Research Article
BibTex RIS Cite

Ti-Bazlı Metal Oksit Kaplanmış Elektrot ile Reaktif Boyar Maddenin Anodik Oksidasyonu: Proses Şartlarının Optimizasyonu

Year 2021, , 951 - 961, 31.05.2021
https://doi.org/10.31202/ecjse.900582

Abstract

Bu çalışmada model bileşik olarak kullanılan Sunfix Red-S3B (SR-S3B) reaktif boyar maddenin metal oksit kaplanmış titanyum elektrotlar ile anodik oksidasyonu incelenmiştir. Anot olarak RuO2‐IrO2/Ti, katot olarak titanyum elektrotlar kullanılmıştır. Anodik oksidasyon prosesi işletme koşulları en yüksek boya giderimini sağlayacak biçimde optimize edilmiştir. Taguchi deney Tasarım Modeli ile oksidasyon süresi, pH, elektrolit tipi ve akım yoğunluğu parametrelerinin optimum koşulları sırası ile 20 dk, pH 3, NaCl elektrolit tipi ve 0.32 A/dm2 olarak belirlenmiştir. Modelin öngördüğü ile deneysel olarak elde edilen boya giderimi arasında yüksek derece doğrusal bir ilişki olduğu gözlenmiştir. Proseste optimum koşullarda %99 boya giderimi gözlemlenmiştir ve giderim veriminde en etkili parametrenin elektrolit tipi olduğu belirlenmiştir.

References

  • [1] L. Xu, X. Ma, J. Niu, J. Chen, and C. Zhou, “Removal of trace naproxen from aqueous solution using a laboratory-scale reactive flow-through membrane electrode,” J Hazard Mater, vol. 379, p. 120692, Nov. 2019, doi: 10.1016/j.jhazmat.2019.05.085.
  • [2] T. Muddemann, D. Haupt, M. Sievers, and U. Kunz, “Electrochemical Reactors for Wastewater Treatment,” ChemBioEng Rev, vol. 6, no. 5, pp. 142–156, Oct. 2019, doi: 10.1002/cben.201900021.
  • [3] A. N. Subba Rao and V. T. Venkatarangaiah, “Metal oxide-coated anodes in wastewater treatment,” Environmental Science and Pollution Research, vol. 21, no. 5. Springer, pp. 3197–3217, Mar. 29, 2014, doi: 10.1007/s11356-013-2313-6.
  • [4] E. Isarain-Chávez et al., “Comparative electrochemical oxidation of methyl orange azo dye using Ti/Ir-Pb, Ti/Ir-Sn, Ti/Ru-Pb, Ti/Pt-Pd and Ti/RuO2 anodes,” Electrochim Acta, vol. 244, pp. 199–208, Aug. 2017, doi: 10.1016/j.electacta.2017.05.101.
  • [5] L. Wang and N. Balasubramanian, “Electrochemical regeneration of granular activated carbon saturated with organic compounds,” Chem Eng J, vol. 155, no. 3, pp. 763–768, Dec. 2009, doi: 10.1016/j.cej.2009.09.020.
  • [6] F. Sharif and E. P. L. Roberts, “Anodic electrochemical regeneration of a graphene/titanium dioxide composite adsorbent loaded with an organic dye,” Chemosphere, vol. 241, p. 125020, Feb. 2020, doi: 10.1016/j.chemosphere.2019.125020.
  • [7] S. Barışçı, O. Turkay, E. Ulusoy, G. Soydemir, M. G. Seker, and A. Dimoglo, “Electrochemical treatment of anti-cancer drug carboplatin on mixed-metal oxides and boron doped diamond electrodes: Density functional theory modelling and toxicity evaluation,” J Hazard Mater, vol. 344, pp. 316–321, Feb. 2018, doi: 10.1016/j.jhazmat.2017.10.029.
  • [8] Y. Zhou, Z. Liang, and Y. Wang, “Decolorization and COD removal of secondary yeast wastewater effluents by coagulation using aluminum sulfate,” Desalination, vol. 225, no. 1–3, pp. 301–311, May 2008, doi: 10.1016/j.desal.2007.07.010.
  • [9] C. Wang, Y. Yu, L. Yin, J. Niu, and L. A. Hou, “Insights of ibuprofen electro-oxidation on metal-oxide-coated Ti anodes: Kinetics, energy consumption and reaction mechanisms,” Chemosphere, vol. 163, pp. 584–591, Nov. 2016, doi: 10.1016/j.chemosphere.2016.08.057.
  • [10] J. Singla, A. Verma, and V. K. Sangal, “Applications of doped mixed metal oxide anode for the electro-oxidation treatment and mineralization of urine metabolite, uric acid,” J Water Process Eng, vol. 32, p. 100944, Dec. 2019, doi: 10.1016/j.jwpe.2019.100944.
  • [11] R. V. McQuillan, G. W. Stevens, and K. A. Mumford, “The electrochemical regeneration of granular activated carbons: A review,” Journal of Hazardous Materials, vol. 355. Elsevier B.V., pp. 34–49, Aug. 05, 2018, doi: 10.1016/j.jhazmat.2018.04.079.
  • [12] S. L. Ambuludi, M. Panizza, N. Oturan, A. Özcan, and M. A. Oturan, “Kinetic behavior of anti-inflammatory drug ibuprofen in aqueous medium during its degradation by electrochemical advanced oxidation,” Environ Sci Pollut Res, vol. 20, no. 4, pp. 2381–2389, Apr. 2013, doi: 10.1007/s11356-012-1123-6.
  • [13] A. Özcan, Y. Şahin, A. S. Koparal, and M. A. Oturan, “Propham mineralization in aqueous medium by anodic oxidation using boron-doped diamond anode: Influence of experimental parameters on degradation kinetics and mineralization efficiency,” Water Res, vol. 42, no. 12, pp. 2889–2898, Jun. 2008, doi: 10.1016/j.watres.2008.02.027.
  • [14] C. E. Alvarez-Pugliese, J. Acuña-Bedoya, S. Vivas-Galarza, L. A. Prado-Arce, and N. Marriaga-Cabrales, “Electrolytic regeneration of granular activated carbon saturated with diclofenac using BDD anodes,” Diam Relat Mater, vol. 93, pp. 193–199, Mar. 2019, doi: 10.1016/j.diamond.2019.02.018.
  • [15] E. Brillas et al., “Mineralization of paracetamol in aqueous medium by anodic oxidation with a boron-doped diamond electrode,” Chemosphere, vol. 58, no. 4, pp. 399–406, Jan. 2005, doi: 10.1016/j.chemosphere.2004.09.028.
  • [16] S. Bakht Shokouhi, R. Dehghanzadeh, H. Aslani, and N. Shahmahdi, “Activated carbon catalyzed ozonation (ACCO) of Reactive Blue 194 azo dye in aqueous saline solution: Experimental parameters, kinetic and analysis of activated carbon properties,” J Water Process Eng, vol. 35, p. 101188, Jun. 2020, doi: 10.1016/j.jwpe.2020.101188.
  • [17] S. Bapat, D. Jaspal, and A. Malviya, “Efficacy of parthenium hysterophorus waste biomass compared with activated charcoal for the removal of CI Reactive Red 239 textile dye from wastewater,” Color Technol, p. cote.12526, Jan. 2021, doi: 10.1111/cote.12526.
  • [18] E. Kavcı, K. Üniversitesi, M. Mimarlık Fakültesi, K. Mühendisliği Bölümü, and T. Özet, “Direct Red BWS tekstil boyası adsorpsiyonunun Taguchi L9(3 4 ) ortogonal deney tasarımı ile araştırılması Investigations of adsorption of Direct Red BWS textile dye using Taguchi L9(3 4 ) orthogonal experimental design,” Bilim Derg / NOHU J Eng Sci, vol. 10, no. 1, pp. 358–363, 2021, doi: 10.28948/ngumuh.669972.
  • [19] “Taguchi Techniques for Quality Engineering: Loss Function, Orthogonal ... - Phillip J. Ross - Google Kitaplar.” https://books.google.com.tr/books/about/Taguchi_Techniques_for_Quality_Engineeri.html?id=CiunygZ90TsC&redir_esc=y (accessed Feb. 18, 2021).
  • [20] M. R. Sohrabi, A. Khavaran, S. Shariati, and S. Shariati, “Removal of Carmoisine edible dye by Fenton and photo Fenton processes using Taguchi orthogonal array design,” Arab J Chem, vol. 10, pp. S3523–S3531, May 2017, doi: 10.1016/j.arabjc.2014.02.019.
  • [21] S. H. Dhawane, T. Kumar, and G. Halder, “Biodiesel synthesis from Hevea brasiliensis oil employing carbon supported heterogeneous catalyst: Optimization by Taguchi method,” Renew Energy, vol. 89, pp. 506–514, Apr. 2016, doi: 10.1016/j.renene.2015.12.027.
  • [22] R. Ramakrishnan and L. Karunamoorthy, “Multi response optimization of wire EDM operations using robust design of experiments,” Int J Adv Manuf Technol, vol. 29, no. 1–2, pp. 105–112, 2006, doi: 10.1007/s00170-004-2496-6.

Anodic Oxidation of Reactive Dye with Ti-Based Metal Oxide Coated Electrode: Optimization of Process Conditions

Year 2021, , 951 - 961, 31.05.2021
https://doi.org/10.31202/ecjse.900582

Abstract

In this study, the anodic oxidation of the Sunfix Red-3SB (SR-S3B) reactive dye used as a model compound with metal oxide coated titanium electrodes was investigated. RuO2‐ IrO2/Ti electrodes were used as anode, titanium electrodes as cathode. The anodic oxidation process has been optimized for operating conditions to ensure the highest dye removal. Optimum conditions of oxidation time, pH, electrolyte type and current intensty parameters were determined as 20 min., pH 3, NaCl electrolyte type and 0.32 A/dm2 with Taguchi Experimental Design Model. A highly linear relationship was observed between the predicted and experimentally obtained dye removal of the model. 99% dye removal was observed in optimum conditions in the process and it was determined that the most effective parameter in removal efficiency was the electrolyte type.

References

  • [1] L. Xu, X. Ma, J. Niu, J. Chen, and C. Zhou, “Removal of trace naproxen from aqueous solution using a laboratory-scale reactive flow-through membrane electrode,” J Hazard Mater, vol. 379, p. 120692, Nov. 2019, doi: 10.1016/j.jhazmat.2019.05.085.
  • [2] T. Muddemann, D. Haupt, M. Sievers, and U. Kunz, “Electrochemical Reactors for Wastewater Treatment,” ChemBioEng Rev, vol. 6, no. 5, pp. 142–156, Oct. 2019, doi: 10.1002/cben.201900021.
  • [3] A. N. Subba Rao and V. T. Venkatarangaiah, “Metal oxide-coated anodes in wastewater treatment,” Environmental Science and Pollution Research, vol. 21, no. 5. Springer, pp. 3197–3217, Mar. 29, 2014, doi: 10.1007/s11356-013-2313-6.
  • [4] E. Isarain-Chávez et al., “Comparative electrochemical oxidation of methyl orange azo dye using Ti/Ir-Pb, Ti/Ir-Sn, Ti/Ru-Pb, Ti/Pt-Pd and Ti/RuO2 anodes,” Electrochim Acta, vol. 244, pp. 199–208, Aug. 2017, doi: 10.1016/j.electacta.2017.05.101.
  • [5] L. Wang and N. Balasubramanian, “Electrochemical regeneration of granular activated carbon saturated with organic compounds,” Chem Eng J, vol. 155, no. 3, pp. 763–768, Dec. 2009, doi: 10.1016/j.cej.2009.09.020.
  • [6] F. Sharif and E. P. L. Roberts, “Anodic electrochemical regeneration of a graphene/titanium dioxide composite adsorbent loaded with an organic dye,” Chemosphere, vol. 241, p. 125020, Feb. 2020, doi: 10.1016/j.chemosphere.2019.125020.
  • [7] S. Barışçı, O. Turkay, E. Ulusoy, G. Soydemir, M. G. Seker, and A. Dimoglo, “Electrochemical treatment of anti-cancer drug carboplatin on mixed-metal oxides and boron doped diamond electrodes: Density functional theory modelling and toxicity evaluation,” J Hazard Mater, vol. 344, pp. 316–321, Feb. 2018, doi: 10.1016/j.jhazmat.2017.10.029.
  • [8] Y. Zhou, Z. Liang, and Y. Wang, “Decolorization and COD removal of secondary yeast wastewater effluents by coagulation using aluminum sulfate,” Desalination, vol. 225, no. 1–3, pp. 301–311, May 2008, doi: 10.1016/j.desal.2007.07.010.
  • [9] C. Wang, Y. Yu, L. Yin, J. Niu, and L. A. Hou, “Insights of ibuprofen electro-oxidation on metal-oxide-coated Ti anodes: Kinetics, energy consumption and reaction mechanisms,” Chemosphere, vol. 163, pp. 584–591, Nov. 2016, doi: 10.1016/j.chemosphere.2016.08.057.
  • [10] J. Singla, A. Verma, and V. K. Sangal, “Applications of doped mixed metal oxide anode for the electro-oxidation treatment and mineralization of urine metabolite, uric acid,” J Water Process Eng, vol. 32, p. 100944, Dec. 2019, doi: 10.1016/j.jwpe.2019.100944.
  • [11] R. V. McQuillan, G. W. Stevens, and K. A. Mumford, “The electrochemical regeneration of granular activated carbons: A review,” Journal of Hazardous Materials, vol. 355. Elsevier B.V., pp. 34–49, Aug. 05, 2018, doi: 10.1016/j.jhazmat.2018.04.079.
  • [12] S. L. Ambuludi, M. Panizza, N. Oturan, A. Özcan, and M. A. Oturan, “Kinetic behavior of anti-inflammatory drug ibuprofen in aqueous medium during its degradation by electrochemical advanced oxidation,” Environ Sci Pollut Res, vol. 20, no. 4, pp. 2381–2389, Apr. 2013, doi: 10.1007/s11356-012-1123-6.
  • [13] A. Özcan, Y. Şahin, A. S. Koparal, and M. A. Oturan, “Propham mineralization in aqueous medium by anodic oxidation using boron-doped diamond anode: Influence of experimental parameters on degradation kinetics and mineralization efficiency,” Water Res, vol. 42, no. 12, pp. 2889–2898, Jun. 2008, doi: 10.1016/j.watres.2008.02.027.
  • [14] C. E. Alvarez-Pugliese, J. Acuña-Bedoya, S. Vivas-Galarza, L. A. Prado-Arce, and N. Marriaga-Cabrales, “Electrolytic regeneration of granular activated carbon saturated with diclofenac using BDD anodes,” Diam Relat Mater, vol. 93, pp. 193–199, Mar. 2019, doi: 10.1016/j.diamond.2019.02.018.
  • [15] E. Brillas et al., “Mineralization of paracetamol in aqueous medium by anodic oxidation with a boron-doped diamond electrode,” Chemosphere, vol. 58, no. 4, pp. 399–406, Jan. 2005, doi: 10.1016/j.chemosphere.2004.09.028.
  • [16] S. Bakht Shokouhi, R. Dehghanzadeh, H. Aslani, and N. Shahmahdi, “Activated carbon catalyzed ozonation (ACCO) of Reactive Blue 194 azo dye in aqueous saline solution: Experimental parameters, kinetic and analysis of activated carbon properties,” J Water Process Eng, vol. 35, p. 101188, Jun. 2020, doi: 10.1016/j.jwpe.2020.101188.
  • [17] S. Bapat, D. Jaspal, and A. Malviya, “Efficacy of parthenium hysterophorus waste biomass compared with activated charcoal for the removal of CI Reactive Red 239 textile dye from wastewater,” Color Technol, p. cote.12526, Jan. 2021, doi: 10.1111/cote.12526.
  • [18] E. Kavcı, K. Üniversitesi, M. Mimarlık Fakültesi, K. Mühendisliği Bölümü, and T. Özet, “Direct Red BWS tekstil boyası adsorpsiyonunun Taguchi L9(3 4 ) ortogonal deney tasarımı ile araştırılması Investigations of adsorption of Direct Red BWS textile dye using Taguchi L9(3 4 ) orthogonal experimental design,” Bilim Derg / NOHU J Eng Sci, vol. 10, no. 1, pp. 358–363, 2021, doi: 10.28948/ngumuh.669972.
  • [19] “Taguchi Techniques for Quality Engineering: Loss Function, Orthogonal ... - Phillip J. Ross - Google Kitaplar.” https://books.google.com.tr/books/about/Taguchi_Techniques_for_Quality_Engineeri.html?id=CiunygZ90TsC&redir_esc=y (accessed Feb. 18, 2021).
  • [20] M. R. Sohrabi, A. Khavaran, S. Shariati, and S. Shariati, “Removal of Carmoisine edible dye by Fenton and photo Fenton processes using Taguchi orthogonal array design,” Arab J Chem, vol. 10, pp. S3523–S3531, May 2017, doi: 10.1016/j.arabjc.2014.02.019.
  • [21] S. H. Dhawane, T. Kumar, and G. Halder, “Biodiesel synthesis from Hevea brasiliensis oil employing carbon supported heterogeneous catalyst: Optimization by Taguchi method,” Renew Energy, vol. 89, pp. 506–514, Apr. 2016, doi: 10.1016/j.renene.2015.12.027.
  • [22] R. Ramakrishnan and L. Karunamoorthy, “Multi response optimization of wire EDM operations using robust design of experiments,” Int J Adv Manuf Technol, vol. 29, no. 1–2, pp. 105–112, 2006, doi: 10.1007/s00170-004-2496-6.
There are 22 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Makaleler
Authors

Nevim Genç 0000-0002-6185-1090

Elif Durna 0000-0003-4478-2967

Publication Date May 31, 2021
Submission Date March 21, 2021
Acceptance Date April 26, 2021
Published in Issue Year 2021

Cite

IEEE N. Genç and E. Durna, “Ti-Bazlı Metal Oksit Kaplanmış Elektrot ile Reaktif Boyar Maddenin Anodik Oksidasyonu: Proses Şartlarının Optimizasyonu”, ECJSE, vol. 8, no. 2, pp. 951–961, 2021, doi: 10.31202/ecjse.900582.