Research Article
BibTex RIS Cite

Perde Tipi Engellerin Çalkantı Yüklerini Azaltma Etkileri Üzerine Deneysel Bir Çalışma

Year 2021, , 1149 - 1157, 30.09.2021
https://doi.org/10.31202/ecjse.899736

Abstract

Bu çalışmada bir tank içerisine yerleştirilen perde tipi engellerin çalkantı yüklerine etkisi engelsiz duruma göre karşılaştırmalı olarak incelenmiştir. Dikdörtgen kesitli bir tank modeli %27 akışkan doluluk oranında eksenel yönde ileri-geri hareket ettirilerek çalkantı oluşturulmuştur. Serbest yüzeyde oluşan deformasyonun etkisiyle yan duvarlarda oluşan basınç kuvvetleri yan duvarlara monte edilen basınç sensörleri vasıtasıyla ölçülmüştür. İlk olarak delikli perdeli ve perdesiz durumlarda oluşan çalkantı aşamaları hızlı kamera vasıtasıyla izlenerek serbest yüzey deformasyonun değişim aşamaları analiz edilmiştir. Aynı zamanda delikli perdeli ve perdesiz durumlar için deney sistemi aynı frekansta tahrik edilerek basınç değerleri ölçülmüştür. Perdeler sayesinde tank içindeki akışkan kütlesinin hareketlerinde değişimler oluşması neticesinde dalga formunun gelişimi ve yan duvarlardaki maksimum basınca ulaşma süreleri değişmiştir. Perdeler sayesinde gerçekleşen bu farklılıklar neticesinde akışkanın yan duvarlarda oluşturduğu basınç değerlerinde % 35-60 oranında azalmalar tespit edilmiştir. Tanklara yerleştirilen bu tür pasif engeller sayesinde tanklarda meydana gelebilecek yapısal zararların önüne geçilerek gemi stabilitesi bozulmadan daha güvenli bir seyir gerçekleştirilebileceği öngörülmektedir.

Supporting Institution

Yıldız Teknik Üniversitesi BAP ofisi

Project Number

FBA-2018-3341

References

  • [1]. Kuo JF, Campbell RB, Ding Z. Hoie SM, Rinehart A J, Sandström RE, Yung TW, Greer MN, Danaczko M A. “LNG Tank Sloshing Assessment Methodology”. The New Generation International Journal of Offshore and Polar Engineering, 19(4), 241–253, 2009Wangler, T. P. 2008. RF Linear Accelerators. 2nd, completely revised and enlarged edition. [2]. Pistani F, Thiagarajan KP. "Experimental measurements and data analysis of the impact pressures in a sloshing experiment". Ocean Engineering, 52, 60–74, 2012.
  • [3]. Reed D, Yeh H, Yu J and Gardarsson S. “Tuned Liquid Dampers under Large Amplitude Excitation”. Journal of Wind Engineering and Industrial Aerodynamics, 74-76, 923-930, 1998.
  • [4]. Faltinsen OM, Firoozkoohi R, Timokha AN. “Steady-state liquid sloshing in a rectangular tank with a slat-type screen in the middle: Quasilinear modal analysis and experiments”. Physics of Fluids, 23, 042101, 2011.
  • [5]. Faltınsen OM, Timokha AN. “Multimodal analysis of weakly nonlinear sloshing in a spherical tank”. J. Fluid Mech., 719, 129–164, 2013.
  • [6]. Lugni C, Brocchini M, Faltinsen OM. “Wave impact loads: The role of the flip-through”. Phys. Fluids, 18, 122101, 2006.
  • [7]. Colagrossi A, Lugni C, Greco M, Faltinsen OM. “Experimental and Numerical Investigation of 2D Sloshing with Slamming”. International Workshop on Water Waves and Floating Bodies, Osaka, Japan, 1-2 April, 2014.
  • [8]. Cavalagli N, Biscarini C, Biscarini C, Facci C, Ubertini AF, Ubertini S. “Experimental and numerical analysis of energy dissipation in a sloshing absorber”. Journal of Fluids and Structures, 68, 466-481, 2017.
  • [9]. Hou L, Li F, Wu C J. “A numerical study of liquid sloshing in a two-dimensional tank under external excitations”. Marine. Sci. Appl., 11, 305, 2012.
  • [10]. Celis M, Wanderley JBV, Neves MAS. “Numerical simulation of dam breaking and the influence of sloshing on the transfer of water between compartments”. Ocean Engineering, 146, 125-139, 2017.
  • [11]. Rafiee A, Pistani F, Thiagarajan K. “Study of liquid sloshing: numerical and experimental approach”. Comput Mech, 47- 65, 2011.
  • [12]. Kim SY, Kim KH, Kim Y. “Comparative study on moda-scale sloshing test”. J Mar Sci Technol, 17,47-58, 2012.
  • [13]. Song, YK, Chang K, Ryu Y, Kwon SH. “Experimental study on flow dynamics and impact pressure in liquid sloshing”. Exp Fluids, 54:1592, 2013.
  • [14]. Akyildiz H, Unal E. “Dönme Hareketi Verilen Rijit Silindirik Bir Tankta Sıvı Çalkantısının Deneysel İncelenmesi”. Journal of ETA Maritime Science, 2(2), 131-142, 2014.
  • [15]. Kim, S.Y., Kim, K. H. and Kim Y. “Comparative study on pressure sensors for sloshing experiment”. Ocean Engineering, 94, 199-212, 2015.
  • [16]. Brizzolara S, Savio L, Viviani M, Chen Y, Temarel P, Couty N,Hoflack S, Diebold L, Moirod N, Iglesias AS. “Comparison of experimental and numerical sloshing loads in partially filled tanks”. Ships Offshore Struct., 6 (1–2), 15-43, 2011.
  • [17]. Iglesias AS, Bulian G,Verac EB. “A set of canonical problems in sloshing. Part 2: Influence of tank width on impact pressure statistics in regular forced angular motion”. Ocean Engineering, 105(1), 136-159, 2015.
  • [18]. Bouscasse B, Antuono M, Colagrossi A, LugniC. “Numerical and experimental investigation of nonlinear shallow-water sloshing”. Int. J. Nonlinear Sci. Numer. Simul., 14 (2), 123-138, 2013.
  • [19]. Bredmose H, Brocchini M, Peregrine DH, Thais L. “Experimental investigation and numerical modelling of steep forced water waves”. J. Fluid Mech., 490 (1), 217-249, 2003.
  • [20]. Korkmaz FC, Güzel B. “Silindir ve Kürelerin Suya Girişlerinde Esnekliğin ve Katı Yüzey Özelliklerinin Dövünme Yüklerine Etkisinin Deneysel Olarak İncelenmesi”. J ETA Maritime Sci,. 5(3): 258-270, 2017.
  • [21]. Korkmaz FC, Güzel B. “Water entry of cylinders and spheres under hydrophobic effects; Case for advancing deadrise angles”. Ocean Engineering, 129(1), 240-252, 2017.
  • [22]. Tosun U, Aghazadeh R, Sert C and Özer MB. “Tracking free surface and estimating sloshing force using image processing”. Experimental Thermal and Fluid Science, 88 (1), 423-433, 2017.
  • [23]. Vance A. Elon Musk: Tesla, SpaceX, and the Quest for a Fantastic Future. New York, USA, Virgin Books, 2015.

Experimental study on sloshing reduction effects of baffles

Year 2021, , 1149 - 1157, 30.09.2021
https://doi.org/10.31202/ecjse.899736

Abstract

In this study, the effect of perforated baffles placed in a rectangular tank on sloshing loads is investigated in comparison to the case without any plate. Sloshing is created in a rectangular tank model that is filled with 27% water by a reciprocating motion. The pressure forces acting on the side walls due to the free surface deformations were measured via three pressure transducers installed on the side wall. The stages of the free surface deformations during periodic movements of the rectangular tank with and without the perforated baffles were observed via a high-speed camera. It is shown that in the case of perforated baffles, the free surface elevation on the sidewalls, the waveform development and the time at which the maximum pressures were reached were altered due to the modified movement of the bulk liquid. These changes in the liquid movement due to the perforated baffles resulted in 35-60% reduction in the pressure forces acting on the sidewalls. It is predicted that restraining the liquid movement with the use of passive resistance, e.g. perforated baffle, in sloshing may prevent structural damages and increase ship instability.

Project Number

FBA-2018-3341

References

  • [1]. Kuo JF, Campbell RB, Ding Z. Hoie SM, Rinehart A J, Sandström RE, Yung TW, Greer MN, Danaczko M A. “LNG Tank Sloshing Assessment Methodology”. The New Generation International Journal of Offshore and Polar Engineering, 19(4), 241–253, 2009Wangler, T. P. 2008. RF Linear Accelerators. 2nd, completely revised and enlarged edition. [2]. Pistani F, Thiagarajan KP. "Experimental measurements and data analysis of the impact pressures in a sloshing experiment". Ocean Engineering, 52, 60–74, 2012.
  • [3]. Reed D, Yeh H, Yu J and Gardarsson S. “Tuned Liquid Dampers under Large Amplitude Excitation”. Journal of Wind Engineering and Industrial Aerodynamics, 74-76, 923-930, 1998.
  • [4]. Faltinsen OM, Firoozkoohi R, Timokha AN. “Steady-state liquid sloshing in a rectangular tank with a slat-type screen in the middle: Quasilinear modal analysis and experiments”. Physics of Fluids, 23, 042101, 2011.
  • [5]. Faltınsen OM, Timokha AN. “Multimodal analysis of weakly nonlinear sloshing in a spherical tank”. J. Fluid Mech., 719, 129–164, 2013.
  • [6]. Lugni C, Brocchini M, Faltinsen OM. “Wave impact loads: The role of the flip-through”. Phys. Fluids, 18, 122101, 2006.
  • [7]. Colagrossi A, Lugni C, Greco M, Faltinsen OM. “Experimental and Numerical Investigation of 2D Sloshing with Slamming”. International Workshop on Water Waves and Floating Bodies, Osaka, Japan, 1-2 April, 2014.
  • [8]. Cavalagli N, Biscarini C, Biscarini C, Facci C, Ubertini AF, Ubertini S. “Experimental and numerical analysis of energy dissipation in a sloshing absorber”. Journal of Fluids and Structures, 68, 466-481, 2017.
  • [9]. Hou L, Li F, Wu C J. “A numerical study of liquid sloshing in a two-dimensional tank under external excitations”. Marine. Sci. Appl., 11, 305, 2012.
  • [10]. Celis M, Wanderley JBV, Neves MAS. “Numerical simulation of dam breaking and the influence of sloshing on the transfer of water between compartments”. Ocean Engineering, 146, 125-139, 2017.
  • [11]. Rafiee A, Pistani F, Thiagarajan K. “Study of liquid sloshing: numerical and experimental approach”. Comput Mech, 47- 65, 2011.
  • [12]. Kim SY, Kim KH, Kim Y. “Comparative study on moda-scale sloshing test”. J Mar Sci Technol, 17,47-58, 2012.
  • [13]. Song, YK, Chang K, Ryu Y, Kwon SH. “Experimental study on flow dynamics and impact pressure in liquid sloshing”. Exp Fluids, 54:1592, 2013.
  • [14]. Akyildiz H, Unal E. “Dönme Hareketi Verilen Rijit Silindirik Bir Tankta Sıvı Çalkantısının Deneysel İncelenmesi”. Journal of ETA Maritime Science, 2(2), 131-142, 2014.
  • [15]. Kim, S.Y., Kim, K. H. and Kim Y. “Comparative study on pressure sensors for sloshing experiment”. Ocean Engineering, 94, 199-212, 2015.
  • [16]. Brizzolara S, Savio L, Viviani M, Chen Y, Temarel P, Couty N,Hoflack S, Diebold L, Moirod N, Iglesias AS. “Comparison of experimental and numerical sloshing loads in partially filled tanks”. Ships Offshore Struct., 6 (1–2), 15-43, 2011.
  • [17]. Iglesias AS, Bulian G,Verac EB. “A set of canonical problems in sloshing. Part 2: Influence of tank width on impact pressure statistics in regular forced angular motion”. Ocean Engineering, 105(1), 136-159, 2015.
  • [18]. Bouscasse B, Antuono M, Colagrossi A, LugniC. “Numerical and experimental investigation of nonlinear shallow-water sloshing”. Int. J. Nonlinear Sci. Numer. Simul., 14 (2), 123-138, 2013.
  • [19]. Bredmose H, Brocchini M, Peregrine DH, Thais L. “Experimental investigation and numerical modelling of steep forced water waves”. J. Fluid Mech., 490 (1), 217-249, 2003.
  • [20]. Korkmaz FC, Güzel B. “Silindir ve Kürelerin Suya Girişlerinde Esnekliğin ve Katı Yüzey Özelliklerinin Dövünme Yüklerine Etkisinin Deneysel Olarak İncelenmesi”. J ETA Maritime Sci,. 5(3): 258-270, 2017.
  • [21]. Korkmaz FC, Güzel B. “Water entry of cylinders and spheres under hydrophobic effects; Case for advancing deadrise angles”. Ocean Engineering, 129(1), 240-252, 2017.
  • [22]. Tosun U, Aghazadeh R, Sert C and Özer MB. “Tracking free surface and estimating sloshing force using image processing”. Experimental Thermal and Fluid Science, 88 (1), 423-433, 2017.
  • [23]. Vance A. Elon Musk: Tesla, SpaceX, and the Quest for a Fantastic Future. New York, USA, Virgin Books, 2015.
There are 22 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Makaleler
Authors

Fatih Cüneyd Korkmaz 0000-0001-9250-5265

Kenan Yigit 0000-0002-4165-4081

Bülent Güzel This is me 0000-0001-6915-4209

Project Number FBA-2018-3341
Publication Date September 30, 2021
Submission Date March 19, 2021
Acceptance Date June 16, 2021
Published in Issue Year 2021

Cite

IEEE F. C. Korkmaz, K. Yigit, and B. Güzel, “Perde Tipi Engellerin Çalkantı Yüklerini Azaltma Etkileri Üzerine Deneysel Bir Çalışma”, ECJSE, vol. 8, no. 3, pp. 1149–1157, 2021, doi: 10.31202/ecjse.899736.