Karo Üretiminde Kuru ve Islak Yöntemlerin Farklılıkları
Year 2019,
Volume: 6 Issue: 1, 8 - 23, 31.01.2019
Alper Koçak
,
Bekir Karasu
Abstract
Seramik sektörünün büyük bir kısmını oluşturan karo üretiminde farklı
yöntemler kullanılmaktadır. Genellikle üretim ıslak yöntem ile
gerçekleştirilmektedir. Son yıllarda kuru yöntemle üretim de yaygın bir biçimde
kullanılmaya başlamıştır. Her iki yönteminde bir takım avantajları ve
dezavantajları bulunmaktadır. Bu makale kuru ve ıslak yolla karo üretimi
hakkında detaylı bilgi sunmak amacıyla hazırlanmıştır.
References
- [1] http://www.brighthubengineering.com/manufacturing-technology/56841-what-are-ceramic-materials-and-their-uses/ (Access date: 25.03.2018).
- [2] https://sites.google.com/site/mechanicalstuff4u/contents-of-m/manufacturing-technology/engineering-materials-and-their-properties (Access date: 25.03.2018).
- [3] Wang H., Chen Z., Liu L., Ji R., Wang X., “Synthesis of a foam ceramic based on ceramic tile polishing waste using SiC as foaming agent”, Ceramics International, 2018, Vol 44, Issue, 10078-10086.
- [4] http://ceramics.org/learn-about-ceramics/structure-and-properties-of-ceramics (Access date: 25.03.2018).
- [5] http://www.substech.com/dokuwiki/doku.php?id=general_classification_of_ceramics (Access date: 25.03.2018).
- [6] da Silva A. L., Dondi M., Raimondo M., Hotza D., “Photocatalytic ceramic tiles: Challenges and technological solutions”, Journal of the European Ceramic Society, 2018, 1002–1017.
- [7] Carty W. M., Senapati U., "Porcelain–raw materials, processing, phase evolution and mechanical behaviour", J. Amer. Ceram. Soc., 1998, 81, 3–20.
- [8] Schmidt H., "Chemical and physical reactions in heavy clay bodies during firing", Ziegelindustrie International, 1981, 367–397.
- [9] Hanuskovà M., Manfredini T., “Requirements and industrial applications of clays in manufacturing of fast fired sintered unglazed tiles”, Scripta Fac. Sci. Nat. Univ. Masaryk. Brùn., Geology, 1998–99, 28/29, 67–76.
- [10] Hanuskovà M., Manfredini T., Romagnoli M., “Laser particle size analysis: a tool in designing traditional ceramic processes”, Bull. Am. Ceram. Soc., 1999, 78, 11, 73–77.
- [11] Manfredini T., Romagnoli M., Hanuskovà, M., “Wollastonite as sintering-aid for percelain stoneware bodies”, Int. Ceram., 2000, XVIII, 6, 61–67.
- [12] Manfredini T. and Hanuskovà M., “Natural raw materials and inorganic pigments for ceramics”, Proceedings of Seminar on Advanced Ceramics: Technology and Applications, Hanoi (Vietnam), 9 July 2002.
- [13] Hanuskovà M., Manfredini T., “Clays in manufacturing of unglazed porcelainized stoneware”, Int. Ceram., 2002, XX, 5, 99–103.
- [14] Hanuskovà M., “Feldspar–based sintering aids for the ceramic industry”, Int. Ceram., 2003, XXI, 2, 35–39.
- [15] Hanuskovà M., “Zirconium silicate in the ceramic industry”, Int. Ceram., 2003, XXI, 2, 45–49.
- [16] Hanuskovà M., “Unconventional raw materials for structural ceramics", Int. Ceram., 2008, XXVI, 4.
- [17] Cannio M., Hanuskovà M,, “Wollastonite”, Int. Ceram., 2009, XXVII, 5, 43–47.
- [18] Hanuskovà M,, Manfredini T., “Application of natural raw materials in ceramic manufacturing”, Int. Ceram., 2009, XXVIII, 4, 21–33.
- [19] Mukherjee S., “The science of clays. Applications in industry, engineering and environment”, 1st ed. New Delhi, India: Springer, 2013.
- [20] Santos J., Malagón P. and Córdoba E., “Caracterización de arcillas y preparación de pastas cerámicas para la fabricación de tejas y ladrillos en la región de Barichara, Santander”, Dyna., 2011, 78, 167, 53–61.
- [21] Gelves J., Monroy R., Sánchez J. and Ramírez R., “Estudio comparativo de las técnicas de extrusión y prensado como procesos de conformado de productos cerámicos de construcción en el área metropolitana de Cúcuta”, Bol. Soc. Esp. Ceram. Vidr., 2013, 52, 1, 48–54.
- [22] Amorós J., Sánchez E., García J., Sanz V. and Monzó M., “Manual para el control de la calidad de materias primas arcillosas”, 1st ed. Castellón, Spain: Instituto de Tecnología Cerámica, 1998.
- [23] Querol A., “Aplicación del método de Pfefferkorn al control de la plasticidad en pastas de extrusión”, Bol. Soc. Esp. Ceram. Vidr., 1983, 22, 2, 285–289.
- [24] Sandoval F., and González J., “La arcilla ilítica en la obtención de porcelanas de alta resistencia mecánica. I Materias primas”, Bol. Soc. Esp. Ceram. Vidr., 1981, 20, 105–112.
- [25] Coelho C., Roqueiro N. and Hotza D., “Rational mineralogical analysis of ceramics”, Materials Letters, 2002, 52, 6, 394–398.
- [26] Lee V. and Yeh T., “Sintering effects on the development of mechanical properties of fired clay ceramics”, Materials Science and Engineering: A, 2008, 485, 1–2, 5–13.
- [27] And, K., Iwasa M., Kim B. A., Chu M. C. & Sato S., “Effects of crack length, notch root radius and grain size on fracture toughness of fine ceramics”, Fatigue & Fracture of Engineering Materials & Structures, 1993, 16, 995–1006.
- [28] Chou I. A., Chan H. M. and Harmer M. P., “Effect of annealing environment on the crack healing and mechanical behavior of silicon carbide–reinforced alumina nanocomposites”, Journal of the American Ceramic Society, 1998, 81, 1203–1208.
- [29] Osada T., Nakao W., Takahashi K. & Ando K., “Kinetics of self–crack–healing of alumina/silicon carbide composite including oxygen partial pressure effect”, Journal of the American Ceramic Society, 2009, 92, 4, 864–869.
- [30] Kingery W. D., Bowen H. K. and Uhlmann D. R., “Introduction to ceramics”, John Wiley & Sons, Inc., ISBN 0–471–47860–1, 1976.
- [31] John B. Wachtman, Jr., ed., “Ceramic innovations in the 20th century”, The American Ceramic Society, 1999, ISBN 978–1–57498–093–6.
- [32] Johnson K. E., Damoah L., Delali Y. B., David D. A., and Tetteh D., “Development of porous ceramic bodies from kaolin deposits for industrial applications”, Journal of Applied Clay Science, 2012, 31–36.
- [33] Kamseu E., Leonelli C., Boccaccini D. N. and Veronesi P., “Characterisation of porcelain compositions using two china clays from Cameroon”, Ceramics International, 2007, 33, 851–857.
- [34] Mezquita A., Monfor E., Ferrer S., Gabaldón–Estevan D., “How to reduce energy and water consumption in the preparation of raw materials for ceramic tile manufacturing: Dry versus wet route”, Journal of Cleaner Production, 2017, 1566–1570.
- [35]http://metalurji.mu.edu.tr/Icerik/metalurji.mu.edu.tr/Sayfa/Kalemtas_A_Ceramics_Materials_20_11_2013.pdf, Access date: 25.03.2018.
- [36] “Materials & equipment/whitewares: wet vs dry processing: granulation of ceramic powders”, Ceramic Engineering and Science Proceedings, 1989, 10, 1/2, 18–36.
- [37] Nandiyanto A. B. D., Okuyama K., “Progress in developing spray–drying methods for the production of controlled morphology particles: from the nanometer to submicrometer size ranges”, Advenced Powder Technology, 2011, 22, 1–19.
- [38] Mahdjoub H., Roy P., Filiatre C., Bertrand G., Coddet C., “The effect of the slurry formulation upon the morphology of spray–dried yttria stabilised zirconia particles”, J. Eur. Ceram. Soc., 2003, 23, 1637–1648.
- [39] http://www.manfredinieschianchi.com/207-2EN-dry-milling-plants-for-ceramic-industry.html (Access date: 25.03.2018).
- [40] Nasseti G., Timellini G., “Granulation of powders for whitebody ceramic tiles”, Ceram. Eng. Sci. Proc., 1991, 12 [1–2], 328–342.
- [41]https://www.eirichusa.com/images/downloads/downloadspage/Technical%20Docs_White%20Papers/Granulation%20Paper_C_Klein_2012.pdf (Access date: 25.03.2018).
- [42] Nasseti G., Palmonari C., “Dry fine and spray drying and granulation vs wet grinding and spray drying in the preparation of a redware mix for fast–single–fired vitrified tile”, Ceram. Eng. Sci. Proc., 1993, 14 [1–2], 15–24.
- [43] http://www.manfredinieschianchi.com/403-2EN-porcelain-stoneware-obtained-through-dry-processing.htm (Access date: 25.03.2018).
- [44] http://www.manfredinieschianchi.com/404-2EN-calcium-carbonate-inclusions-in-mixtures-for-extruded.htm (Access date: 25.03.2018).
- [45] Koçak A., Karasu B., “General evaluations of nanoparticles” El-Cezerî Journal of Science and Engineering, 2018, 5(1); 191–236.
- [46] Barba A. et al., “Materias primas para la fabricación de soportes de baldosas cerâmicas”, Instituto de Tecnologia Cerâmica – AICE, Castellón 1997, 291.
- [47] Bohlmann C., Luck C., Quirmbach P., “Mecanismos de ação de produtos desfloculantes e dispersantes em pastas cerámicas”, Kéramica, 2000, 241, 78–92.
- [48] Prado A. C. A. et al., “Propriedades reológicas de matérias-primas do Pólo Cerâmico de Santa Gertrudes provenientes da Formação Corumbataí (região de Rio Claro, SP). R. Esc. Minas”, Ouro Preto 60, 2007, 613–620.
- [49] Smiles D. E., “Effects of solutes on claywater interactions: some comments”, Appl. Clay Sci., 2008, 42, 155–162.
- [50] Melchiades F. G., Boschi A. O., “Study of the feasibility of producing porcelain tiles by the dry route”, CFI/Ber. DKG, 2010, 87 [1–2] E43–E49.
- [51] Sampaio V. G., Pinheiro B. C. A., Holanda J. N. F., “Granulação a seco de uma massa cerâmica para grês porcelanato”, Cerâmica, 2007, 53, 295–299.
- [52] Gabaldon–Estevan D., Hekkert M. P., “How does the innovation system in the Spanish tile sector function?”, Bol. Soc. Esp. Ceram. Vidr., 2013, 52 (3), 151–158.
- [53] Gil C., Silvestre D., Piquer J., García–Ten J., Quereda F., Vicente M. J., “Preparation of porcelain tile granulates by more environmentally sustainable processes”. Bol. Soc. Esp. Ceram. Vidr., 2012, 51 (2), 67–74.
- [54] Mezquita A., Monfort E., Zaera V., “Ceramic tiles manufacturing and emission trading scheme: reduction of CO2 emissions, European benchmarking”. Bol. Soc. Esp. Ceram. Vidr., 2009, 48 (4), 211–222 (in Spanish).
- [55] Nassetti G., Maestri G., “Data bank on energy consumption in the ceramic floor and wall tile industry: applications and energy benchmarking”, Cer. Acta, 1999, 11 (4), 25–36.
- [56] Shu Z., Monfort E., García-Ten J., Amoros J. L., Zhou J., Wang Y., “Cleaner, production of porcelain tile powders. Granule and green compact characterization”, Ceram. Int., 2012, 38, 517–526.
- [57] Varsos D., Nasseti G., Sikaldis C., “Dry preparation as an innovative process for the dry pressing of tiles”, Tile Brick Int., 1994, 10 (6), 429–435.
- [58] Politi G., Heilakka E., “Granules, tablets and granulation”, Google Patents; 2008.
- [59] Politi G., Heilakka E., “Method and apparatus for dry granulation”, Google Patents; 2009.
- [60] Heilakka E., Rahja P., Lammens R., Sandler N., editors, “Pneumatic dry granulation (PDG) in solid dosage form manufacture”, AAPS Annual Meeting and Exposition 2010 November 14–18; New Orleans.
- [61] Sandler N, Lammens R. F., “Pneumatic dry granulation: potential to improve roller compaction technology in drug manufacture”, Expert Open Drug Delivery, 2011; 8: 225–36.
- [62] Li B., Reynolds T. D., “Granulates, process for preparing them and pharmaceutical products containing them”, Google Patents, 2010.
- [63] Wade J. B., Martin G. P., Long D. F., “Feasibility assessment for a novel reverse–phase wet granulation process: The effect of liquid saturation and binder liquid viscosity”, Int. J. Pharm., 2014; 475: 450-61. doi: 10.1016/j.ijpharm.2014.09.012.
- [64] Wade J. B., Martin G. P., Long D. F., “Controlling granule size through breakage in a novel reverse–phase wet granulation process; the effect of impeller speed and binder liquid viscosity”, Int J. Pharm., 2014; Online.
- [65] Rodriguez L., Cavallari C., Passerini N., Albertini B., Gonzalez–Rodriguez M., Fini A., “Preparation and characterization by morphological analysis of diclofenac/PEG 4000 granules obtained using three different techniques”, Int. J. Pharm., 2002; 242: 285–9.
- [66] Cavallari C., Albertini B., Gonzalez–Rodriguez M. L., Rodriguez L., “Improved dissolution behaviour of steam-granulated piroxicam”, Eur. J. Pharm. Biopharm, 2002; 54: 65–73.
- [67] Vialpando M., Albertini B., Passerini N., Vander Heyden Y., Rombaut P., Martens J.A., et al. “Agglomeration of mesoporous silica by melt and steam granulation. part II: screening of steam granulation process variables using a factorial design”, J. Pharm. Sci., 2013; 102: 3978–86. doi: 10.1002/jps.23699.
- [68] Melchiades, F. G., dos Santos, L. R., Nastri S., Boschi A. O., “Comparison between spray-dried and dry granulated powders in the fabrication of porcelain tiles”, Interceram, 2012, 61 254–258.
- [69] Iqbal, Y., Lee, W. E., “Microstructural evolution in triaxial porcelain”, J. Am. Ceram. Soc., 2000, 83 (12) 3121–3127.
- [70] Carty, W. M., “Glass phase composition in porcelains and correlation withpyroplastic deformation”, Whitewares Mater.: Ceram. Eng. Sci. Proc., 2003 24/2, 108–132.
- [71] Kowalski J., Kalb O., Joshi Y. M, Serajuddin A. T., “Application of melt granulation technology to enhance stability of a moisture sensitive immediate-release drug product”, Int. J. Pharm., 2009; 381: 56–61.
Differences Between Dry and Wet Route Tile Production
Year 2019,
Volume: 6 Issue: 1, 8 - 23, 31.01.2019
Alper Koçak
,
Bekir Karasu
Abstract
Tile production has an important place in overall ceramic production.
There are different types of methods for them. Companies generally use wet
route for raw materials preparation. However, dry route has been started to be
used at large scale in recent years. There are some advantages and
disadvantages for dry and wet route tile productions. This paper was prepared
to give detail information about both methods.
References
- [1] http://www.brighthubengineering.com/manufacturing-technology/56841-what-are-ceramic-materials-and-their-uses/ (Access date: 25.03.2018).
- [2] https://sites.google.com/site/mechanicalstuff4u/contents-of-m/manufacturing-technology/engineering-materials-and-their-properties (Access date: 25.03.2018).
- [3] Wang H., Chen Z., Liu L., Ji R., Wang X., “Synthesis of a foam ceramic based on ceramic tile polishing waste using SiC as foaming agent”, Ceramics International, 2018, Vol 44, Issue, 10078-10086.
- [4] http://ceramics.org/learn-about-ceramics/structure-and-properties-of-ceramics (Access date: 25.03.2018).
- [5] http://www.substech.com/dokuwiki/doku.php?id=general_classification_of_ceramics (Access date: 25.03.2018).
- [6] da Silva A. L., Dondi M., Raimondo M., Hotza D., “Photocatalytic ceramic tiles: Challenges and technological solutions”, Journal of the European Ceramic Society, 2018, 1002–1017.
- [7] Carty W. M., Senapati U., "Porcelain–raw materials, processing, phase evolution and mechanical behaviour", J. Amer. Ceram. Soc., 1998, 81, 3–20.
- [8] Schmidt H., "Chemical and physical reactions in heavy clay bodies during firing", Ziegelindustrie International, 1981, 367–397.
- [9] Hanuskovà M., Manfredini T., “Requirements and industrial applications of clays in manufacturing of fast fired sintered unglazed tiles”, Scripta Fac. Sci. Nat. Univ. Masaryk. Brùn., Geology, 1998–99, 28/29, 67–76.
- [10] Hanuskovà M., Manfredini T., Romagnoli M., “Laser particle size analysis: a tool in designing traditional ceramic processes”, Bull. Am. Ceram. Soc., 1999, 78, 11, 73–77.
- [11] Manfredini T., Romagnoli M., Hanuskovà, M., “Wollastonite as sintering-aid for percelain stoneware bodies”, Int. Ceram., 2000, XVIII, 6, 61–67.
- [12] Manfredini T. and Hanuskovà M., “Natural raw materials and inorganic pigments for ceramics”, Proceedings of Seminar on Advanced Ceramics: Technology and Applications, Hanoi (Vietnam), 9 July 2002.
- [13] Hanuskovà M., Manfredini T., “Clays in manufacturing of unglazed porcelainized stoneware”, Int. Ceram., 2002, XX, 5, 99–103.
- [14] Hanuskovà M., “Feldspar–based sintering aids for the ceramic industry”, Int. Ceram., 2003, XXI, 2, 35–39.
- [15] Hanuskovà M., “Zirconium silicate in the ceramic industry”, Int. Ceram., 2003, XXI, 2, 45–49.
- [16] Hanuskovà M., “Unconventional raw materials for structural ceramics", Int. Ceram., 2008, XXVI, 4.
- [17] Cannio M., Hanuskovà M,, “Wollastonite”, Int. Ceram., 2009, XXVII, 5, 43–47.
- [18] Hanuskovà M,, Manfredini T., “Application of natural raw materials in ceramic manufacturing”, Int. Ceram., 2009, XXVIII, 4, 21–33.
- [19] Mukherjee S., “The science of clays. Applications in industry, engineering and environment”, 1st ed. New Delhi, India: Springer, 2013.
- [20] Santos J., Malagón P. and Córdoba E., “Caracterización de arcillas y preparación de pastas cerámicas para la fabricación de tejas y ladrillos en la región de Barichara, Santander”, Dyna., 2011, 78, 167, 53–61.
- [21] Gelves J., Monroy R., Sánchez J. and Ramírez R., “Estudio comparativo de las técnicas de extrusión y prensado como procesos de conformado de productos cerámicos de construcción en el área metropolitana de Cúcuta”, Bol. Soc. Esp. Ceram. Vidr., 2013, 52, 1, 48–54.
- [22] Amorós J., Sánchez E., García J., Sanz V. and Monzó M., “Manual para el control de la calidad de materias primas arcillosas”, 1st ed. Castellón, Spain: Instituto de Tecnología Cerámica, 1998.
- [23] Querol A., “Aplicación del método de Pfefferkorn al control de la plasticidad en pastas de extrusión”, Bol. Soc. Esp. Ceram. Vidr., 1983, 22, 2, 285–289.
- [24] Sandoval F., and González J., “La arcilla ilítica en la obtención de porcelanas de alta resistencia mecánica. I Materias primas”, Bol. Soc. Esp. Ceram. Vidr., 1981, 20, 105–112.
- [25] Coelho C., Roqueiro N. and Hotza D., “Rational mineralogical analysis of ceramics”, Materials Letters, 2002, 52, 6, 394–398.
- [26] Lee V. and Yeh T., “Sintering effects on the development of mechanical properties of fired clay ceramics”, Materials Science and Engineering: A, 2008, 485, 1–2, 5–13.
- [27] And, K., Iwasa M., Kim B. A., Chu M. C. & Sato S., “Effects of crack length, notch root radius and grain size on fracture toughness of fine ceramics”, Fatigue & Fracture of Engineering Materials & Structures, 1993, 16, 995–1006.
- [28] Chou I. A., Chan H. M. and Harmer M. P., “Effect of annealing environment on the crack healing and mechanical behavior of silicon carbide–reinforced alumina nanocomposites”, Journal of the American Ceramic Society, 1998, 81, 1203–1208.
- [29] Osada T., Nakao W., Takahashi K. & Ando K., “Kinetics of self–crack–healing of alumina/silicon carbide composite including oxygen partial pressure effect”, Journal of the American Ceramic Society, 2009, 92, 4, 864–869.
- [30] Kingery W. D., Bowen H. K. and Uhlmann D. R., “Introduction to ceramics”, John Wiley & Sons, Inc., ISBN 0–471–47860–1, 1976.
- [31] John B. Wachtman, Jr., ed., “Ceramic innovations in the 20th century”, The American Ceramic Society, 1999, ISBN 978–1–57498–093–6.
- [32] Johnson K. E., Damoah L., Delali Y. B., David D. A., and Tetteh D., “Development of porous ceramic bodies from kaolin deposits for industrial applications”, Journal of Applied Clay Science, 2012, 31–36.
- [33] Kamseu E., Leonelli C., Boccaccini D. N. and Veronesi P., “Characterisation of porcelain compositions using two china clays from Cameroon”, Ceramics International, 2007, 33, 851–857.
- [34] Mezquita A., Monfor E., Ferrer S., Gabaldón–Estevan D., “How to reduce energy and water consumption in the preparation of raw materials for ceramic tile manufacturing: Dry versus wet route”, Journal of Cleaner Production, 2017, 1566–1570.
- [35]http://metalurji.mu.edu.tr/Icerik/metalurji.mu.edu.tr/Sayfa/Kalemtas_A_Ceramics_Materials_20_11_2013.pdf, Access date: 25.03.2018.
- [36] “Materials & equipment/whitewares: wet vs dry processing: granulation of ceramic powders”, Ceramic Engineering and Science Proceedings, 1989, 10, 1/2, 18–36.
- [37] Nandiyanto A. B. D., Okuyama K., “Progress in developing spray–drying methods for the production of controlled morphology particles: from the nanometer to submicrometer size ranges”, Advenced Powder Technology, 2011, 22, 1–19.
- [38] Mahdjoub H., Roy P., Filiatre C., Bertrand G., Coddet C., “The effect of the slurry formulation upon the morphology of spray–dried yttria stabilised zirconia particles”, J. Eur. Ceram. Soc., 2003, 23, 1637–1648.
- [39] http://www.manfredinieschianchi.com/207-2EN-dry-milling-plants-for-ceramic-industry.html (Access date: 25.03.2018).
- [40] Nasseti G., Timellini G., “Granulation of powders for whitebody ceramic tiles”, Ceram. Eng. Sci. Proc., 1991, 12 [1–2], 328–342.
- [41]https://www.eirichusa.com/images/downloads/downloadspage/Technical%20Docs_White%20Papers/Granulation%20Paper_C_Klein_2012.pdf (Access date: 25.03.2018).
- [42] Nasseti G., Palmonari C., “Dry fine and spray drying and granulation vs wet grinding and spray drying in the preparation of a redware mix for fast–single–fired vitrified tile”, Ceram. Eng. Sci. Proc., 1993, 14 [1–2], 15–24.
- [43] http://www.manfredinieschianchi.com/403-2EN-porcelain-stoneware-obtained-through-dry-processing.htm (Access date: 25.03.2018).
- [44] http://www.manfredinieschianchi.com/404-2EN-calcium-carbonate-inclusions-in-mixtures-for-extruded.htm (Access date: 25.03.2018).
- [45] Koçak A., Karasu B., “General evaluations of nanoparticles” El-Cezerî Journal of Science and Engineering, 2018, 5(1); 191–236.
- [46] Barba A. et al., “Materias primas para la fabricación de soportes de baldosas cerâmicas”, Instituto de Tecnologia Cerâmica – AICE, Castellón 1997, 291.
- [47] Bohlmann C., Luck C., Quirmbach P., “Mecanismos de ação de produtos desfloculantes e dispersantes em pastas cerámicas”, Kéramica, 2000, 241, 78–92.
- [48] Prado A. C. A. et al., “Propriedades reológicas de matérias-primas do Pólo Cerâmico de Santa Gertrudes provenientes da Formação Corumbataí (região de Rio Claro, SP). R. Esc. Minas”, Ouro Preto 60, 2007, 613–620.
- [49] Smiles D. E., “Effects of solutes on claywater interactions: some comments”, Appl. Clay Sci., 2008, 42, 155–162.
- [50] Melchiades F. G., Boschi A. O., “Study of the feasibility of producing porcelain tiles by the dry route”, CFI/Ber. DKG, 2010, 87 [1–2] E43–E49.
- [51] Sampaio V. G., Pinheiro B. C. A., Holanda J. N. F., “Granulação a seco de uma massa cerâmica para grês porcelanato”, Cerâmica, 2007, 53, 295–299.
- [52] Gabaldon–Estevan D., Hekkert M. P., “How does the innovation system in the Spanish tile sector function?”, Bol. Soc. Esp. Ceram. Vidr., 2013, 52 (3), 151–158.
- [53] Gil C., Silvestre D., Piquer J., García–Ten J., Quereda F., Vicente M. J., “Preparation of porcelain tile granulates by more environmentally sustainable processes”. Bol. Soc. Esp. Ceram. Vidr., 2012, 51 (2), 67–74.
- [54] Mezquita A., Monfort E., Zaera V., “Ceramic tiles manufacturing and emission trading scheme: reduction of CO2 emissions, European benchmarking”. Bol. Soc. Esp. Ceram. Vidr., 2009, 48 (4), 211–222 (in Spanish).
- [55] Nassetti G., Maestri G., “Data bank on energy consumption in the ceramic floor and wall tile industry: applications and energy benchmarking”, Cer. Acta, 1999, 11 (4), 25–36.
- [56] Shu Z., Monfort E., García-Ten J., Amoros J. L., Zhou J., Wang Y., “Cleaner, production of porcelain tile powders. Granule and green compact characterization”, Ceram. Int., 2012, 38, 517–526.
- [57] Varsos D., Nasseti G., Sikaldis C., “Dry preparation as an innovative process for the dry pressing of tiles”, Tile Brick Int., 1994, 10 (6), 429–435.
- [58] Politi G., Heilakka E., “Granules, tablets and granulation”, Google Patents; 2008.
- [59] Politi G., Heilakka E., “Method and apparatus for dry granulation”, Google Patents; 2009.
- [60] Heilakka E., Rahja P., Lammens R., Sandler N., editors, “Pneumatic dry granulation (PDG) in solid dosage form manufacture”, AAPS Annual Meeting and Exposition 2010 November 14–18; New Orleans.
- [61] Sandler N, Lammens R. F., “Pneumatic dry granulation: potential to improve roller compaction technology in drug manufacture”, Expert Open Drug Delivery, 2011; 8: 225–36.
- [62] Li B., Reynolds T. D., “Granulates, process for preparing them and pharmaceutical products containing them”, Google Patents, 2010.
- [63] Wade J. B., Martin G. P., Long D. F., “Feasibility assessment for a novel reverse–phase wet granulation process: The effect of liquid saturation and binder liquid viscosity”, Int. J. Pharm., 2014; 475: 450-61. doi: 10.1016/j.ijpharm.2014.09.012.
- [64] Wade J. B., Martin G. P., Long D. F., “Controlling granule size through breakage in a novel reverse–phase wet granulation process; the effect of impeller speed and binder liquid viscosity”, Int J. Pharm., 2014; Online.
- [65] Rodriguez L., Cavallari C., Passerini N., Albertini B., Gonzalez–Rodriguez M., Fini A., “Preparation and characterization by morphological analysis of diclofenac/PEG 4000 granules obtained using three different techniques”, Int. J. Pharm., 2002; 242: 285–9.
- [66] Cavallari C., Albertini B., Gonzalez–Rodriguez M. L., Rodriguez L., “Improved dissolution behaviour of steam-granulated piroxicam”, Eur. J. Pharm. Biopharm, 2002; 54: 65–73.
- [67] Vialpando M., Albertini B., Passerini N., Vander Heyden Y., Rombaut P., Martens J.A., et al. “Agglomeration of mesoporous silica by melt and steam granulation. part II: screening of steam granulation process variables using a factorial design”, J. Pharm. Sci., 2013; 102: 3978–86. doi: 10.1002/jps.23699.
- [68] Melchiades, F. G., dos Santos, L. R., Nastri S., Boschi A. O., “Comparison between spray-dried and dry granulated powders in the fabrication of porcelain tiles”, Interceram, 2012, 61 254–258.
- [69] Iqbal, Y., Lee, W. E., “Microstructural evolution in triaxial porcelain”, J. Am. Ceram. Soc., 2000, 83 (12) 3121–3127.
- [70] Carty, W. M., “Glass phase composition in porcelains and correlation withpyroplastic deformation”, Whitewares Mater.: Ceram. Eng. Sci. Proc., 2003 24/2, 108–132.
- [71] Kowalski J., Kalb O., Joshi Y. M, Serajuddin A. T., “Application of melt granulation technology to enhance stability of a moisture sensitive immediate-release drug product”, Int. J. Pharm., 2009; 381: 56–61.