Research Article
BibTex RIS Cite

Buji Ateşlemeli Motorun Egzoz Atık Isı Dönüşümü İçin Tasarlanan Termoelektrik Jeneratörde Optimum Egzoz Eşanjörü Düzenlemesinin HAD Analizi

Year 2021, , 1060 - 1080, 31.05.2021
https://doi.org/10.31202/ecjse.910782

Abstract

İçten yanmalı bir motorda alınan yakıtın ısı enerjisinin yaklaşık %40’ı egzoz gazları ile atık ısı olarak atmosfere atılmaktadır. Bu ısı enerjisinin bir kısmının geri kazanılması yakıt dönüşüm verimini önemli oranda artırabilir. Bu çalışmada, buji ateşlemeli motorun egzoz atık ısı enerjisinden elektrik enerjisinin üretildiği termoelektrik jeneratörde sıcak taraf (egzoz) eşanjör yüzey sıcaklığı ve dağılımının optimize edilebilmesi için farklı kanatçık sayısı ve düzenlemesine sahip eşanjörler, hesaplamalı akışkanlar dinamiği yöntemi ile analiz edilmiştir. Çalışmada, daha önceki çalışmada tasarlanarak ana boyutları belirlenen egzoz eşanjörünün iç hacmi, bir seperatör plaka yardımıyla iki eşit parçaya bölünerek literatürde akordiyon şekli, balık kılçığı şekli ve seri plaka şekli olarak bilinen kanatçık dizilimlerinin kullanıldığı eşanjör düzenlemeleri oluşturulmuştur. Eşanjör düzenlemelerinde literatürde yaygın olarak kullanılan kanatçık geometrilerinden (kare, dikdörtgen, üçgen ve yamuk prizmalar) farklı olarak yağmur damlası geometrisi kullanılmıştır. Ayrıca, seperatör plakanın giriş yayıcı ağzı düzlemine dikdörtgen prizma geometriye sahip akış yönlendirme kanatçıkları eklenmiştir. Eşanjör düzenlemeleri için gerçekleştirilen hesaplamalı akışkanlar dinamiği analizlerinde, tek silindirli buji ateşlemeli bir motorun 2200 devrinde yapılan deneysel çalışmada elde edilen egzoz gaz sıcaklık ve debi değerleri kullanılmıştır. Her bir eşanjör düzenlemesi için hesaplamalı akışkanlar dinamiği analizleri sürekli rejimde gerçekleştirilerek sıcaklık dağılımı, hız vektörleri, giriş-çıkış sıcaklıkları, eşanjör içi basınç düşümüne ait konturlar elde edilmiştir. Tasarlanan egzoz eşanjörü düzenlemeleri için gerçekleştirilen hesaplamalı akışkanlar dinamiği analiz sonuçlarına göre; girişte altı adet akış yönlendirme kanadı ile birlikte 15°, 30° ve 45° açılı ver ters yönlü seri plaka dizilimi ile oluşturulan eşanjör düzenlemelerinin diğer modellere oranla eşanjör yüzey sıcaklığı, dağılımı ve eşanjör içi basınç düşümü açısından daha verimli olduğu tespit edilmiştir. Bununla birlikte, yağmur damlası kanatçık yapısına sahip eşanjör düzenlemeleri ile referans (içi boş) eşanjör düzenlemesine göre daha yüksek eşanjör içi basınç düşümüne karşın daha yüksek ve homojen eşanjör yüzey sıcaklığı elde edilmiştir.

References

  • [1]. A. Mruk, W. Jordan, J. Taler, S. Lopata, and B. Weglowski, “Heat Transfer Through Ceramic Barrier Coatings Used in Internal Combustion Engines,” SAE Technical Paper Series, 1994.
  • [2]. J. Haidar and J. Ghojel, “Waste heat recovery from the exhaust of low-power diesel engine using thermoelectric generators,” Proceedings ICT2001. 20 International Conference on Thermoelectrics (Cat. No.01TH8589).
  • [3]. I. Taymaz, K. Cakir, M. Gur, and A. Mimaroglu, “Experimental investigation of heat losses in a ceramic coated diesel engine,” Surface and Coatings Technology, vol. 169-170, pp. 168–170, 2003.
  • [4]. Özgün Haluk, “Termoelektrik jeneratörlerin çok düşük sıcaklıklarda teorik ve deneysel karakterizasyonu,” Yüksek Lisans Tezi, İstanbul Teknik Üniversitesi Enerji Enstitüsü İstanbul, 2009.
  • [5]. J. Vazquez, R. Palacios, M.A. Sanz-Bobi, A. Arenas, , “State of the Art of Thermoelectric Generators Based on Heat Recovered from the Exhaust Gases of Automobiles,” Proceedings of the 7th European Workshop on Thermoelectrics, 2002.
  • [6]. R. Ivankovic, J. Cros, M. Taghizadeh, C. A., and P. Viarouge, “Power Electronic Solutions to Improve the Performance of Lundell Automotive Alternators,” New Advances in Vehicular Technology and Automotive Engineering, 2012.
  • [7]. C. Yavuz, M. Özkaymak, and M. Kaya, “Termoelektrik Modüllü Su Soğutucusunda Farklı Hava Debilerinin Sistem Performansına Etkileri,” e-Journal of New World Sciences Academy, vol. 5, no 2, pp. 131–143, 2010.
  • [8]. C. Lertsatitthanakorn, “Electrical performance analysis and economic evaluation of combined biomass cook stove thermoelectric (BITE) generator,” Bioresource Technology, vol. 98, no. 8, pp. 1670–1674, 2007.
  • [9]. X. Niu, J. Yu, and S. Wang, “Experimental study on low-temperature waste heat thermoelectric generator,” Journal of Power Sources, vol. 188, no. 2, pp. 621–626, 2009.
  • [10].G. Liang, J. Zhou, and X. Huang, “Analytical model of parallel thermoelectric generator,” Applied Energy, vol. 88, no. 12, pp. 5193–5199, 2011.
  • [11]. İ. Temizer, C. İlkılıç, B. Tanyeri, C. Ömer, “Effects on Vehicle Systems of Technology Thermoelectric,” Batman University Journal of Life Sciences, vol. 1, no. 2, pp. 199–209, 2012.
  • [12]. M. A. Kunt, “İçten Yanmalı Motor Atık Isılarının Geri Kazanımında Termoelektrik Jeneratörlerin Kullanımı,” El-Cezeri Fen ve Mühendislik Dergisi, vol. 3, no. 2, 2016.
  • [13]. J. C. Bass, N. B. Elsner, and F. A. Leavitt, “Performance of the 1 kW thermoelectric generator for diesel engines,” AIP Conference Proceedings, 1994.
  • [14].M. Kobayashi, K. Ikoma, K. Furuya, K. Shinohara, H. Takao, M. Miyoshi, Y. Imanishi, and T. Watanabe, “Thermoelectric generation and related properties of conventional type module based on Si-Ge alloy,” Fifteenth International Conference on Thermoelectrics. Proceedings ICT, 1998.
  • [15].K. Ikoma, M. Munkiyo, K. Furuya, M. Kobayashi, H. Komatsu, K. Shinohara, “Thermoelectric Generator for Gasoline Engine Using Bi2Te3 Modules,” J. Japan Inst. Met., vol. 63, no. 11, pp. 1475–1478, 1999.
  • [16].E. F. Thacher, B. T. Helenbrook, M. A. Karri, and C. J. Richter, “Testing of an automobile exhaust thermoelectric generator in a light truck,” Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, vol. 221, no. 1, pp. 95–107, 2007.
  • [17]. Y. Hsiao, W. Chang, and S. Chen, “A mathematic model of thermoelectric module with applications on waste heat recovery from automobile engine,” Energy, vol. 35, no. 3, pp. 1447–1454, 2010.
  • [18].C.-T. Hsu, G.-Y. Huang, H.-S. Chu, B. Yu, and D.-J. Yao, “Experiments and simulations on low-temperature waste heat harvesting system by thermoelectric power generators,” Applied Energy, vol. 88, no. 4, pp. 1291–1297, 2011.
  • [19].Y. D. Deng, X. Liu, S. Chen, and N. Q. Tong, “Thermal Optimization of the Heat Exchanger in an Automotive Exhaust-Based Thermoelectric Generator,” Journal of Electronic Materials, vol. 42, no. 7, pp. 1634–1640, 2013.
  • [20].C.-C. Weng and M.-J. Huang, “A simulation study of automotive waste heat recovery using a thermoelectric power generator,” International Journal of Thermal Sciences, vol. 71, pp. 302–309, 2013.
  • [21]. S. Bai, H. Lu, T. Wu, X. Yin, X. Shi, and L. Chen, “Numerical and experimental analysis for exhaust heat exchangers in automobile thermoelectric generators,” Case Studies in Thermal Engineering, vol. 4, pp. 99–112, 2014.
  • [22].C. Su, W. Wang, X. Liu, and Y. Deng, “Simulation and experimental study on thermal optimization of the heat exchanger for automotive exhaust-based thermoelectric generators,” Case Studies in Thermal Engineering, vol. 4, pp. 85–91, 2014.
  • [23].G. Murali and G. Vikram, “A Study on Performance Enhancement of Heat Exchanger in Thermoelectric Generator Using CFD,” International Journal for Innovative Research in Science & Technology, vol. 2, no. 10, pp. 128–133, 2016.
  • [24].H. Gürbüz and H. Akçay, “Experimental investigation of an improved exhaust recovery system for liquid petroleum gas fueled spark ignition engine,” Thermal Science, vol. 19, no. 6, pp. 2049–2064, 2015.
  • [25].S. Soğancı, E. Hepkaya, U.İ. İnci, Y. Gargı, C. Erman, Z. Elmas, M.O. Tutkun, Hesaplamalı Akışkanlar Dinamiği (HAD) (Computational Fluid Dynamics: CFD), Ankara: TMMOB Makine Mühendisleri Odası Yayınları, 2018.
  • [26].A. B. Ökmen and H. Gürbüz, “Atik Isı Geri Dönüşüm Sistemleri: Buji Ateşlemeli Motorda Örnek Bir Uygulama,” EJONS International Journal of Mathematic, Engineering and Natural Sciences, vol. 4, no. 14, 2020.
  • [27].A. B. Ökmen, “İçten Yanmalı Motorun Egzoz Atık Isı Geri Kazanımı İçin Termoelektrik Jeneratörün HAD Analizi,” Yüksek Lisans Tezi, Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Isparta, 2020.

CFD Analysis of Optimum Exhaust Heat Exchanger Arrangement in Thermoelectric Generator Designed for Exhaust Waste Heat Recovery of Spark Ignition Engine

Year 2021, , 1060 - 1080, 31.05.2021
https://doi.org/10.31202/ecjse.910782

Abstract

Approximately 40% of the heat energy of the fuel in internal combustion engines is emitted to the atmosphere as waste heat along with exhaust gases. Recovery of some of the exhaust waste heat energy could remarkably increase the fuel conversion efficiency. In this study, to optimize the hot side (exhaust) heat exchanger surface temperature and distribution in the thermoelectric generator where electrical energy is generated from the exhaust waste heat energy of the spark-ignition engine, the heat exchangers having different fin number and arrangement were analyzed by computational fluid dynamics method. In the study, the internal volume of the exhaust heat exchanger, whose main dimensions were determined by designing in the previous study, was divided into two equal parts with the using a separator plate, and heat exchanger arrangements were created by three different fins ranking types using in the literature (i.e. accordion, fishbone, and serial plate). Different from the fin geometries (i.e. square, rectangular, triangular, and trapezoidal prisms) commonly used in the literature, raindrop geometry was used in heat exchanger arrangements. Also, flow guiding vanes having rectangular prism geometry was added to the plane of the inlet diffuser of the separator plate. Exhaust gas temperature and flow rate values obtained in the experimental study performed at 2200 rpm of a single-cylinder spark-ignition engine was used in the computational fluid dynamics analyzes performed for exchanger arrangements. For each heat exchanger arrangement, computational fluid dynamics analyzes were performed steady-state, and the contours of temperature distribution, velocity vectors, inlet-outlet temperatures, pressure drop inside the exchanger were obtained. According to the results of the computational fluid dynamics analysis performed for the designed exhaust exchanger arrangements; the reverse direction serial plate arrangement having six flow guiding fins and 15°, 30°, and 45° angled raindrop geometries have more optimum values in terms of heat exchanger surface temperature, distribution and pressure drop in the exchanger compared to other models. Furthermore, with the heat exchanger arrangements with raindrop fin structure, a higher and homogeneous heat exchanger surface temperature was achieved despite higher pressure drop compared to the reference (empty) heat exchanger arrangement.

References

  • [1]. A. Mruk, W. Jordan, J. Taler, S. Lopata, and B. Weglowski, “Heat Transfer Through Ceramic Barrier Coatings Used in Internal Combustion Engines,” SAE Technical Paper Series, 1994.
  • [2]. J. Haidar and J. Ghojel, “Waste heat recovery from the exhaust of low-power diesel engine using thermoelectric generators,” Proceedings ICT2001. 20 International Conference on Thermoelectrics (Cat. No.01TH8589).
  • [3]. I. Taymaz, K. Cakir, M. Gur, and A. Mimaroglu, “Experimental investigation of heat losses in a ceramic coated diesel engine,” Surface and Coatings Technology, vol. 169-170, pp. 168–170, 2003.
  • [4]. Özgün Haluk, “Termoelektrik jeneratörlerin çok düşük sıcaklıklarda teorik ve deneysel karakterizasyonu,” Yüksek Lisans Tezi, İstanbul Teknik Üniversitesi Enerji Enstitüsü İstanbul, 2009.
  • [5]. J. Vazquez, R. Palacios, M.A. Sanz-Bobi, A. Arenas, , “State of the Art of Thermoelectric Generators Based on Heat Recovered from the Exhaust Gases of Automobiles,” Proceedings of the 7th European Workshop on Thermoelectrics, 2002.
  • [6]. R. Ivankovic, J. Cros, M. Taghizadeh, C. A., and P. Viarouge, “Power Electronic Solutions to Improve the Performance of Lundell Automotive Alternators,” New Advances in Vehicular Technology and Automotive Engineering, 2012.
  • [7]. C. Yavuz, M. Özkaymak, and M. Kaya, “Termoelektrik Modüllü Su Soğutucusunda Farklı Hava Debilerinin Sistem Performansına Etkileri,” e-Journal of New World Sciences Academy, vol. 5, no 2, pp. 131–143, 2010.
  • [8]. C. Lertsatitthanakorn, “Electrical performance analysis and economic evaluation of combined biomass cook stove thermoelectric (BITE) generator,” Bioresource Technology, vol. 98, no. 8, pp. 1670–1674, 2007.
  • [9]. X. Niu, J. Yu, and S. Wang, “Experimental study on low-temperature waste heat thermoelectric generator,” Journal of Power Sources, vol. 188, no. 2, pp. 621–626, 2009.
  • [10].G. Liang, J. Zhou, and X. Huang, “Analytical model of parallel thermoelectric generator,” Applied Energy, vol. 88, no. 12, pp. 5193–5199, 2011.
  • [11]. İ. Temizer, C. İlkılıç, B. Tanyeri, C. Ömer, “Effects on Vehicle Systems of Technology Thermoelectric,” Batman University Journal of Life Sciences, vol. 1, no. 2, pp. 199–209, 2012.
  • [12]. M. A. Kunt, “İçten Yanmalı Motor Atık Isılarının Geri Kazanımında Termoelektrik Jeneratörlerin Kullanımı,” El-Cezeri Fen ve Mühendislik Dergisi, vol. 3, no. 2, 2016.
  • [13]. J. C. Bass, N. B. Elsner, and F. A. Leavitt, “Performance of the 1 kW thermoelectric generator for diesel engines,” AIP Conference Proceedings, 1994.
  • [14].M. Kobayashi, K. Ikoma, K. Furuya, K. Shinohara, H. Takao, M. Miyoshi, Y. Imanishi, and T. Watanabe, “Thermoelectric generation and related properties of conventional type module based on Si-Ge alloy,” Fifteenth International Conference on Thermoelectrics. Proceedings ICT, 1998.
  • [15].K. Ikoma, M. Munkiyo, K. Furuya, M. Kobayashi, H. Komatsu, K. Shinohara, “Thermoelectric Generator for Gasoline Engine Using Bi2Te3 Modules,” J. Japan Inst. Met., vol. 63, no. 11, pp. 1475–1478, 1999.
  • [16].E. F. Thacher, B. T. Helenbrook, M. A. Karri, and C. J. Richter, “Testing of an automobile exhaust thermoelectric generator in a light truck,” Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, vol. 221, no. 1, pp. 95–107, 2007.
  • [17]. Y. Hsiao, W. Chang, and S. Chen, “A mathematic model of thermoelectric module with applications on waste heat recovery from automobile engine,” Energy, vol. 35, no. 3, pp. 1447–1454, 2010.
  • [18].C.-T. Hsu, G.-Y. Huang, H.-S. Chu, B. Yu, and D.-J. Yao, “Experiments and simulations on low-temperature waste heat harvesting system by thermoelectric power generators,” Applied Energy, vol. 88, no. 4, pp. 1291–1297, 2011.
  • [19].Y. D. Deng, X. Liu, S. Chen, and N. Q. Tong, “Thermal Optimization of the Heat Exchanger in an Automotive Exhaust-Based Thermoelectric Generator,” Journal of Electronic Materials, vol. 42, no. 7, pp. 1634–1640, 2013.
  • [20].C.-C. Weng and M.-J. Huang, “A simulation study of automotive waste heat recovery using a thermoelectric power generator,” International Journal of Thermal Sciences, vol. 71, pp. 302–309, 2013.
  • [21]. S. Bai, H. Lu, T. Wu, X. Yin, X. Shi, and L. Chen, “Numerical and experimental analysis for exhaust heat exchangers in automobile thermoelectric generators,” Case Studies in Thermal Engineering, vol. 4, pp. 99–112, 2014.
  • [22].C. Su, W. Wang, X. Liu, and Y. Deng, “Simulation and experimental study on thermal optimization of the heat exchanger for automotive exhaust-based thermoelectric generators,” Case Studies in Thermal Engineering, vol. 4, pp. 85–91, 2014.
  • [23].G. Murali and G. Vikram, “A Study on Performance Enhancement of Heat Exchanger in Thermoelectric Generator Using CFD,” International Journal for Innovative Research in Science & Technology, vol. 2, no. 10, pp. 128–133, 2016.
  • [24].H. Gürbüz and H. Akçay, “Experimental investigation of an improved exhaust recovery system for liquid petroleum gas fueled spark ignition engine,” Thermal Science, vol. 19, no. 6, pp. 2049–2064, 2015.
  • [25].S. Soğancı, E. Hepkaya, U.İ. İnci, Y. Gargı, C. Erman, Z. Elmas, M.O. Tutkun, Hesaplamalı Akışkanlar Dinamiği (HAD) (Computational Fluid Dynamics: CFD), Ankara: TMMOB Makine Mühendisleri Odası Yayınları, 2018.
  • [26].A. B. Ökmen and H. Gürbüz, “Atik Isı Geri Dönüşüm Sistemleri: Buji Ateşlemeli Motorda Örnek Bir Uygulama,” EJONS International Journal of Mathematic, Engineering and Natural Sciences, vol. 4, no. 14, 2020.
  • [27].A. B. Ökmen, “İçten Yanmalı Motorun Egzoz Atık Isı Geri Kazanımı İçin Termoelektrik Jeneratörün HAD Analizi,” Yüksek Lisans Tezi, Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Isparta, 2020.
There are 27 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Makaleler
Authors

Habib Gürbüz 0000-0001-5157-6227

Ahmet Baturalp Ökmen 0000-0002-8036-145X

Publication Date May 31, 2021
Submission Date April 6, 2021
Acceptance Date May 17, 2021
Published in Issue Year 2021

Cite

IEEE H. Gürbüz and A. B. Ökmen, “Buji Ateşlemeli Motorun Egzoz Atık Isı Dönüşümü İçin Tasarlanan Termoelektrik Jeneratörde Optimum Egzoz Eşanjörü Düzenlemesinin HAD Analizi”, ECJSE, vol. 8, no. 2, pp. 1060–1080, 2021, doi: 10.31202/ecjse.910782.