Review
BibTex RIS Cite

Akıllı Camlar ve Teknolojik Gelişimleri

Year 2018, Volume: 5 Issue: 2, 437 - 457, 31.05.2018
https://doi.org/10.31202/ecjse.397717

Abstract

Akıllı
camlar, kendi kendine güç üreten, kararma kabiliyeti gösteren, foto–voltaikler,
elektro–kromikler, çatı pencereleri, gözlük camı, iç mekân işaretleri ya da
monitörleri gibi pek çok ürün grubunu kapsamakta olup ticari ve konut
binalarında, araçlarda (kara, deniz ve hava), iç mekân ögeleri şeklinde çeşitli
yapılarda kullanılmaktadırlar. Görünümlerini değiştirebilen akıllı camlar çok
amaçlı kullanımlara hizmet edebilmekte kullanıcıların bir dokunuşuyla beklentilere
cevap verebilmektedirler. Objeleri görsel tanıma yetisi sergileyen ve yazıyı
konuşmaya dökebilen teknolojileri kullanan akıllı camların çok yakın zamanda görme
engelli insanların hayatını daha da kolay ve konforlu hale getirmeleri
beklenmektedir. Akıllı camlar, ilk etapta tıp alanında kullanım açısından
geliştirilmemiş olsalarda artık tıbben de değerlendirilmektedirler. Bu makalede,
akıllı camlar hakkında genel bilgiler verilmekte, tarihsel yolculukları,
sınıflandırmaları, türleri, üretim yöntemleri, temel özellikleri, kullanım
alanları ve son dönem gelişimleri üzerine bilgilendirmeler sunulmaktadır.

References

  • [1] Karasu, B., Bereket, O., Biryan, E., Sanoglu, D., “The Latest Developments in Glass Science and Technology”, El–Cezerî Journal of Science and Engineering, 4(2), 2017, 209–233.
  • [2] Wong, K. V., Chan, R., “Smart Glass and Its Potential in Energy Savings”, Journal of Energy Resources Technology, Vol. 136, 2014, 1–6.
  • [3] Monk, P., Mortimer, R. J., Rosseinsky, D. R., “Electrochromism and Electrochromic Devices”, Cambridge University Press, 2007.
  • [4] Vergaz, R., Sanchez–Pena, J. M., Barrios, D., Vazquez, C., Lallana, P. C., “Modelling and Electro–Optical Testing of Suspended Particle Devices,” Sol. Energy Mater. Sol. Cells, 92(11), 2008, 1483–1487.
  • [5] “Liquid Crystal Glass”, http://www.glazette.com/Glass-Knowledge-Bank-70/Liquid-Crystal-Glass.html, 2012.
  • [6] Parkin, I. P., Manning, T. D., “Intelligent Thermochromic Windows”, Journal of Chemical Education, Vol. 83(3), 2006, 393.
  • [7] Kiria, P., Hyettb, G., Binionsa, R., “Solid State Thermichromic Materials”, Advanced Material Letters, Vol 1(2), 2010, 20.
  • [8] Gao, Y., Luo, H., Zhang, Z., Kang, L., Chen, Z., Du, J., Kanehira, M., Cao, C., “Nanoceramic VO2 Thermochromic Smart Glass: A Review on Progress in Solution Processing”, Nano Energy 1, 2012, 221–246.
  • [9] Manning, T. D. et al., “Intelligent Window Coating: Atmospheric Pressure Chemical Vapor Deposition of Tungsten–Doped Vanadium Dioxide, Chemistry of Materials, 16 (4), 2004, 744–749.
  • [10] Cho, J.–H. et al., “Thermochromic Chacteristics of WO3 Doped VO2 Thin Films Prepared by Sol–Gel Method, Ceramics International, 38, 2012, 589–593.
  • [11] Beteille, F., Livage, J., “Optical Switching in VO2 Thin Films” Journal of Sol–Gel Science and Technology, 13(1), 1998, 915–921.
  • [12] Livage. J., et al., “Sol–Gel Synthesis of Oxide Materials”, Acta Materialia, 46 (3), 1998, 743–750.
  • [13] Livage, J.,et al., “Optical Properties of Sol–Gel Derived Vanadium Oxide Films”, Journal of Sol–Gel Science and Technology, 8(1), 1997, 857–865.
  • [14] Granqvist, C. G. et al., “Progress in Chromogenics: New Results for Electro–Chromic and Thermochromic Materials And Devices”, Solar Energy Materials and Solar Cells, 93 (12), 2009, 2032–2039.
  • [15] Guinneton, F., et al., “Optimized Infrared Switching Properties in Thermo–Chromic Vanadium Dioxide Thin Films: Role of Deposition Process and Microstructure”, Thin Solid Films, 446 (2), 2004, 287–295.
  • [16] Lee, M. H., Kim, M. G., Song, H. K., “Thermochromism of Rapid Thermal Annealed VO2 and Sn–Doped VO2 Thin Films”, Thin Solid Films, 290, 1996, 30–33.
  • [17] Sobhan, M. et al., “Thermochromism of Sputter Deposited WxV1-xO2 Films”, Solar Energy Materials and Solar Cells, 44 (4), 1996, 451–455.
  • [18] Binions, R., Piccirillo, C., Parkin, I. P., “Tungsten Doped Vanadium Dioxide Thin Films Prepared by Atmospheric Pressure Chemical Vapour Deposition from Vanadyl Acetylacetonate and Tungsten Hexachloride”, Surface and Coatings Technology, 201(22–23), 2007, 9369–9372.
  • [19] Qureshi, U., Manning, T. D., Parkin, I. P. “Atmospheric Pressure Chemical Vapour Deposition of VO2 and VO2/TiO2 Films from the Reaction of VOCl3, TiCl4 and water”, Journal of Materials Chemistry, 14(7), 2004, 1190–1194.
  • [20] Kamalisarvestani, M., Saidur, R., Mekhilef, S., Javadi, F. S., “Performance, Materials and Coating Technologies of Thermochromic Thin Films on Smart Windows”, Renewable and Sustainable Energy Reviews, 26, 2013, 353–364.
  • [21] Almeida, R., “Optical and Photonic Glasses: Photochromic and Photosensitive Glasses”, Lecture Notes, Lehigh University, 2005.
  • [22] http://chem2u.blogspot.com.tr/2010/06/photochromic-glass.html (Erişim Tarihi: 15.02.2018).
  • [23] Baetens, R., Jelle, B. P., Gustavsen, A., “Properties Requirements and Possibilities of Smart Windows for Dynamic Day Light and Solar Energy Control in Buildings: A State–of–the–Art Review”, Solar Energy Materials & Solar Cells, 94, 2007, 87–105.
  • [24] Granqvist, C. G., “Electrochromic Devices,” Journal of European Ceramic Society, 25 (12), 2005, 2907–2912.
  • [25] Granqvist, C. G., Hultaker, A., “Transparent and Conducting ITO Films: New Developments and Applications”, Thin Solid Films, 411, 2002, 1–5.
  • [26] Mortimer, R. J., “Electrochromic Materials,” Annual Review Material Research, 41, 2011, 241–268.
  • [27] Granqvist, C. G., “Electrochromic for Smart Window: Oxide Based Thin Films and Devices” Thin Solid Films, 564, 2014, 1–38.
  • [28] Granqvist, C. G., “Handbook of Inorganic Electrochromic Materials”, Elsevier, Amsterdam, The Netherlands, 1995.
  • [29] Chen, X., Mao, S. S., “Titanium Dioxide Nanomaterials:  Synthesis, Properties, Modifications, and Applications”, Chemistry Review, 107, 2007, 2891.
  • [30] Leftheriotis, G., Koubli, E., Yianoulis, P., “Combined Electrochromic–Transparent Conducting Coatings Consisting of Noble Metal, Dielectric and WO3 Multilayers”, Solar Energy Materials & Solar Cells, Vol. 116, 2013, 110–119.
  • [31] Wang, C. K., Lin, C. K., Wu, C. L., Brahma, S., Wang, S. C., Huang, J. L., “Characterization of Electrochromic Tungsten Oxide Film from Electrochemical Anodized RF–Sputtered Tungsten Films”, Ceramics International, Vol. 39 (4), 2013, 4293–4298.
  • [32] Gubbala, S., Thangala, J., Sunkara, M. K., “Nanowire–Based Electrochromic Devices”, Solar Energy Materials and Solar Cells, Vol 91 (9), 2007, 813–820.
  • [33] White, C. M., Gillaspie, D. T., Whitney, E., Lee, S. H., Dillon, A. C., “Flexible Electrochromic Devices Based on Crystalline WO3 Nanostructures Produced with Hot–Wire Chemical Vapor Deposition”, Thin Solid Films, Vol 517 (12), 2009, 3596–3599.
  • [34] Deshpande, R., Lee, S. H., Mahan, A. H., Parilla, P. A., Jones, K. M., Norman, A. G., To B., Blackburn, J. L., Mitra, S., Dillon, A. C., “Optimization of Crystalline Tungsten Oxide Nanoparticles for Improved Electrochromic Applications”, Solid State Ionics, Vol 178 (13–14), 2007, 895–900.
  • [35] Kattouf, B., Frey, G. L., Siegmanna, A., Ein–Eli, Y., “Enhanced Reversible Electrochromism via in Situ Phase Transformation in Tungstate Monohydrate”, Chemical Communications, 47, 2009.
  • [36] Jiao, Z., Wang, J., Ke, L., Sun, X. W., Demir, H. V., “A Complementary Electrochromic Device with Highly Improved Performance Based on Brick–Like Hydrated Tungsten Trioxide Film”, Journal of Nanoscience and Nanotechnology, Vol 12 (5), 2012, 3838–3847.
  • [37] Jiao, Z., Wang, X., Wang, J., Ke, L., Demir, H. V., Koh, T. W., Sun, X. W., “Efficient Synthesis of Plate–Like Crystalline Hydrated Tungsten Trioxide Thin Films with Highly Improved Electrochromic Performance”, Chemical Communications, 3, 2012.
  • [38] Xie, Z., Gao, L., Liang, B., Wang, X., Chen,, G., Liu, Z., Chao J., Chen, D., Shen, G., “Fast Fabrication of a WO3·2H2O Thin Film with Improved Electrochromic Properties “, Journal of Materials Chemistry, 37, 2012.
  • [39] Lampert, C. M., “Optical Switching Technology for Glazings,” Thin Solid Films, 236 (1–2), 1993, 6–13.
  • [40] http://www.smartglassinternational.com/downloads/SPD_SmartGlass_Data.pdf (Erişim Tarihi: 15.02.2018).
  • [41] Coates, D., “Normal and Reverse Mode Polymer Dispersed Liquid Crystal Devices,” Displays, 14 (2), 1993, 94–103.
  • [42] https://continuingeducation.bnpmedia.com/courses/glass-apps/smart-glass-applications-with-polymer-dispersed-liquid-crystal-pdlc-technology/3/(Erişim Tarihi: 15.02.2018).
  • [43] Lampert, C. M., “Large–Area Smart Glass and Integrated Photovoltaics,” Solar Energy Material & Solar Cells”, 76(4), 2003, 489–499.
  • [44] Hack, M. G., Weaver, M. S., Mahon, J. K. and Brown, J. J., “Recent Progress in Flexible OLED Displays,” Proc. SPIE 4362, Cockpit Displays VIII: Displays for Defense Applications, 245, 2001.
  • [45] http://www.sage-ec.com/ (Erişim Tarihi: 15.02.2018).
  • [46] https://www.econtrol-glas.de/ (Erişim Tarihi: 15.02.2018).
  • [47] www.gesimat.de (Erişim Tarihi: 15.02.2018).
  • [48] http://www.chromgenics.se/ (Erişim Tarihi: 15.02.2018).
  • [49] www.sekurit.com (Erişim Tarihi: 15.02.2018).
  • [50] http://www.intraprojects.com/ (Erişim Tarihi: 15.02.2018).
  • [51] www.gentex.com (Erişim Tarihi: 15.02.2018).
  • [52] www.ajjer.com (Erişim Tarihi: 15.02.2018).
  • [53] www.SmartGlassinternational.com (Erişim Tarihi: 15.02.2018).
  • [54] www.dreamglass.es (Erişim Tarihi: 15.02.2018).
  • [55] www.sggprivalite.com (Erişim Tarihi: 15.02.2018).
  • [56] http://www.nsg.co.jp/en/ (Erişim Tarihi: 15.02.2018).
  • [57] http://www.refr-spd.com (Erişim Tarihi: 15.02.2018).
  • [58] Deb, S. K., “Photovoltaic–Integrated Electrochromic Device for Smart–Window Applications”, World Renewable Energy Congress VI (WREC2000) Ed. by Sayigh, A. A. M., 2000, 2652–2657.
  • [59] Naftaly, M., Batchelor, C., Jha, A., “Pr3+–Doped Fuoride Glass for a 589 nm Fibre Laser”, Journal of Luminescence 91, 2000, 133–138.
  • [60] Auch, M. D. J., Soo, O. K., Ewald, G., Soo–Jin, C., “Ultrathin Glass for Flexible OLED Application”, Thin Solid Films 417, 2002, 47–50.
  • [61] Purvis, G., “Nanotechnology, Standards and Tools Benefit Smart Materials”, Smart Materials Bulletin, 2002, 9–12.
  • [62] Cui, H. N., Costa, M. F., Teixeira, V., Porqueras, I., Bertran, E., “Electrochromic Coatings for Smart Windows”, Surface Science 532–535, 2003, 1127–1131.
  • [63] Jonsson, A. K., Furlani, M., Niklasson, G. A., “Isothermal Transient Ionic Current Study of Laminated Electrochromic Devices for Smart Window Applications”, Solar Energy Materials & Solar Cells 84, 2004, 361–367.
  • [64] Nitz, P., Hartwig, H., “Solar Control with Thermothropic Layers”, Solar Energy 79, 2005, 573–582.
  • [65] Syrrakou, E., Papaefthiminou, S., Yianoulis, P., “Eco-Efficiency Evaluation of a Smart Window Prototype”, Science of the Total Environment 359, 2006, 267–282.
  • [66] Ujiie, S., Furukawa, H., Yano, Y., Mori, A., “Oriented Glass States Formed by Ionic Liquid-Liquid Crystals”, Thin Solid Film 509, 2006, 185–188.
  • [67] Karuppasamy, A., Subrahmanyam, A., “Studies on Electrochromic Smart Windows Based on Titanium Doped WO3 Thin Films”, Thin Solid Film 516, 2007, 175–178.
  • [68] Story, C., Lu, K., Reynolds, Jr., W. T., Brown, D., “Shape Memory Alloy/Glass Composite Seal for Solid Oxide Electrolyzer and Fuel Cells”, International Journal of Hyrdogen Energy 33, 2008, 3970–3975.
  • [69] Tajima, K., Yamada, Y., Bao, S., Okada, M., Yoshimura, K., “Solid Electrolyte of Tantalum Oxide Thin Film Deposited by Reactive DC and RF Magnetron Sputtering for All–Solid–State Switchable Mirror Glass”, Solar Energy Materials & Solar Celles 92, 2008, 120–125.
  • [70] Cupelli, D., Nicoletta, F. P., Manfredi, S., Vivacqua, M., Formoso, P., De Filpo, G., Chidichimo, G., “Self-Adjusting Smart Windows Based on Polymer-Dispersed Liquid Crystals”, Solar Energy Materials & Solar Cells 93, 2009, 2008–2012.
  • [71] Matthews, S., De Bossher, W., Blondeel, A., Van Holsbeke, J., Delrue, H., “New Target Materials for Innovative Applications on Glass”, Vacuum 83, 2009, 518–521.
  • [72] Couto, D. S., Hong, Z., Mano, J. F., “Development of Bioactive and Biodegradable Chitosan-Based Injectable Systems Containing Bioactive Glass Nanoparticles”, Acta Biomaterialia 5, 2009, 115–123.
  • [73] Gu, Y., Dhanarajan, A. P., Hruby, S. L., Baldi, A., Ziaie, B., Siegel, R. A., “An Interpenetrating Glass–Thermosensitive Hydrogel Construct Gate Flow Control Thermofluidic Oscillations”, Sensors and Actuators B 138, 2009, 631–636.
  • [74] Piccolo, A., “Thermal Performance of an Electrochromic Smart Window Tested in an Environmental Test Cell”, Energy and Buildings 42, 2010, 1409–1417.
  • [75] Beatens, R., Jelle, B. P., Gustavsen, A., “Properties, Requirements and Possibilities of Smart Windows for Dynamic Daylight and Solar Energy Control in Buildings: A State–of–the–Art Review”, Solar Energy Materials & Solar Cells 94, 2010, 87–105.
  • [76] Jonsson, A., Roos, A., “Evaluation of Control Strategies for Different Smart Window Combinations Using Computer Simulations”, Solar Energy 84, 2010, 1–9.
  • [77] Chen, H.–J. Shu, C.–M., Chiang, C.–M., Lee, S.–K., “The Indoor Thermal Research of the HCRI–BIPV Smart Window”, Energy Procedia 12, 2011, 593–600.
  • [78] Kiri, P., Warwick, M. E. A., Ridley, I., Binions, R., “Fluorine Doped Vanadium Dioxide Thin Films for Smart Windows”, Thin Solid Films 520, 2011, 1363–1366.
  • [79] Chen, Z., Gao, Y., Kang, L., Du, J., Zhang, Z., Luo, H., Miao, H., Tan, G., “VO2–Based Double–Layered Films for Smart Windows: Optical Design, All–Solution Preparation and Improved Properties”, Solar Energy Materials & Solar Cells 95, 2011, 2677–2684.
  • [80] Kalagi, S. S., Mali, S. S., Dalavi, D. S., Inamdar, A., I., Im, H., Patil, P S., “Limitations of Dual and Complementary Inorganic–Organic Electrochromic Device for Smart Window Application and Its Colorimetric Analysis”, Synthetic Metals 161, 2011, 1105–1112.
  • [81] Tajima, K., Yamada, Y., Okada, M., Yoshimura, K., “Polyvinyl Chloride Seal Layer for Improving the Durability of Electrochromic Switchable Mirrors Based on Mg–Ni Thin Film”, Thin Solid Films 519, 2011, 8114–8118.
  • [82] Huang, L.–M., Hu, C.–W., Liu, H.–C., Hsu, C.–Y., Chen, C.–H., Ho, K.–C., “Photovoltaic Electrochromic Device for Solar Cell Module and Self–Powered Smart Glass Applications”, Solar Energy Materials & Solar Cells 99, 2012, 154–159.
  • [83] Dussault, J.–M., Gosselin, L., Galstian, T., “Integration of Smart Windows into Building Design for Reduction of Yearly Overall Energy Consumption and Peak Loads”, Solar Energy 86, 2012, 154–159.
  • [84] Andrade, L. H. C., Lima, S. M., Baesso, M. L., Novatski, A., Rohling, J. H., Guyot, Y., Boulon, G., “Tunable Light Emission and Similarities with Garnet Structure of Ce–Doped LSCAS Glass for White–Light Device”, Journal of Alloys and Compounds 510, 2012, 54–59.
  • [85] Chen, C. C., Jheng, W. D., “Logotype Selective Electrochromic Glass Display”, Ceramics International 38, 2012, 5835–5842.
  • [86] Chen, X., Lv, Q., Yi, X., “Smart Window Coating Based on Nanostructured VO2 Thin Film”, Optik 123, 2012, 1187–1189.
  • [87] Gesheva, K. A., Ivanova, T. M., Bodurov, G., “Transition Metal Oxide Films: Technology and “Smart Windows” Electrochromic Device Performance”, Progress in Organic Coatings 74, 2012, 235–239.
  • [88] Huang, L.–M., Kung, C.–P., Hu, C.–W., Peng, C.–Y., Liu, H.–C., “Tunable Photovoltaic Electrochromic Device and Module”, Solar Energy Materials & Solar Cells 107, 2012, 390–395.
  • [89] Rodrigues, L. C., Silva, M. M., Smith, M. J., Gonçalves, A., Fortunato, E., “Poly (ε–Caprolactone)/Siloxane Biohybrids with Application in “Smart Window”, Synthetic Metals 161, 2012, 390–395.
  • [90] Sbar, N. L., Podbelski, L., Yang, H. M., Pease, B., “Electrochromic Dynamic Windows for Office Buildings”, International Journal of Sustainable Built Environment 1, 2012, 125–139.
  • [91] Ye, H., Meng, X., Xu, B., “Theoretical Discussions of Perfect Window, Ideal Near Infrared Solar Spectrum Regulating Window and Current Thermochromic Window”, Energy and Buildings 49, 2012, 164–172.
  • [92] Kaya, Yeşilay, S., Karasu, B., “Process Parameters Determination of Phosphorescent Pigment Added, Frit–Based Wall Tiles Vetrosa Decorations”, Ceramics International, Vol. 38, Issue 4, 2012, 2757–2766.
  • [93] Kaya, Yeşilay, S. and Karasu, B., “Glass and Ceramics with Phosphorescent Ability”, Ceramics Technical, No: 34, 2012, 94–99.
  • [94] El Kazazz, H., Karacaoğlu, E., Karasu, B. and Ağatekin, M., “Production of Pr6O11–Doped SrAl2O4:Eu2+, Dy3+, Y3+ Yellowish–Green Phosphors and Their Usage in Artistic Glasses”, Anadolu University, Journal of Science and Technology A, Applied Sciences and Engineering, Vol. 13, No: 2, 2012, 81–87.
  • [95] Ko, Y. G., Karng, S. W., Lee, G. S., Choi, U. S., “Smart Glass Substrate as Colorimetric Chemosensor for Highly Selective Detection of Silver Ion”, Sensors and Actuators B 177, 2013, 1107–1114.
  • [96] You, H., Steckl, A., J., “Versatile Electrowetting Arrays for Smart Window Applications-from Small to Large Pixels on Fixed and Flexible Substrates”, Solar Energy Materials & Solar Cells 117, 2013, 544–548.
  • [97] Wuryandari, A., I., Yudi Satria Gondokaryono, Y. S., Widnyana, I. M. Y., “Design and Implementation of Driver Main Computer and Head Up Display on Smart Car”, Procedia Technology 11, 2013, 1041–1047.
  • [98] Cannavale, A., Fiorito, F., Resta, D., Gigli, G., “Visual Confort Assessment of Smart Photovoltachromic Windows”, Energy and Buildings 65, 2013, 137–145.
  • [99] ‘Biologically Inspired ‘Smart Materials’”, Advanced Drug Delivery Reviews 65, 2013, 403–404.
  • [100] Tonooka, K., Kikuchi, N., “Super–Hydrophilic and Solar–Heat–Reflective Coatings for Smart Windows”, Thin Solid Films 532, 2013, 147–150.
  • [101] Li, R., Ji, S., Li, Y., Gao, Y., Luo, H., Jin, P., “Synthesis and Characterization of Plate-Like VO2(M)@SiO2 Nanoparticles and Their Application to Smart Window”, Materials Letters 110, 2013, 241–244.
  • [102] Bodurov, G., Ivanova, T., Gesheva, K., “Technology and Application of Transition Metal Oxide of W-V-O as Functional Layers and NiO Thin Films as Counter Electrode Material in Electrochromic “Smart Windows”, Physics Procedia 46 , 2013, 149–158.
  • [103] Papageorgas, P., Piromalis, D., Antonakoglou, K., Vokas, G., Tseles, D. and K. G. Arvanitis, K. G., “Smart Solar Panels: In-situ Monitoring of Photovoltaic Panels Based on Wired and Wireless Sensor Networks”, Energy Procedia 36, 2013, 535–545.
  • [104] Ma, D., Chang, C.–C., Hung, S.–W., “The Selection of Technology for Late–Starters: A Case Study of the Energy–Smart Photovoltaic Industry”, Economic Modelling 35, 2013, 10–20.
  • [105] Tajima, K., Ikeyama, M., Nakao, S., Yamada, Y., Yoshimura, K., “Si Incorporated Diamond–Like Carbon Film–Coated Electrochromic Switchable Mirror Glass for High Environmental Durability”, Ceramics International 39, 2013, 8273–8278.
  • [106] Souza, W. S., Domingues, R. O., Bueno, L. A., da Costa, E. B., Gouveia–Neto, A. S., “Color Tunable Green–Yellow–Orange–Red Er3+/Eu3+–Codoped PbGeO3:PbF2:CdF2 Glass Phosphor for Application in White LED Technology”, Journal of Luminescence 144, 2013, 87–90.
  • [107] Carvalho, S. M., Oliveira, A. A. R., Lemos, E. M. F. and Pereira, M. M., “Bioactive Glass Nanoparticles for Periodontal Regeneration and Applications in Dentistry”, Chapter 15 in Nanobiomaterials in Clinical Dentistry, 2013, 299–322.
  • [108] Lizin, S., Leroy, J., Delvenne, C., Dijk, M., De Schepper, E., Van Passel, S., “A Patent Landscape Analysis for Organic Photovoltaic Solar Cells: Identifying the Technology’s Development Phase”, Renewable Energy 57, 2013, 5–11.
  • [109] Montemor, M. F., “Functional and Smart Coatings for Corrosion Protection: A Review of Recent Advances”, Surface & Coatings Technology 258, 2014, 17–37.
  • [110] Yi, X., Su, K., Schlam, E., Levy, R. A., “Electrostatic Flexible Film Based Smart Window: Optical Design, Performanceand Residual Charge Investigation”, Solar Energy 110, 2014, 667–672.
  • [111] Ramadan, R., Kamal, H., Hashem, H. M., Abdel–Hady, K., “Gelatin–Based Solid Electrolyte Releasing Li+ for Smart Window Applications”, Solar Energy Materials & Solar Cells 127, 2014, 147–156.
  • [112] Skaff, M. C., Gosselin, L., “Summer Performance of Ventilated Windows with Absorbing or Smart Glazings”, Solar Energy 110, 2014, 667–672.
  • [113] Madida, I. G., Simo, A., Sone, B., Maity, A., Kana, J. B. K., Gibaud, A., Merad, G., Thema, F. T., Maaza, M., “Submicronic VO2-PVP Composites Coatings for Smart Windows Application and Solar Heat Management”, Solar Energy 107, 2014, 758–769.
  • [114] Kontziampasis, D., Boulousis, G., Smyrnakis, A., Ellinas, K., Tserepi, A., Gogolides, E., “Biomimetic, Antireflective, Superhydrophobic and Oleophobik PMMA and PMMA-Coated Glass Surfaces Fabricated by Plasma Processing”, Microelectronic Engineering 121, 2014, 33–38.
  • [115] More, A. J., Patil, R. S., Dalavi, D. S., Mali, S. S., Hong, C. K., Gang, M. G., Kim, J. H., Patil, P. S., “Electrodeposition of Nano-Granular Tungsten Oxide Thin Films for Smart Window Application”, Materials Letters 134, 2014, 298–301.
  • [116] Chu, X., Tao, H., Liu, Y., Ni, J., Bao, J., Zhao, X., “VO2/AZO Double–Layer Films with Thermochromism and Low–Emissivity for Smart Window Applications”, Journal of Non–Crystalline Solids 383, 2014, 121–125.
  • [117] Meher, S. R., Balakrishnan, L., “Sol–Gel Derived Nanocrystalline TiO2 Thin Films: A Promising Candidate for Self–Cleaning Smart Window Applications”, Materials Science in Semiconductor Processing 26, 2014, 251–258.
  • [118] Lemarchand, P., Doran, J., Norton, B., “Smart Switchable Technologies for Glazing and Photovoltaic Applications”, Energy Procedia 57, 2014, 1878–1887.
  • [119] Jiang, M., Bao, S., Cao, X., Li, Y., Li, S., Zhou, H., Luo, H., Jin, P., “Improved Luminous Transmittance and Diminished Yellow Color in VO2 Energy Efficient Smart Thin Films by Zn Doping”, Ceramics International 40, 2014, 6331–6334.
  • [120] Fernandes, M., Freitas, V. T., Pereira, S., Fortunato, E., Ferreira, R .A. S., Carlos, L. D., R. Rego, R., de Zea Bermudez, V., “Green Li+– and Er3+–Doped Poly(ε–Caprolactone)/Siloxane Biohybrid Electrolytes for Smart Electrochromic Windows”, Solar Energy Materials & Solar Cells 123, 2014, 203–210.
  • [121] Ostendorp, M. –C., Lenk, J. C., Lüdtke, A., “Smart Glasses to Support Maritime Pilots in Harbor Maneuvers”, Procedia Manufacturing 3, 2015, 2840–2847.
  • [122] Kawai, J., Mitsuhara, H., Shishibori, M., “Tsunami Evacuation Drill System Using Smart Glasses”, Procedia Computer Science 72, 2015, 329–336.
  • [123] Huang, H., Ng, M., Wu, Y., Kong, L., “Solvothermal Synthesis of Sb:SnO2 Nanoparticles and IR Shielding for Smart Glass”, Materials and Design 88, 2015, 384–389.
  • [124] Zakirullin, R. S., Letuta, S. N., “A Smart Window for Angular Selective Filtering Solar Radiation”, Solar Energy 120, 2015, 585–592.
  • [125] Leinberg, S., Kisand, V., Šutka, A., Saal, K., Löhmus, R., Joost, U., Timusk, M., Nŏmmiste, E., “Switchable Optical Transmittance of TiO2 Submicron–Diameter Wire Suspension–Based “Smart Window Device”, Optical Materials 46, 2015, 418–422.
  • [126] Soltani, M., Kaye, A. B., “Properties and Applications of Thermochromic Vanadium Dioxide Smart Coatings”, Chapter 13 in Intelligent Coatings for Corrosion Control, 2015, 461–490.
  • [127] Huang, B.–R., Lin, T.–C., Liu, Y.–M., “WO3/TiO2 Core–Shell Nanostructure for High Performance Energy–Saving Smart Windows”, Solar Energy Materials & Solar Cells 133, 2015, 32–38.
  • [128] Zheng, J., Bao, S., Jin, P., “TiO2(R)/VO2(M)/TiO2(A) Multilayer Film as Smart Window: Combination of Energy–Saving, Antifogging and Self–Cleaning Functions”, Nano Energy 11, 2015, 136–145.
  • [129] Jelle, B. P., “Solar Radiation Glazing Factors for Window Panes, Glass Structures and Electrochromic Windows in Buildings: Measurement and Calculations”, Solar Energy Materials & Solar Cells 116, 2015, 291–323.
  • [130] Ajaji, Y., André, P., “Thermal Comfort and Visual Comfort in an Office Building Equipped with Smart Electrochromic Glazing: An Experimental Study”, Energy Procedia 78, 2015, 2464– 2469.
  • [131] Da Silva Jr, C. M., Bueno, L. A., Gouveia–Neto, A. S., “Er3+/Sm3+– and Tb3+/Sm3+–Doped Glass Phosphors for Application in Warm White Light–Emitting Diode”, Journal of Non–Crystalline Solids 410, 2015, 151–154.
  • [132] Choi, Y. S., Yun, J. U., Park, S. E., “Flat Panel Display Glass: Current Status and Future”, Journal of Non–Crystalline Solids 431, 2016, 2–7.
  • [133] Patil, R. A., Devan, R. S., Liou, Y., Ma, Y.–R., “Efficient Electrochromic Smart Windows of One–Dimentional Pure Brookite TiO2 Nanoneedles”, Solar Energy Materials & Solar Cells 147, 2016, 240–245.
  • [134] Connelly, K., Wu, Y., Chen, J., Lei, Y., “Design and Development of a Reflective Membrane for a Novel Building Integrated Concentrating Photovoltaic (BICPV) ‘Smart Window’ System”, Applied Energy 182, 2016, 331–339.
  • [135] Ferraris, S. and Perero, S., “Smart and Composite Inorganic Coatings Obtained by Sputtering: A Promising Solution for Numerous Application Fields”, Chapter 2 in Smart Composite Coatings and Membranes, 2016, 33–60.
  • [136] Karmakar, B., “Functionality of Reversible Glass Nanocomposites and Their Applications”, Chapter 11 in Glass Nanocomposites, 2016, 265–278.
  • [137] Swain, B., Mishra, C., Hong, H. S., Cho, S.–S., “Benefication and Recovery of Indium from Liquid–Crystal–Display Glass by Hydrometallurgy”, Waste Management, 2016, 265–278.
  • [138] Cuce, E., “Toward Multi–Functional PV Glazing Technologies in Low/Zero Carbon Buildings: Heat Insulation Solar Glass–Latest Development and Future Prospects”, Renewable and Sustainable Energy Reviews 60, 2016, 1286–1301.
  • [139] Zhang, D.–P., Zhu, M.–D., Liu, Y., Yang, K., Liang, G.–X., Zheng, Z.–H., Cai, X.–M., Fan, P., “High Performance VO2 Thin Films Growth by DC Magnetron Sputtering at Low Temperature for Smart Energy Efficient Window Application”, Journal of Alloys and Compounds 659, 2016, 198–202.
  • [140] Fazel, A., Izadi, A., Azizi, M., “Low–Cost Solar Thermal Based Adaptive Window: Combination of Energy–Saving and Self–Adjustment in Buildings”, Solar Energy 133, 2016, 274–282.
  • [141] De, S., Singh, J., Prakash, B., Chakraverty, S., Ghosh, K., “Graphene/Nanoporous–Silica Heterostructure Based Hdrophobic Antireflective Coating”, Materials Today Communications 8, 2016, 41–45.
  • [142] Hong, T., Jeong, K., Koo, C., Kim, J., Lee, M., “A Preliminary Study for Determining Photovoltaic Panel for a Smart Photovoltaic Blind Considering Usability and Constructability Issues”, Energy Procedia 88, 2016, 363–367.
  • [143] Chou, H.–T., Chen, Y.–C., Lee, C.–Y., Chang, H.–Y., Tai, N.–H., “Switchable Transparency of Dual–Controlled Smart Glass Prepared with Hydrogel–Containing Graphene Oxide for Energy Efficiency”, Solar Energy Materials & Solar Cells 166, 2017, 45–51.
  • [144] Basoglu, N., Ok, A. E., Daim, T. U., “What Will It Take to Adopt Smart Glasses: A Consumer Choice Based Review?”, Technology in Society 50, 2017, 50–56.
  • [145] Mohamed, A. S. Y., “Smart Materials Innovative Technologies in Architecture; Towards Innovative Design Paradigm”, Energy Procedia 115, 2017, 139–154.
  • [146] Lee, K. Y., Hong, J., Chung, S. K., “Smart Self–Cleaning Lens Cover for Miniature Cameras of Automobiles”, Sensors and Actuators B 239, 2017, 754–758.
  • [147] Jung, D., Choi, W., Park, J.–Y., Kim, K. B., Lee, N., Seo, Y., Kim, H. S., Kong, N. K., “Inorganic Gel and Liquid Crystal Based Smart Window Using Silica Sol–Gel Process”, Solar Energy Materials & Solar Cells 159, 2017, 488–495.
  • [148] Dabrowski, R., Dziaduszek, J., Bozetka, J., Piecek, W., Mazur, R., Chrunik, M., Perkowski, P., Mrukiewicz, M., Żurowska, M., Weglowska, D., “Fluorinated Smectics–New Liquid Crystalline Medium for Smart Windows and Memory Displays”, Journal of Molecular Liquids, https://doi.org/10.1016/j.molliq.2017.12.068, 2017.
  • [149] Facchinetti, T., Benetti, G., Tramonte, A., Carraro, L., Rubini, A., Benedetti, M., Randone, E. M., Simonetta, M., Capelli, G., Keränen, K., Ylisaukko-Oja, A., Consoli, A., Ayadi, J., Giuliani, G., “Luminous Tiles: A New Building Device for Smart Architectures and Applications”, Microprocessors and Microsystems 51, 2017, 198–208.
  • [150] Rai, W., Tiwari, N., Rajput, M., Joshi, S. M., Nguyen, A. C., Wathews, N., “Reversible Electrochemical Silver Deposition over Large Areas for Smart Windows and Information Display”, Electrochimica Acta 255, 2017, 63–71.
  • [151] Sun, G. Y., Xun Cao, X., Zhoua, H., Bao, S., Ping Jin, P., “A Novel Multifunctional Thermochromic Structure with Skin Comfort Design for Smart Window Application”, Solar Energy Materials & Solar Cells 159, 2017, 553–559.
  • [152] Seyfouri, M. M., Binions, R., “Sol–Gel Approaches to Thermochromic Vanadium Dioxide Coating for Smart Glaze Application”, Solar Energy Materials & Solar Cells 159, 2017, 52–65.
  • [153] Tong, K., Li, R., Zhu, J., Yao, H., Zhou, H., Zeng, X., Ji, S., Jin, P., “Preparation of VO2/Al-O Core–Shell Structure with Enhanced Weathering Resistance for Smart Window”, Ceramics International, 2017, 52–65.
  • [154] Ramadan, R., Elshorbagy, M. H., Kamal, H., Hashem, H. M., Abdelhady, K., “Preparation and Characterization of Protonic Solid Electrolyte Applied to a Smart Window Device with High Optical Modulation”, Optik 135, 2017, 85–97.
  • [155] Ulrich, S., Szyszko, C., Jung, S., Vergöhl, M., “Electrochromic Properties of Mixed Oxide Based on Titanium and Niobium for Smart Window Applications”, Surface & Coating Technology 314, 2017, 41–44.
  • [156] Allen, K., Connelly, K., Rutherford, P., Wu, Y., “Smart Windows–Dynamic Control of Building Energy Performance”, Energy and Buildings 139, 2017, 535–546.
  • [157] Liang, Z., Zhao, L., Meng, W., Zhong, C., Wei, S., Dong, B., Xu, Z., Wan, L., Wang, S., “Tungsten–Doped Vanadium Dioxide Thin Films as Smart Windows with Self–Cleaning and Energy–Saving Functions”, Journal of Alloys and Compounds 694, 2017, 124–131.
  • [158] Lee, W. C., Choi, E. C., Boo, J.–H., Hong, B., “A Study of Characterization of Nano–Porous NiO Thin Film to Improve Electrical and Optical Properties for Application to Automative Glass”, Thin Solid Films 641, 2017, 28–33.
  • [159] Gün, Y., Taşçı, E., Pekkan, K., Karasu, B., “Farklı Ticari Firitlerin Değişen Sıcaklık Aralıklarında Fosforesans Işımaya Etkisi”, Uluslararası Hakemli Mühendislik ve Fen Bilimleri Dergisi, Sayı: 10, 2017, 42–58.
  • [160] Pekkan, K., Gün, Y., Kaymak, K., Taşçı, E., Karasu, B., “Farklı Renk Veren Fosfor Işıl Pigmentler Açısından Düşük Sıcaklık Sır Bileşimlerinin Belirlenip Çini Bünyelerde Uygulanması”, Şişe Cam Teknik Bülten, Cilt: 46, Sayı: 3 (232), 2017, 20–27.
  • [161] Karasu, B., Yanar, A. O., Koçak, A. and Kısacık, Ö., “Bioactive Glasses”, El–Cezeri Journal of Science and Engineering (EJCSE), Vol. 4, No: 3, 2017, 436–471.
  • [162] Hu, J., Yu, X. (B.), “Optical Properties of Smart Thermochromic Film by Computational Optical Model”, Optik 157, 2018, 1–10.
  • [163] Casini, M., “Active Dynamic Windows for Buildings: A Review”, Renewable Energy 119, 2018, 923–934.
  • [164] Long, S., Cao, X., Sun, G., Li, N., Chang, T., Shao, Z., Jin, P., “Effects of V2O3 Buffer Layers on Sputtered VO2 Smart Windows: Improved Thermochromic Properties, Tunable Width of Hysteresis Loops and Enhanced Durability”, Applied Surface Science, doi: https://doi.org/10.1016/j.apsusc.2018.02.083, 2018.
  • [165] Lodi, T. A., Sandrini, M., Medina, A. N., Barboza, M. J., Pedrochi, F., Steimacher, A., “Dy:Eu Doped CaBAl Glasses for White Light Applications”, Optical Materials 76, 2018, 231–236.
  • [166] Ghosh, A., Mallick, T. K., “Evaluation of Colour Properties due to Switching Behaviour of PDLC Glazing for Adaptive Building Integration”, Renewable Energy 120, 2018, 126–133.
  • [167] Karasu, B., Sarıcaoğlu, B., “Cam Yüzey Kaplama Teknolojileri”, Seramik Türkiye Bilim Teknik ve Endüstri Dergisi, Seramik Federasyonu, Mart 2018 (basımda).

Smart Glasses and Their Technological Developments

Year 2018, Volume: 5 Issue: 2, 437 - 457, 31.05.2018
https://doi.org/10.31202/ecjse.397717

Abstract

Smart
glasses cover certain groups of products, such as photovoltaics and
electrochromics to produce a self–powered, self–dimming window, skylight, eyewear,
indoor signage or display where can be evaluated in buildings (commercial and
residential), vehicles (land, sea, and air), interior partitions and
structures, eyewear. Switchable smart glasses illuminate environments, leading
to multifunctional spaces adapting and responding to the requirements of users
at the flick of a switch. Those employing visual
object recognition and text
tospeech technologies could soon be expected to help blind
people navigate independently.
Although most smart glasses were not
initially targeted at healthcare, they have been already implemented in
multiple different medical applications. In general, such devices can be
utilized whenever a screen or external monitor is already required. Head
mounted displays can be evaluated for very basic purposes such as education,
simulation, live streaming of visualized data to more interactive functions
such as video recording and digital photo documentation, for tele–medicine, tele–mentoring
and many others. Hereby, general knowledge about smart glasses, their
historical background, classifications, types, production processes, major properties,
usage fields and latest developments are given.

References

  • [1] Karasu, B., Bereket, O., Biryan, E., Sanoglu, D., “The Latest Developments in Glass Science and Technology”, El–Cezerî Journal of Science and Engineering, 4(2), 2017, 209–233.
  • [2] Wong, K. V., Chan, R., “Smart Glass and Its Potential in Energy Savings”, Journal of Energy Resources Technology, Vol. 136, 2014, 1–6.
  • [3] Monk, P., Mortimer, R. J., Rosseinsky, D. R., “Electrochromism and Electrochromic Devices”, Cambridge University Press, 2007.
  • [4] Vergaz, R., Sanchez–Pena, J. M., Barrios, D., Vazquez, C., Lallana, P. C., “Modelling and Electro–Optical Testing of Suspended Particle Devices,” Sol. Energy Mater. Sol. Cells, 92(11), 2008, 1483–1487.
  • [5] “Liquid Crystal Glass”, http://www.glazette.com/Glass-Knowledge-Bank-70/Liquid-Crystal-Glass.html, 2012.
  • [6] Parkin, I. P., Manning, T. D., “Intelligent Thermochromic Windows”, Journal of Chemical Education, Vol. 83(3), 2006, 393.
  • [7] Kiria, P., Hyettb, G., Binionsa, R., “Solid State Thermichromic Materials”, Advanced Material Letters, Vol 1(2), 2010, 20.
  • [8] Gao, Y., Luo, H., Zhang, Z., Kang, L., Chen, Z., Du, J., Kanehira, M., Cao, C., “Nanoceramic VO2 Thermochromic Smart Glass: A Review on Progress in Solution Processing”, Nano Energy 1, 2012, 221–246.
  • [9] Manning, T. D. et al., “Intelligent Window Coating: Atmospheric Pressure Chemical Vapor Deposition of Tungsten–Doped Vanadium Dioxide, Chemistry of Materials, 16 (4), 2004, 744–749.
  • [10] Cho, J.–H. et al., “Thermochromic Chacteristics of WO3 Doped VO2 Thin Films Prepared by Sol–Gel Method, Ceramics International, 38, 2012, 589–593.
  • [11] Beteille, F., Livage, J., “Optical Switching in VO2 Thin Films” Journal of Sol–Gel Science and Technology, 13(1), 1998, 915–921.
  • [12] Livage. J., et al., “Sol–Gel Synthesis of Oxide Materials”, Acta Materialia, 46 (3), 1998, 743–750.
  • [13] Livage, J.,et al., “Optical Properties of Sol–Gel Derived Vanadium Oxide Films”, Journal of Sol–Gel Science and Technology, 8(1), 1997, 857–865.
  • [14] Granqvist, C. G. et al., “Progress in Chromogenics: New Results for Electro–Chromic and Thermochromic Materials And Devices”, Solar Energy Materials and Solar Cells, 93 (12), 2009, 2032–2039.
  • [15] Guinneton, F., et al., “Optimized Infrared Switching Properties in Thermo–Chromic Vanadium Dioxide Thin Films: Role of Deposition Process and Microstructure”, Thin Solid Films, 446 (2), 2004, 287–295.
  • [16] Lee, M. H., Kim, M. G., Song, H. K., “Thermochromism of Rapid Thermal Annealed VO2 and Sn–Doped VO2 Thin Films”, Thin Solid Films, 290, 1996, 30–33.
  • [17] Sobhan, M. et al., “Thermochromism of Sputter Deposited WxV1-xO2 Films”, Solar Energy Materials and Solar Cells, 44 (4), 1996, 451–455.
  • [18] Binions, R., Piccirillo, C., Parkin, I. P., “Tungsten Doped Vanadium Dioxide Thin Films Prepared by Atmospheric Pressure Chemical Vapour Deposition from Vanadyl Acetylacetonate and Tungsten Hexachloride”, Surface and Coatings Technology, 201(22–23), 2007, 9369–9372.
  • [19] Qureshi, U., Manning, T. D., Parkin, I. P. “Atmospheric Pressure Chemical Vapour Deposition of VO2 and VO2/TiO2 Films from the Reaction of VOCl3, TiCl4 and water”, Journal of Materials Chemistry, 14(7), 2004, 1190–1194.
  • [20] Kamalisarvestani, M., Saidur, R., Mekhilef, S., Javadi, F. S., “Performance, Materials and Coating Technologies of Thermochromic Thin Films on Smart Windows”, Renewable and Sustainable Energy Reviews, 26, 2013, 353–364.
  • [21] Almeida, R., “Optical and Photonic Glasses: Photochromic and Photosensitive Glasses”, Lecture Notes, Lehigh University, 2005.
  • [22] http://chem2u.blogspot.com.tr/2010/06/photochromic-glass.html (Erişim Tarihi: 15.02.2018).
  • [23] Baetens, R., Jelle, B. P., Gustavsen, A., “Properties Requirements and Possibilities of Smart Windows for Dynamic Day Light and Solar Energy Control in Buildings: A State–of–the–Art Review”, Solar Energy Materials & Solar Cells, 94, 2007, 87–105.
  • [24] Granqvist, C. G., “Electrochromic Devices,” Journal of European Ceramic Society, 25 (12), 2005, 2907–2912.
  • [25] Granqvist, C. G., Hultaker, A., “Transparent and Conducting ITO Films: New Developments and Applications”, Thin Solid Films, 411, 2002, 1–5.
  • [26] Mortimer, R. J., “Electrochromic Materials,” Annual Review Material Research, 41, 2011, 241–268.
  • [27] Granqvist, C. G., “Electrochromic for Smart Window: Oxide Based Thin Films and Devices” Thin Solid Films, 564, 2014, 1–38.
  • [28] Granqvist, C. G., “Handbook of Inorganic Electrochromic Materials”, Elsevier, Amsterdam, The Netherlands, 1995.
  • [29] Chen, X., Mao, S. S., “Titanium Dioxide Nanomaterials:  Synthesis, Properties, Modifications, and Applications”, Chemistry Review, 107, 2007, 2891.
  • [30] Leftheriotis, G., Koubli, E., Yianoulis, P., “Combined Electrochromic–Transparent Conducting Coatings Consisting of Noble Metal, Dielectric and WO3 Multilayers”, Solar Energy Materials & Solar Cells, Vol. 116, 2013, 110–119.
  • [31] Wang, C. K., Lin, C. K., Wu, C. L., Brahma, S., Wang, S. C., Huang, J. L., “Characterization of Electrochromic Tungsten Oxide Film from Electrochemical Anodized RF–Sputtered Tungsten Films”, Ceramics International, Vol. 39 (4), 2013, 4293–4298.
  • [32] Gubbala, S., Thangala, J., Sunkara, M. K., “Nanowire–Based Electrochromic Devices”, Solar Energy Materials and Solar Cells, Vol 91 (9), 2007, 813–820.
  • [33] White, C. M., Gillaspie, D. T., Whitney, E., Lee, S. H., Dillon, A. C., “Flexible Electrochromic Devices Based on Crystalline WO3 Nanostructures Produced with Hot–Wire Chemical Vapor Deposition”, Thin Solid Films, Vol 517 (12), 2009, 3596–3599.
  • [34] Deshpande, R., Lee, S. H., Mahan, A. H., Parilla, P. A., Jones, K. M., Norman, A. G., To B., Blackburn, J. L., Mitra, S., Dillon, A. C., “Optimization of Crystalline Tungsten Oxide Nanoparticles for Improved Electrochromic Applications”, Solid State Ionics, Vol 178 (13–14), 2007, 895–900.
  • [35] Kattouf, B., Frey, G. L., Siegmanna, A., Ein–Eli, Y., “Enhanced Reversible Electrochromism via in Situ Phase Transformation in Tungstate Monohydrate”, Chemical Communications, 47, 2009.
  • [36] Jiao, Z., Wang, J., Ke, L., Sun, X. W., Demir, H. V., “A Complementary Electrochromic Device with Highly Improved Performance Based on Brick–Like Hydrated Tungsten Trioxide Film”, Journal of Nanoscience and Nanotechnology, Vol 12 (5), 2012, 3838–3847.
  • [37] Jiao, Z., Wang, X., Wang, J., Ke, L., Demir, H. V., Koh, T. W., Sun, X. W., “Efficient Synthesis of Plate–Like Crystalline Hydrated Tungsten Trioxide Thin Films with Highly Improved Electrochromic Performance”, Chemical Communications, 3, 2012.
  • [38] Xie, Z., Gao, L., Liang, B., Wang, X., Chen,, G., Liu, Z., Chao J., Chen, D., Shen, G., “Fast Fabrication of a WO3·2H2O Thin Film with Improved Electrochromic Properties “, Journal of Materials Chemistry, 37, 2012.
  • [39] Lampert, C. M., “Optical Switching Technology for Glazings,” Thin Solid Films, 236 (1–2), 1993, 6–13.
  • [40] http://www.smartglassinternational.com/downloads/SPD_SmartGlass_Data.pdf (Erişim Tarihi: 15.02.2018).
  • [41] Coates, D., “Normal and Reverse Mode Polymer Dispersed Liquid Crystal Devices,” Displays, 14 (2), 1993, 94–103.
  • [42] https://continuingeducation.bnpmedia.com/courses/glass-apps/smart-glass-applications-with-polymer-dispersed-liquid-crystal-pdlc-technology/3/(Erişim Tarihi: 15.02.2018).
  • [43] Lampert, C. M., “Large–Area Smart Glass and Integrated Photovoltaics,” Solar Energy Material & Solar Cells”, 76(4), 2003, 489–499.
  • [44] Hack, M. G., Weaver, M. S., Mahon, J. K. and Brown, J. J., “Recent Progress in Flexible OLED Displays,” Proc. SPIE 4362, Cockpit Displays VIII: Displays for Defense Applications, 245, 2001.
  • [45] http://www.sage-ec.com/ (Erişim Tarihi: 15.02.2018).
  • [46] https://www.econtrol-glas.de/ (Erişim Tarihi: 15.02.2018).
  • [47] www.gesimat.de (Erişim Tarihi: 15.02.2018).
  • [48] http://www.chromgenics.se/ (Erişim Tarihi: 15.02.2018).
  • [49] www.sekurit.com (Erişim Tarihi: 15.02.2018).
  • [50] http://www.intraprojects.com/ (Erişim Tarihi: 15.02.2018).
  • [51] www.gentex.com (Erişim Tarihi: 15.02.2018).
  • [52] www.ajjer.com (Erişim Tarihi: 15.02.2018).
  • [53] www.SmartGlassinternational.com (Erişim Tarihi: 15.02.2018).
  • [54] www.dreamglass.es (Erişim Tarihi: 15.02.2018).
  • [55] www.sggprivalite.com (Erişim Tarihi: 15.02.2018).
  • [56] http://www.nsg.co.jp/en/ (Erişim Tarihi: 15.02.2018).
  • [57] http://www.refr-spd.com (Erişim Tarihi: 15.02.2018).
  • [58] Deb, S. K., “Photovoltaic–Integrated Electrochromic Device for Smart–Window Applications”, World Renewable Energy Congress VI (WREC2000) Ed. by Sayigh, A. A. M., 2000, 2652–2657.
  • [59] Naftaly, M., Batchelor, C., Jha, A., “Pr3+–Doped Fuoride Glass for a 589 nm Fibre Laser”, Journal of Luminescence 91, 2000, 133–138.
  • [60] Auch, M. D. J., Soo, O. K., Ewald, G., Soo–Jin, C., “Ultrathin Glass for Flexible OLED Application”, Thin Solid Films 417, 2002, 47–50.
  • [61] Purvis, G., “Nanotechnology, Standards and Tools Benefit Smart Materials”, Smart Materials Bulletin, 2002, 9–12.
  • [62] Cui, H. N., Costa, M. F., Teixeira, V., Porqueras, I., Bertran, E., “Electrochromic Coatings for Smart Windows”, Surface Science 532–535, 2003, 1127–1131.
  • [63] Jonsson, A. K., Furlani, M., Niklasson, G. A., “Isothermal Transient Ionic Current Study of Laminated Electrochromic Devices for Smart Window Applications”, Solar Energy Materials & Solar Cells 84, 2004, 361–367.
  • [64] Nitz, P., Hartwig, H., “Solar Control with Thermothropic Layers”, Solar Energy 79, 2005, 573–582.
  • [65] Syrrakou, E., Papaefthiminou, S., Yianoulis, P., “Eco-Efficiency Evaluation of a Smart Window Prototype”, Science of the Total Environment 359, 2006, 267–282.
  • [66] Ujiie, S., Furukawa, H., Yano, Y., Mori, A., “Oriented Glass States Formed by Ionic Liquid-Liquid Crystals”, Thin Solid Film 509, 2006, 185–188.
  • [67] Karuppasamy, A., Subrahmanyam, A., “Studies on Electrochromic Smart Windows Based on Titanium Doped WO3 Thin Films”, Thin Solid Film 516, 2007, 175–178.
  • [68] Story, C., Lu, K., Reynolds, Jr., W. T., Brown, D., “Shape Memory Alloy/Glass Composite Seal for Solid Oxide Electrolyzer and Fuel Cells”, International Journal of Hyrdogen Energy 33, 2008, 3970–3975.
  • [69] Tajima, K., Yamada, Y., Bao, S., Okada, M., Yoshimura, K., “Solid Electrolyte of Tantalum Oxide Thin Film Deposited by Reactive DC and RF Magnetron Sputtering for All–Solid–State Switchable Mirror Glass”, Solar Energy Materials & Solar Celles 92, 2008, 120–125.
  • [70] Cupelli, D., Nicoletta, F. P., Manfredi, S., Vivacqua, M., Formoso, P., De Filpo, G., Chidichimo, G., “Self-Adjusting Smart Windows Based on Polymer-Dispersed Liquid Crystals”, Solar Energy Materials & Solar Cells 93, 2009, 2008–2012.
  • [71] Matthews, S., De Bossher, W., Blondeel, A., Van Holsbeke, J., Delrue, H., “New Target Materials for Innovative Applications on Glass”, Vacuum 83, 2009, 518–521.
  • [72] Couto, D. S., Hong, Z., Mano, J. F., “Development of Bioactive and Biodegradable Chitosan-Based Injectable Systems Containing Bioactive Glass Nanoparticles”, Acta Biomaterialia 5, 2009, 115–123.
  • [73] Gu, Y., Dhanarajan, A. P., Hruby, S. L., Baldi, A., Ziaie, B., Siegel, R. A., “An Interpenetrating Glass–Thermosensitive Hydrogel Construct Gate Flow Control Thermofluidic Oscillations”, Sensors and Actuators B 138, 2009, 631–636.
  • [74] Piccolo, A., “Thermal Performance of an Electrochromic Smart Window Tested in an Environmental Test Cell”, Energy and Buildings 42, 2010, 1409–1417.
  • [75] Beatens, R., Jelle, B. P., Gustavsen, A., “Properties, Requirements and Possibilities of Smart Windows for Dynamic Daylight and Solar Energy Control in Buildings: A State–of–the–Art Review”, Solar Energy Materials & Solar Cells 94, 2010, 87–105.
  • [76] Jonsson, A., Roos, A., “Evaluation of Control Strategies for Different Smart Window Combinations Using Computer Simulations”, Solar Energy 84, 2010, 1–9.
  • [77] Chen, H.–J. Shu, C.–M., Chiang, C.–M., Lee, S.–K., “The Indoor Thermal Research of the HCRI–BIPV Smart Window”, Energy Procedia 12, 2011, 593–600.
  • [78] Kiri, P., Warwick, M. E. A., Ridley, I., Binions, R., “Fluorine Doped Vanadium Dioxide Thin Films for Smart Windows”, Thin Solid Films 520, 2011, 1363–1366.
  • [79] Chen, Z., Gao, Y., Kang, L., Du, J., Zhang, Z., Luo, H., Miao, H., Tan, G., “VO2–Based Double–Layered Films for Smart Windows: Optical Design, All–Solution Preparation and Improved Properties”, Solar Energy Materials & Solar Cells 95, 2011, 2677–2684.
  • [80] Kalagi, S. S., Mali, S. S., Dalavi, D. S., Inamdar, A., I., Im, H., Patil, P S., “Limitations of Dual and Complementary Inorganic–Organic Electrochromic Device for Smart Window Application and Its Colorimetric Analysis”, Synthetic Metals 161, 2011, 1105–1112.
  • [81] Tajima, K., Yamada, Y., Okada, M., Yoshimura, K., “Polyvinyl Chloride Seal Layer for Improving the Durability of Electrochromic Switchable Mirrors Based on Mg–Ni Thin Film”, Thin Solid Films 519, 2011, 8114–8118.
  • [82] Huang, L.–M., Hu, C.–W., Liu, H.–C., Hsu, C.–Y., Chen, C.–H., Ho, K.–C., “Photovoltaic Electrochromic Device for Solar Cell Module and Self–Powered Smart Glass Applications”, Solar Energy Materials & Solar Cells 99, 2012, 154–159.
  • [83] Dussault, J.–M., Gosselin, L., Galstian, T., “Integration of Smart Windows into Building Design for Reduction of Yearly Overall Energy Consumption and Peak Loads”, Solar Energy 86, 2012, 154–159.
  • [84] Andrade, L. H. C., Lima, S. M., Baesso, M. L., Novatski, A., Rohling, J. H., Guyot, Y., Boulon, G., “Tunable Light Emission and Similarities with Garnet Structure of Ce–Doped LSCAS Glass for White–Light Device”, Journal of Alloys and Compounds 510, 2012, 54–59.
  • [85] Chen, C. C., Jheng, W. D., “Logotype Selective Electrochromic Glass Display”, Ceramics International 38, 2012, 5835–5842.
  • [86] Chen, X., Lv, Q., Yi, X., “Smart Window Coating Based on Nanostructured VO2 Thin Film”, Optik 123, 2012, 1187–1189.
  • [87] Gesheva, K. A., Ivanova, T. M., Bodurov, G., “Transition Metal Oxide Films: Technology and “Smart Windows” Electrochromic Device Performance”, Progress in Organic Coatings 74, 2012, 235–239.
  • [88] Huang, L.–M., Kung, C.–P., Hu, C.–W., Peng, C.–Y., Liu, H.–C., “Tunable Photovoltaic Electrochromic Device and Module”, Solar Energy Materials & Solar Cells 107, 2012, 390–395.
  • [89] Rodrigues, L. C., Silva, M. M., Smith, M. J., Gonçalves, A., Fortunato, E., “Poly (ε–Caprolactone)/Siloxane Biohybrids with Application in “Smart Window”, Synthetic Metals 161, 2012, 390–395.
  • [90] Sbar, N. L., Podbelski, L., Yang, H. M., Pease, B., “Electrochromic Dynamic Windows for Office Buildings”, International Journal of Sustainable Built Environment 1, 2012, 125–139.
  • [91] Ye, H., Meng, X., Xu, B., “Theoretical Discussions of Perfect Window, Ideal Near Infrared Solar Spectrum Regulating Window and Current Thermochromic Window”, Energy and Buildings 49, 2012, 164–172.
  • [92] Kaya, Yeşilay, S., Karasu, B., “Process Parameters Determination of Phosphorescent Pigment Added, Frit–Based Wall Tiles Vetrosa Decorations”, Ceramics International, Vol. 38, Issue 4, 2012, 2757–2766.
  • [93] Kaya, Yeşilay, S. and Karasu, B., “Glass and Ceramics with Phosphorescent Ability”, Ceramics Technical, No: 34, 2012, 94–99.
  • [94] El Kazazz, H., Karacaoğlu, E., Karasu, B. and Ağatekin, M., “Production of Pr6O11–Doped SrAl2O4:Eu2+, Dy3+, Y3+ Yellowish–Green Phosphors and Their Usage in Artistic Glasses”, Anadolu University, Journal of Science and Technology A, Applied Sciences and Engineering, Vol. 13, No: 2, 2012, 81–87.
  • [95] Ko, Y. G., Karng, S. W., Lee, G. S., Choi, U. S., “Smart Glass Substrate as Colorimetric Chemosensor for Highly Selective Detection of Silver Ion”, Sensors and Actuators B 177, 2013, 1107–1114.
  • [96] You, H., Steckl, A., J., “Versatile Electrowetting Arrays for Smart Window Applications-from Small to Large Pixels on Fixed and Flexible Substrates”, Solar Energy Materials & Solar Cells 117, 2013, 544–548.
  • [97] Wuryandari, A., I., Yudi Satria Gondokaryono, Y. S., Widnyana, I. M. Y., “Design and Implementation of Driver Main Computer and Head Up Display on Smart Car”, Procedia Technology 11, 2013, 1041–1047.
  • [98] Cannavale, A., Fiorito, F., Resta, D., Gigli, G., “Visual Confort Assessment of Smart Photovoltachromic Windows”, Energy and Buildings 65, 2013, 137–145.
  • [99] ‘Biologically Inspired ‘Smart Materials’”, Advanced Drug Delivery Reviews 65, 2013, 403–404.
  • [100] Tonooka, K., Kikuchi, N., “Super–Hydrophilic and Solar–Heat–Reflective Coatings for Smart Windows”, Thin Solid Films 532, 2013, 147–150.
  • [101] Li, R., Ji, S., Li, Y., Gao, Y., Luo, H., Jin, P., “Synthesis and Characterization of Plate-Like VO2(M)@SiO2 Nanoparticles and Their Application to Smart Window”, Materials Letters 110, 2013, 241–244.
  • [102] Bodurov, G., Ivanova, T., Gesheva, K., “Technology and Application of Transition Metal Oxide of W-V-O as Functional Layers and NiO Thin Films as Counter Electrode Material in Electrochromic “Smart Windows”, Physics Procedia 46 , 2013, 149–158.
  • [103] Papageorgas, P., Piromalis, D., Antonakoglou, K., Vokas, G., Tseles, D. and K. G. Arvanitis, K. G., “Smart Solar Panels: In-situ Monitoring of Photovoltaic Panels Based on Wired and Wireless Sensor Networks”, Energy Procedia 36, 2013, 535–545.
  • [104] Ma, D., Chang, C.–C., Hung, S.–W., “The Selection of Technology for Late–Starters: A Case Study of the Energy–Smart Photovoltaic Industry”, Economic Modelling 35, 2013, 10–20.
  • [105] Tajima, K., Ikeyama, M., Nakao, S., Yamada, Y., Yoshimura, K., “Si Incorporated Diamond–Like Carbon Film–Coated Electrochromic Switchable Mirror Glass for High Environmental Durability”, Ceramics International 39, 2013, 8273–8278.
  • [106] Souza, W. S., Domingues, R. O., Bueno, L. A., da Costa, E. B., Gouveia–Neto, A. S., “Color Tunable Green–Yellow–Orange–Red Er3+/Eu3+–Codoped PbGeO3:PbF2:CdF2 Glass Phosphor for Application in White LED Technology”, Journal of Luminescence 144, 2013, 87–90.
  • [107] Carvalho, S. M., Oliveira, A. A. R., Lemos, E. M. F. and Pereira, M. M., “Bioactive Glass Nanoparticles for Periodontal Regeneration and Applications in Dentistry”, Chapter 15 in Nanobiomaterials in Clinical Dentistry, 2013, 299–322.
  • [108] Lizin, S., Leroy, J., Delvenne, C., Dijk, M., De Schepper, E., Van Passel, S., “A Patent Landscape Analysis for Organic Photovoltaic Solar Cells: Identifying the Technology’s Development Phase”, Renewable Energy 57, 2013, 5–11.
  • [109] Montemor, M. F., “Functional and Smart Coatings for Corrosion Protection: A Review of Recent Advances”, Surface & Coatings Technology 258, 2014, 17–37.
  • [110] Yi, X., Su, K., Schlam, E., Levy, R. A., “Electrostatic Flexible Film Based Smart Window: Optical Design, Performanceand Residual Charge Investigation”, Solar Energy 110, 2014, 667–672.
  • [111] Ramadan, R., Kamal, H., Hashem, H. M., Abdel–Hady, K., “Gelatin–Based Solid Electrolyte Releasing Li+ for Smart Window Applications”, Solar Energy Materials & Solar Cells 127, 2014, 147–156.
  • [112] Skaff, M. C., Gosselin, L., “Summer Performance of Ventilated Windows with Absorbing or Smart Glazings”, Solar Energy 110, 2014, 667–672.
  • [113] Madida, I. G., Simo, A., Sone, B., Maity, A., Kana, J. B. K., Gibaud, A., Merad, G., Thema, F. T., Maaza, M., “Submicronic VO2-PVP Composites Coatings for Smart Windows Application and Solar Heat Management”, Solar Energy 107, 2014, 758–769.
  • [114] Kontziampasis, D., Boulousis, G., Smyrnakis, A., Ellinas, K., Tserepi, A., Gogolides, E., “Biomimetic, Antireflective, Superhydrophobic and Oleophobik PMMA and PMMA-Coated Glass Surfaces Fabricated by Plasma Processing”, Microelectronic Engineering 121, 2014, 33–38.
  • [115] More, A. J., Patil, R. S., Dalavi, D. S., Mali, S. S., Hong, C. K., Gang, M. G., Kim, J. H., Patil, P. S., “Electrodeposition of Nano-Granular Tungsten Oxide Thin Films for Smart Window Application”, Materials Letters 134, 2014, 298–301.
  • [116] Chu, X., Tao, H., Liu, Y., Ni, J., Bao, J., Zhao, X., “VO2/AZO Double–Layer Films with Thermochromism and Low–Emissivity for Smart Window Applications”, Journal of Non–Crystalline Solids 383, 2014, 121–125.
  • [117] Meher, S. R., Balakrishnan, L., “Sol–Gel Derived Nanocrystalline TiO2 Thin Films: A Promising Candidate for Self–Cleaning Smart Window Applications”, Materials Science in Semiconductor Processing 26, 2014, 251–258.
  • [118] Lemarchand, P., Doran, J., Norton, B., “Smart Switchable Technologies for Glazing and Photovoltaic Applications”, Energy Procedia 57, 2014, 1878–1887.
  • [119] Jiang, M., Bao, S., Cao, X., Li, Y., Li, S., Zhou, H., Luo, H., Jin, P., “Improved Luminous Transmittance and Diminished Yellow Color in VO2 Energy Efficient Smart Thin Films by Zn Doping”, Ceramics International 40, 2014, 6331–6334.
  • [120] Fernandes, M., Freitas, V. T., Pereira, S., Fortunato, E., Ferreira, R .A. S., Carlos, L. D., R. Rego, R., de Zea Bermudez, V., “Green Li+– and Er3+–Doped Poly(ε–Caprolactone)/Siloxane Biohybrid Electrolytes for Smart Electrochromic Windows”, Solar Energy Materials & Solar Cells 123, 2014, 203–210.
  • [121] Ostendorp, M. –C., Lenk, J. C., Lüdtke, A., “Smart Glasses to Support Maritime Pilots in Harbor Maneuvers”, Procedia Manufacturing 3, 2015, 2840–2847.
  • [122] Kawai, J., Mitsuhara, H., Shishibori, M., “Tsunami Evacuation Drill System Using Smart Glasses”, Procedia Computer Science 72, 2015, 329–336.
  • [123] Huang, H., Ng, M., Wu, Y., Kong, L., “Solvothermal Synthesis of Sb:SnO2 Nanoparticles and IR Shielding for Smart Glass”, Materials and Design 88, 2015, 384–389.
  • [124] Zakirullin, R. S., Letuta, S. N., “A Smart Window for Angular Selective Filtering Solar Radiation”, Solar Energy 120, 2015, 585–592.
  • [125] Leinberg, S., Kisand, V., Šutka, A., Saal, K., Löhmus, R., Joost, U., Timusk, M., Nŏmmiste, E., “Switchable Optical Transmittance of TiO2 Submicron–Diameter Wire Suspension–Based “Smart Window Device”, Optical Materials 46, 2015, 418–422.
  • [126] Soltani, M., Kaye, A. B., “Properties and Applications of Thermochromic Vanadium Dioxide Smart Coatings”, Chapter 13 in Intelligent Coatings for Corrosion Control, 2015, 461–490.
  • [127] Huang, B.–R., Lin, T.–C., Liu, Y.–M., “WO3/TiO2 Core–Shell Nanostructure for High Performance Energy–Saving Smart Windows”, Solar Energy Materials & Solar Cells 133, 2015, 32–38.
  • [128] Zheng, J., Bao, S., Jin, P., “TiO2(R)/VO2(M)/TiO2(A) Multilayer Film as Smart Window: Combination of Energy–Saving, Antifogging and Self–Cleaning Functions”, Nano Energy 11, 2015, 136–145.
  • [129] Jelle, B. P., “Solar Radiation Glazing Factors for Window Panes, Glass Structures and Electrochromic Windows in Buildings: Measurement and Calculations”, Solar Energy Materials & Solar Cells 116, 2015, 291–323.
  • [130] Ajaji, Y., André, P., “Thermal Comfort and Visual Comfort in an Office Building Equipped with Smart Electrochromic Glazing: An Experimental Study”, Energy Procedia 78, 2015, 2464– 2469.
  • [131] Da Silva Jr, C. M., Bueno, L. A., Gouveia–Neto, A. S., “Er3+/Sm3+– and Tb3+/Sm3+–Doped Glass Phosphors for Application in Warm White Light–Emitting Diode”, Journal of Non–Crystalline Solids 410, 2015, 151–154.
  • [132] Choi, Y. S., Yun, J. U., Park, S. E., “Flat Panel Display Glass: Current Status and Future”, Journal of Non–Crystalline Solids 431, 2016, 2–7.
  • [133] Patil, R. A., Devan, R. S., Liou, Y., Ma, Y.–R., “Efficient Electrochromic Smart Windows of One–Dimentional Pure Brookite TiO2 Nanoneedles”, Solar Energy Materials & Solar Cells 147, 2016, 240–245.
  • [134] Connelly, K., Wu, Y., Chen, J., Lei, Y., “Design and Development of a Reflective Membrane for a Novel Building Integrated Concentrating Photovoltaic (BICPV) ‘Smart Window’ System”, Applied Energy 182, 2016, 331–339.
  • [135] Ferraris, S. and Perero, S., “Smart and Composite Inorganic Coatings Obtained by Sputtering: A Promising Solution for Numerous Application Fields”, Chapter 2 in Smart Composite Coatings and Membranes, 2016, 33–60.
  • [136] Karmakar, B., “Functionality of Reversible Glass Nanocomposites and Their Applications”, Chapter 11 in Glass Nanocomposites, 2016, 265–278.
  • [137] Swain, B., Mishra, C., Hong, H. S., Cho, S.–S., “Benefication and Recovery of Indium from Liquid–Crystal–Display Glass by Hydrometallurgy”, Waste Management, 2016, 265–278.
  • [138] Cuce, E., “Toward Multi–Functional PV Glazing Technologies in Low/Zero Carbon Buildings: Heat Insulation Solar Glass–Latest Development and Future Prospects”, Renewable and Sustainable Energy Reviews 60, 2016, 1286–1301.
  • [139] Zhang, D.–P., Zhu, M.–D., Liu, Y., Yang, K., Liang, G.–X., Zheng, Z.–H., Cai, X.–M., Fan, P., “High Performance VO2 Thin Films Growth by DC Magnetron Sputtering at Low Temperature for Smart Energy Efficient Window Application”, Journal of Alloys and Compounds 659, 2016, 198–202.
  • [140] Fazel, A., Izadi, A., Azizi, M., “Low–Cost Solar Thermal Based Adaptive Window: Combination of Energy–Saving and Self–Adjustment in Buildings”, Solar Energy 133, 2016, 274–282.
  • [141] De, S., Singh, J., Prakash, B., Chakraverty, S., Ghosh, K., “Graphene/Nanoporous–Silica Heterostructure Based Hdrophobic Antireflective Coating”, Materials Today Communications 8, 2016, 41–45.
  • [142] Hong, T., Jeong, K., Koo, C., Kim, J., Lee, M., “A Preliminary Study for Determining Photovoltaic Panel for a Smart Photovoltaic Blind Considering Usability and Constructability Issues”, Energy Procedia 88, 2016, 363–367.
  • [143] Chou, H.–T., Chen, Y.–C., Lee, C.–Y., Chang, H.–Y., Tai, N.–H., “Switchable Transparency of Dual–Controlled Smart Glass Prepared with Hydrogel–Containing Graphene Oxide for Energy Efficiency”, Solar Energy Materials & Solar Cells 166, 2017, 45–51.
  • [144] Basoglu, N., Ok, A. E., Daim, T. U., “What Will It Take to Adopt Smart Glasses: A Consumer Choice Based Review?”, Technology in Society 50, 2017, 50–56.
  • [145] Mohamed, A. S. Y., “Smart Materials Innovative Technologies in Architecture; Towards Innovative Design Paradigm”, Energy Procedia 115, 2017, 139–154.
  • [146] Lee, K. Y., Hong, J., Chung, S. K., “Smart Self–Cleaning Lens Cover for Miniature Cameras of Automobiles”, Sensors and Actuators B 239, 2017, 754–758.
  • [147] Jung, D., Choi, W., Park, J.–Y., Kim, K. B., Lee, N., Seo, Y., Kim, H. S., Kong, N. K., “Inorganic Gel and Liquid Crystal Based Smart Window Using Silica Sol–Gel Process”, Solar Energy Materials & Solar Cells 159, 2017, 488–495.
  • [148] Dabrowski, R., Dziaduszek, J., Bozetka, J., Piecek, W., Mazur, R., Chrunik, M., Perkowski, P., Mrukiewicz, M., Żurowska, M., Weglowska, D., “Fluorinated Smectics–New Liquid Crystalline Medium for Smart Windows and Memory Displays”, Journal of Molecular Liquids, https://doi.org/10.1016/j.molliq.2017.12.068, 2017.
  • [149] Facchinetti, T., Benetti, G., Tramonte, A., Carraro, L., Rubini, A., Benedetti, M., Randone, E. M., Simonetta, M., Capelli, G., Keränen, K., Ylisaukko-Oja, A., Consoli, A., Ayadi, J., Giuliani, G., “Luminous Tiles: A New Building Device for Smart Architectures and Applications”, Microprocessors and Microsystems 51, 2017, 198–208.
  • [150] Rai, W., Tiwari, N., Rajput, M., Joshi, S. M., Nguyen, A. C., Wathews, N., “Reversible Electrochemical Silver Deposition over Large Areas for Smart Windows and Information Display”, Electrochimica Acta 255, 2017, 63–71.
  • [151] Sun, G. Y., Xun Cao, X., Zhoua, H., Bao, S., Ping Jin, P., “A Novel Multifunctional Thermochromic Structure with Skin Comfort Design for Smart Window Application”, Solar Energy Materials & Solar Cells 159, 2017, 553–559.
  • [152] Seyfouri, M. M., Binions, R., “Sol–Gel Approaches to Thermochromic Vanadium Dioxide Coating for Smart Glaze Application”, Solar Energy Materials & Solar Cells 159, 2017, 52–65.
  • [153] Tong, K., Li, R., Zhu, J., Yao, H., Zhou, H., Zeng, X., Ji, S., Jin, P., “Preparation of VO2/Al-O Core–Shell Structure with Enhanced Weathering Resistance for Smart Window”, Ceramics International, 2017, 52–65.
  • [154] Ramadan, R., Elshorbagy, M. H., Kamal, H., Hashem, H. M., Abdelhady, K., “Preparation and Characterization of Protonic Solid Electrolyte Applied to a Smart Window Device with High Optical Modulation”, Optik 135, 2017, 85–97.
  • [155] Ulrich, S., Szyszko, C., Jung, S., Vergöhl, M., “Electrochromic Properties of Mixed Oxide Based on Titanium and Niobium for Smart Window Applications”, Surface & Coating Technology 314, 2017, 41–44.
  • [156] Allen, K., Connelly, K., Rutherford, P., Wu, Y., “Smart Windows–Dynamic Control of Building Energy Performance”, Energy and Buildings 139, 2017, 535–546.
  • [157] Liang, Z., Zhao, L., Meng, W., Zhong, C., Wei, S., Dong, B., Xu, Z., Wan, L., Wang, S., “Tungsten–Doped Vanadium Dioxide Thin Films as Smart Windows with Self–Cleaning and Energy–Saving Functions”, Journal of Alloys and Compounds 694, 2017, 124–131.
  • [158] Lee, W. C., Choi, E. C., Boo, J.–H., Hong, B., “A Study of Characterization of Nano–Porous NiO Thin Film to Improve Electrical and Optical Properties for Application to Automative Glass”, Thin Solid Films 641, 2017, 28–33.
  • [159] Gün, Y., Taşçı, E., Pekkan, K., Karasu, B., “Farklı Ticari Firitlerin Değişen Sıcaklık Aralıklarında Fosforesans Işımaya Etkisi”, Uluslararası Hakemli Mühendislik ve Fen Bilimleri Dergisi, Sayı: 10, 2017, 42–58.
  • [160] Pekkan, K., Gün, Y., Kaymak, K., Taşçı, E., Karasu, B., “Farklı Renk Veren Fosfor Işıl Pigmentler Açısından Düşük Sıcaklık Sır Bileşimlerinin Belirlenip Çini Bünyelerde Uygulanması”, Şişe Cam Teknik Bülten, Cilt: 46, Sayı: 3 (232), 2017, 20–27.
  • [161] Karasu, B., Yanar, A. O., Koçak, A. and Kısacık, Ö., “Bioactive Glasses”, El–Cezeri Journal of Science and Engineering (EJCSE), Vol. 4, No: 3, 2017, 436–471.
  • [162] Hu, J., Yu, X. (B.), “Optical Properties of Smart Thermochromic Film by Computational Optical Model”, Optik 157, 2018, 1–10.
  • [163] Casini, M., “Active Dynamic Windows for Buildings: A Review”, Renewable Energy 119, 2018, 923–934.
  • [164] Long, S., Cao, X., Sun, G., Li, N., Chang, T., Shao, Z., Jin, P., “Effects of V2O3 Buffer Layers on Sputtered VO2 Smart Windows: Improved Thermochromic Properties, Tunable Width of Hysteresis Loops and Enhanced Durability”, Applied Surface Science, doi: https://doi.org/10.1016/j.apsusc.2018.02.083, 2018.
  • [165] Lodi, T. A., Sandrini, M., Medina, A. N., Barboza, M. J., Pedrochi, F., Steimacher, A., “Dy:Eu Doped CaBAl Glasses for White Light Applications”, Optical Materials 76, 2018, 231–236.
  • [166] Ghosh, A., Mallick, T. K., “Evaluation of Colour Properties due to Switching Behaviour of PDLC Glazing for Adaptive Building Integration”, Renewable Energy 120, 2018, 126–133.
  • [167] Karasu, B., Sarıcaoğlu, B., “Cam Yüzey Kaplama Teknolojileri”, Seramik Türkiye Bilim Teknik ve Endüstri Dergisi, Seramik Federasyonu, Mart 2018 (basımda).
There are 167 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Makaleler
Authors

Cem Açıksarı This is me

Bekir Karasu This is me

Publication Date May 31, 2018
Submission Date February 22, 2018
Acceptance Date April 24, 2018
Published in Issue Year 2018 Volume: 5 Issue: 2

Cite

IEEE C. Açıksarı and B. Karasu, “Akıllı Camlar ve Teknolojik Gelişimleri”, El-Cezeri Journal of Science and Engineering, vol. 5, no. 2, pp. 437–457, 2018, doi: 10.31202/ecjse.397717.

Cited By


Otomotiv Sektöründe Cam
El-Cezeri Fen ve Mühendislik Dergisi
Mecit KARADAĞ
https://doi.org/10.31202/ecjse.508360
Creative Commons License El-Cezeri is licensed to the public under a Creative Commons Attribution 4.0 license.
88x31.png