Bu çalışmanın amacı; Ergiterek Yığma ile Modelleme tekniğiyle (FDM-Fused Deposition Modeling), Polilaktik Asit (PLA-PolylacticAcid) malzeme kullanılarak oluşturulan dolgu geometrisinin mukavemete olan etkisinin analiz edilmesi ve kıyaslanmasıdır. Kıyaslama ve analiz için; yaygın olarak kullanılmasından dolayı doğrusal (linear), altıgen (hexagonal) ve elmas (diamond) tipi geometriler seçilmiştir. Çekme testi numuneleri Bilgisayar Destekli Tasarım (CAD-ComputerAided Design) metotları kullanarak hazırlanmış ve Bilgisayar Destekli Mühendislik (CAE-Computer Aided Engineering) yöntemleriyle analiz edilmiştir. Çekme testi simülasyonu için tüm numuneler %50 doluluk oranıyla hazırlanmıştır. Örneklerin kabuğu (shell) 0,8 mm kalınlıkta oluşturulmuştur. 3B baskı numuneleri, doğrusal, altıgen ve elmas tipi dolgu türleriyle tasarlanmış ve üretilmiştir. Analiz ve baskı süresini azaltmak için katman yükseklikleri 0,4 mm olarak seçilmiştir. Ayrıca, baskı ürünlerinden daha iyi sonuçlar alabilmek için piramit olarak adlandırılan yeni bir geometrik dolgu tipi tasarlanmıştır. Gerçekçi çekme testi simülasyonu oluşturmak için numunelere 8 adımda, 0,04 mm değerinde düğümsel (nodal) yer değiştirmeler uygulanmıştır. Mukavemete etkisi olan anahtar parametreler simülasyon sonuçlarından elde edilmiştir.Elde edilen sonuçlar; oluşan maksimum gerilimin, dökme PLA ile oluşturulan numune için 7,6 ile 68,6 MPa aralığında olduğu halde, elmas dolgulu numune için 112,3 MPa'ya kadar yükseldiğini göstermiştir. Diğer bir önemli nokta olarak, elmas dolgulu numunenin stres değeri, beşinci aşamada ham malzemenin son çekme mukavemetine (UTS-Ultimate Tensile Strength) yakın olan 70,7 MPa değerine ulaşmış olmasıdır. Numunelerin %50 doluluk oranıyla üretilmesinden dolayı UTS değerleri 35 MPa olarak kabul edilerek simülasyonun üçüncü veya dördüncü basamaklarında kırıldığı sonucuna varılabilir. Oluşturulan farklı dolgu geometrilerinde; yaklaşık 2 ile 12 MPa aralıktaki gerilme farkları birinci ve beşinci adımlar arasında gözlemlenmiştir. En yüksek gerilim elmas geometri için oluşmuştur. Bu durum en düşük yoğunluk ve geometriye bağlı olarak açıklanabilir. Sonuç olarak, yapısal mukavemet değerlendirmesi (Altıgen> Doğrusal> Elmas) şeklinde elde edilmiştir.
[1] Lanzotti, A., Grasso, M., Staiano, G., Martorelli, M. The impact of process parameters on mechanical properties of parts fabricated in PLA with an open-source 3-D printer. Rapid Prototyping Journal.2015;21(5), 604-617.
[2] Jacobs, P. F. Rapid prototyping & manufacturing: fundamentals of stereolithography. Society of Manufacturing Engineers.1992.
[3] Jacobs, P. F. Stereolithography and other RP&M technologies: from rapid prototyping to rapid tooling. Society of Manufacturing Engineers. 1995.
[4] Huang, S. H., Liu, P., Mokasdar, A., Hou, L. Additive manufacturing and its societal impact: a literature review. The International Journal of Advanced Manufacturing Technology.2013; 67(5-8), 1191-1203.
[5] Melenka, G. W., Schofield, J. S., Dawson, M. R., Carey, J. P. Evaluation of dimensional accuracy and material properties of the MakerBot 3D desktop printer. Rapid Prototyping Journal. 2015; 21(5), 618-627.
[6] Leigh, S. J., Bradley, R. J., Purssell, C. P., Billson, D. R., Hutchins, D. A. A simple, low-cost conductive composite material for 3D printing of electronic sensors. PloS one.2012; 7(11), e49365.
[7] Melchels, F. P., Feijen, J.,Grijpma, D. W. A review on stereolithography and its applications in biomedical engineering. Biomaterials. 2010;31(24), 6121-6130.
[8] Mäkitie, A. A., Korpela, J., Elomaa, L., et. al. Novel additive manufactured scaffolds for tissue engineered trachea research. Actaoto-laryngologica. 2013;133(4), 412-417.
[9] Chua, C. K., Leong, K. F., Lim, C. S. Rapid prototyping: principles and applications (Vol. 1). World Scientific.2003.
[10] Novakova-Marcincinova, L., Novak-Marcincin, J. Verification of mechanical properties of abs materials used in FDM rapid prototyping technology. Proceedings in manufacturing systems. 2003; 8(2), 87-92.
[11] Williams, C. B., Cochran, J. K., Rosen, D. W. Additive manufacturing of metallic cellular materials via three-dimensional printing. The International Journal of Advanced Manufacturing Technology.2011;53(1-4), 231-239.
[12] Fernandez-Vicente, M., Calle, W., Ferrandiz, S., Conejero, A. Effect of infill parameters on tensile mechanical behavior in desktop 3D printing. 3D printing and additive manufacturing. 2016; 3(3), 183-192.
[13] Tymrak, B. M., Kreiger, M., Pearce, J. M. Mechanical properties of components fabricated with open-source 3-D printers under realistic environmental conditions. Materials & Design. 2016; 58, 242-246.
[14] Rankouhi, B., Javadpour, S., Delfanian, F., Letcher, T. Failure analysis and mechanical characterization of 3D printed ABS with respect to layer thickness and orientation. Journal of Failure Analysis and Prevention. 2016; 16(3), 467-481.
[15] Lanzotti, A., Martorelli, M.,Staiano, G. Understanding process parameter effects of reprap open-source three-dimensional printers through a design of experiments approach. Journal of Manufacturing Science and Engineering. 2015;137(1), 011017.
[16] Afrose, M. F., Masood, S. H., Iovenitti, P., Nikzad, M., Sarsi, I. Effects of part build orientations on fatigue behaviour of FDM-processed PLA material. Progress in Additive Manufacturing. 2016; 1(1-2), 21-28.
[17] MakerBot; MakerBotZ18 Desktop 3D Printer User Manual, MakerBot. 2018.
[18] Farah, S., Anderson, D. G., Langer, R. Physical and mechanical properties of PLA, and their functions in widespread applications—A comprehensive review. Advanced drug delivery reviews. 2016;107, 367-392.
[19] Yang, S. L., Wu, Z. H., Yang, W., Yang, M. B. Thermal and mechanical properties of chemical crosslinked polylactide (PLA). Polymer Testing.2008; 27(8), 957-963.
The Effect of Three Dimensional Printed Infill Pattern on Structural Strength
Year 2018,
Volume: 5 Issue: 3, 785 - 796, 30.09.2018
The aim of this study is to analyze and obtain the impact of the infill pattern on structural strength for 3D printed objects using (Polylactic Acid) PLA material via Fused Deposition Modeling Technique (FDM). Linear, hexagonal and diamond types of infill patterns were selected to investigate as they are the most common for FDM. The tensile test specimens were created and prepared for simulation through Computer Aided Design (CAD) and analyzed with Computer Aided Engineering (CAE) methods. For the tensile test simulation; all of the specimens were prepared with 50% infill density. Shell of the specimens were created with the thickness of 0.8 mm, the structure was designed and supported with linear, diamond and hexagonal types of infill patterns. Layer heights were selected as 0.4 mm to decrease the analysis and printing time. A new type of infill pattern named as pyramid was also proposed and developed to obtain better results from the 3D printed objects. Nodal displacement was applied as 0.04 mm to specimens as 8 steps to create realistic tensile test simulation. For comparison; the key parameters for structural strength and pattern influence were obtained from the simulation results. Obtained results showed that the equivalent maximum stress is in the range between 7.6 to 68.6 MPa for the raw PLA, it is up to 112.3 MPa for diamond. The other significant observation is the stress value for the specimen with diamond infill reached 70.7 MPa that is close to Ultimate Tensile Strength (UTS) of PLA in the fifth step. It can be assumed from the results that specimens with linear, hexagonal and diamond are broken at the third or fourth steps of the tensile simulation as they were created with 50% infill density and their UTS is about 35 MPa. Range from 2 to 12 MPa occurred stress differences can be observed for each pattern between first and fifth steps. The diamond pattern shows the highest values. This can be due to a low density and infill structural shape effect. For the structural strength the patterns can be listed from high to low as Hexagonal > Linear > Diamond.
[1] Lanzotti, A., Grasso, M., Staiano, G., Martorelli, M. The impact of process parameters on mechanical properties of parts fabricated in PLA with an open-source 3-D printer. Rapid Prototyping Journal.2015;21(5), 604-617.
[2] Jacobs, P. F. Rapid prototyping & manufacturing: fundamentals of stereolithography. Society of Manufacturing Engineers.1992.
[3] Jacobs, P. F. Stereolithography and other RP&M technologies: from rapid prototyping to rapid tooling. Society of Manufacturing Engineers. 1995.
[4] Huang, S. H., Liu, P., Mokasdar, A., Hou, L. Additive manufacturing and its societal impact: a literature review. The International Journal of Advanced Manufacturing Technology.2013; 67(5-8), 1191-1203.
[5] Melenka, G. W., Schofield, J. S., Dawson, M. R., Carey, J. P. Evaluation of dimensional accuracy and material properties of the MakerBot 3D desktop printer. Rapid Prototyping Journal. 2015; 21(5), 618-627.
[6] Leigh, S. J., Bradley, R. J., Purssell, C. P., Billson, D. R., Hutchins, D. A. A simple, low-cost conductive composite material for 3D printing of electronic sensors. PloS one.2012; 7(11), e49365.
[7] Melchels, F. P., Feijen, J.,Grijpma, D. W. A review on stereolithography and its applications in biomedical engineering. Biomaterials. 2010;31(24), 6121-6130.
[8] Mäkitie, A. A., Korpela, J., Elomaa, L., et. al. Novel additive manufactured scaffolds for tissue engineered trachea research. Actaoto-laryngologica. 2013;133(4), 412-417.
[9] Chua, C. K., Leong, K. F., Lim, C. S. Rapid prototyping: principles and applications (Vol. 1). World Scientific.2003.
[10] Novakova-Marcincinova, L., Novak-Marcincin, J. Verification of mechanical properties of abs materials used in FDM rapid prototyping technology. Proceedings in manufacturing systems. 2003; 8(2), 87-92.
[11] Williams, C. B., Cochran, J. K., Rosen, D. W. Additive manufacturing of metallic cellular materials via three-dimensional printing. The International Journal of Advanced Manufacturing Technology.2011;53(1-4), 231-239.
[12] Fernandez-Vicente, M., Calle, W., Ferrandiz, S., Conejero, A. Effect of infill parameters on tensile mechanical behavior in desktop 3D printing. 3D printing and additive manufacturing. 2016; 3(3), 183-192.
[13] Tymrak, B. M., Kreiger, M., Pearce, J. M. Mechanical properties of components fabricated with open-source 3-D printers under realistic environmental conditions. Materials & Design. 2016; 58, 242-246.
[14] Rankouhi, B., Javadpour, S., Delfanian, F., Letcher, T. Failure analysis and mechanical characterization of 3D printed ABS with respect to layer thickness and orientation. Journal of Failure Analysis and Prevention. 2016; 16(3), 467-481.
[15] Lanzotti, A., Martorelli, M.,Staiano, G. Understanding process parameter effects of reprap open-source three-dimensional printers through a design of experiments approach. Journal of Manufacturing Science and Engineering. 2015;137(1), 011017.
[16] Afrose, M. F., Masood, S. H., Iovenitti, P., Nikzad, M., Sarsi, I. Effects of part build orientations on fatigue behaviour of FDM-processed PLA material. Progress in Additive Manufacturing. 2016; 1(1-2), 21-28.
[17] MakerBot; MakerBotZ18 Desktop 3D Printer User Manual, MakerBot. 2018.
[18] Farah, S., Anderson, D. G., Langer, R. Physical and mechanical properties of PLA, and their functions in widespread applications—A comprehensive review. Advanced drug delivery reviews. 2016;107, 367-392.
[19] Yang, S. L., Wu, Z. H., Yang, W., Yang, M. B. Thermal and mechanical properties of chemical crosslinked polylactide (PLA). Polymer Testing.2008; 27(8), 957-963.
P. Demircioğlu, H. S. Sucuoğlu, İ. Böğrekci, and A. Gültekin, “The Effect of Three Dimensional Printed Infill Pattern on Structural Strength”, El-Cezeri Journal of Science and Engineering, vol. 5, no. 3, pp. 785–796, 2018, doi: 10.31202/ecjse.423915.