0000-0003-2460-8929

Project Number 18401032 / 191019035
Publication Date May 31, 2021
Submission Date February 27, 2021
Acceptance Date April 6, 2021
Published in Issue Year 2021

Cite

IEEE İ. Şavklıyıldız and A. Demir, “Flash Sintering Effect on PMN-PT Ceramics”, ECJSE, vol. 8, no. 2, pp. 793–799, 2021, doi: 10.31202/ecjse.887859.