Research Article
BibTex RIS Cite

Potential of Hydrogen Production from Pepper Waste Gasification

Year 2019, Volume: 6 Issue: 2, 382 - 387, 31.05.2019
https://doi.org/10.31202/ecjse.532770

Abstract

Gasification is a
promising clean energy technology for hydrogen production and sustainable waste
management. Biomass residues have great potential to produce renewable
hydrogen. In this study, the potential of production of hydrogen from pepper
residues was determined via a modeling study of air/steam gasification system.
The input carbon of the feedstock was assumed to be fully gasified in the
numerical model calculations performed for the downdraft gasifier system. Air
to fuel ratio (A/F) and steam to fuel (S/F) ratio are taken as 0.05 because of
the high oxygen content in pepper waste. The temperature of the gasifier is 877
°C for the developed mathematical model. The modeling study results revealed
high hydrogen content in the producer gas derived from pepper waste
gasification which has obtained as 49.08 %.

References

  • Winley, T.M.L. “The Paris warming targets: emissions requirements and sea level consequences”, Climatic Change, 2018, 147, 31-45.
  • Teixeira, T.R., Ribeiroa, C.A.A.S., Santos, A.R., Marcattic, G.E., Lorenzon, A.S., Castro, N.L.M., Domingues, G.F., Leite, H.G., Menezes, S.J.M.C., Mota, P.H.S., Telles, L.A.A., Vieirac, R.S. “Forest Biomass Power Plant Installation Scenarios. Biomass and Bionenergy, 2018, 108, 35-47.
  • Wielgosiński, G., Łechtańska, P., Namiecińska, O., “Emission of some pollutants from biomass combustion in comparison to hard coal combustion”, Journal of the Energy Institute, 2017, 90, 787-796.
  • Vakais, A., Sotiropoulos, A., Moustakas, K., Malamis, D., Baratieri, M., “Utilisation of biomass gasification by-products for onsite energy production”, Waste Management & Research, 2016, 34, 564–71.
  • Deborah, P., Francesca, V., Giuseppe, G., “Analysis of the environmental impact of a biomass plant for the production of bioenergy”, Renewable and Sustainable Energy Reviews, 2015, 51, 634-47.
  • Akyürek, Z., “Potential of biogas energy from animal waste in the Mediterranean Region of Turkey”. Journal of Energy Systems, 2018, 2, 159-167.
  • Ismail, T.M., El-Salam, M.A., Monteiro, E., Rouboa, A., “Fluid dynamics model on fluidized bed gasifier using agro-industrial biomass as fuel”, Waste Management, 2018, 73, 476-486.
  • Iribarren, D., Susmozas, A., Petrakopoulou, F., Dufour, J., “Environmental and exergetic evaluation of hydrogen production via lignocellulosic biomass gasification”, Journal of Cleaner Production, 2014, 69, 165-175.
  • Mínguez, M., Jiménez, A., Rodríguez, J., González, C., López, I., Nieto, R., “Analysis of energetic and exergetic efficiency, and environmental benefits of biomass integrated gasification combined cycle technology”, Waste Management and Research, 2013, 31, 401-412.
  • Franco C, Pinto F, Gulyurtlu I, and Cabrita I. The study of reactions influencing the biomass steam gasification process. Fuel 2003, 82, 835-842.
  • Ahmad AA, Zawawi NA, Kasim FH, Inayat A, Khasri A. Assessing the gasification performance of biomass: A review on biomass gasification process conditions, optimization and economic evaluation. Renewable and Sustainable Energy Reviews 2016, 53, 1333–47.
  • Pacioni, T.R., Soares D., Domenico, M.D., Rosa, M.F., Fátima, R.D., Moreira, P.M., José, H.J., “Bio-syngas production from agro-industrial biomass residues by steam gasification”, Waste Management, 2016, 58, 221-9.
  • Lopes, E.J., Queiroz, N., Yamamoto, C.I., Neto, P.R.C., “Evaluating the emissions from the gasification processing of municipal solid waste followed by combustion”, Waste Management, 2018, 73, 504-10.
  • Sheth, P.N., Babu, B.V., “Experimental studies on producer gas generation from wood waste in a downdraft biomass gasifier”, Bioresource Technology, 2009, 100 (12), 3127–33.
  • Gungor, A., Yildirim, U., “Two dimensional numerical computation of a circulating fluidized bed biomass gasifier”, Computers & Chemical Engineering, 2013, 48, 234-50.
  • Gungor, A., “Modeling the effects of the operational parameters on H2 composition in a biomass fluidized bed gasifier”, International Journal of Hydrogen Energy, 2011, 36, 6592-600.
  • Akyürek, Z., Akyüz, A.Ö., Güngör, A., “Energy potential from gasification of agricultural residues in Burdur, Turkey”, Scientific Journal of Mehmet Akif Ersoy University, 2019, 2(1), 15-19.
  • Ismail, T.M., El-Salam, M.A., “Parametric studies on biomass gasification process on updraft gasifier high temperature air gasification”, Applied Thermal Engineering, 2017, 12, 1460-73.
  • TUIK, Turkish Statistical Institute Database, 2017. http://www.tuik.gov.tr/ (Accessed February 25, 2019)
  • Basu P. Combustion and Gasification in Fluidized Beds. CRC Press. 2006. ISBN:0-8493-3396-2
  • Gungor, A., Ozbayoglu, M., Kasnakoglu, C., Biyikoglu, A., Uysal, B.Z., “A parametric study on coal gasification for the production of syngas”, Chemical Papers, 2012, 66, 677-683.
  • Ozkan, B., Kurklu, A., Akcaoz, H., “An input–output energy analysis in greenhouse vegetable production: a case study for Antalya region of Turkey”, Biomass and Bioenergy, 2004, 26(1), 89-95.

Biber Atıklarının Gazlaştırılmasının Hidrojen Üretim Potansiyeli

Year 2019, Volume: 6 Issue: 2, 382 - 387, 31.05.2019
https://doi.org/10.31202/ecjse.532770

Abstract

Gazlaştırma, hidrojen üretimi ve sürdürülebilir atık yönetimi için umut verici bir enerji teknolojisidir. Biyokütle atıkları yenilenebilir hidrojen üretme konusunda büyük potansiyele sahiptir. Bu çalışmada, biber atıklarının hidrojen üretim potansiyelini hava-buhar gazlaştırma teknolojisi ile incelemek için bir modelleme çalışması yapılmıştır. Aşağı çekiş gazlaştırma sistemi için geliştirilen sayısal model, yakıt karışımındaki tüm karbonun gazlaştırıldığını varsayar. Biber artığındaki yüksek O2 içeriğinden dolayı hava/yakıt ve buhar/yakıt oranı 0,05 olarak alınmıştır. Geliştirilen model için gazlaştırma sıcaklığı 877 °C 'dir. Modelleme sonucuna göre, biber atıklarının gazlaştırılması ile üretilen gazdaki hidrojen içeriği % 49,08 olarak elde edilmiştir.

References

  • Winley, T.M.L. “The Paris warming targets: emissions requirements and sea level consequences”, Climatic Change, 2018, 147, 31-45.
  • Teixeira, T.R., Ribeiroa, C.A.A.S., Santos, A.R., Marcattic, G.E., Lorenzon, A.S., Castro, N.L.M., Domingues, G.F., Leite, H.G., Menezes, S.J.M.C., Mota, P.H.S., Telles, L.A.A., Vieirac, R.S. “Forest Biomass Power Plant Installation Scenarios. Biomass and Bionenergy, 2018, 108, 35-47.
  • Wielgosiński, G., Łechtańska, P., Namiecińska, O., “Emission of some pollutants from biomass combustion in comparison to hard coal combustion”, Journal of the Energy Institute, 2017, 90, 787-796.
  • Vakais, A., Sotiropoulos, A., Moustakas, K., Malamis, D., Baratieri, M., “Utilisation of biomass gasification by-products for onsite energy production”, Waste Management & Research, 2016, 34, 564–71.
  • Deborah, P., Francesca, V., Giuseppe, G., “Analysis of the environmental impact of a biomass plant for the production of bioenergy”, Renewable and Sustainable Energy Reviews, 2015, 51, 634-47.
  • Akyürek, Z., “Potential of biogas energy from animal waste in the Mediterranean Region of Turkey”. Journal of Energy Systems, 2018, 2, 159-167.
  • Ismail, T.M., El-Salam, M.A., Monteiro, E., Rouboa, A., “Fluid dynamics model on fluidized bed gasifier using agro-industrial biomass as fuel”, Waste Management, 2018, 73, 476-486.
  • Iribarren, D., Susmozas, A., Petrakopoulou, F., Dufour, J., “Environmental and exergetic evaluation of hydrogen production via lignocellulosic biomass gasification”, Journal of Cleaner Production, 2014, 69, 165-175.
  • Mínguez, M., Jiménez, A., Rodríguez, J., González, C., López, I., Nieto, R., “Analysis of energetic and exergetic efficiency, and environmental benefits of biomass integrated gasification combined cycle technology”, Waste Management and Research, 2013, 31, 401-412.
  • Franco C, Pinto F, Gulyurtlu I, and Cabrita I. The study of reactions influencing the biomass steam gasification process. Fuel 2003, 82, 835-842.
  • Ahmad AA, Zawawi NA, Kasim FH, Inayat A, Khasri A. Assessing the gasification performance of biomass: A review on biomass gasification process conditions, optimization and economic evaluation. Renewable and Sustainable Energy Reviews 2016, 53, 1333–47.
  • Pacioni, T.R., Soares D., Domenico, M.D., Rosa, M.F., Fátima, R.D., Moreira, P.M., José, H.J., “Bio-syngas production from agro-industrial biomass residues by steam gasification”, Waste Management, 2016, 58, 221-9.
  • Lopes, E.J., Queiroz, N., Yamamoto, C.I., Neto, P.R.C., “Evaluating the emissions from the gasification processing of municipal solid waste followed by combustion”, Waste Management, 2018, 73, 504-10.
  • Sheth, P.N., Babu, B.V., “Experimental studies on producer gas generation from wood waste in a downdraft biomass gasifier”, Bioresource Technology, 2009, 100 (12), 3127–33.
  • Gungor, A., Yildirim, U., “Two dimensional numerical computation of a circulating fluidized bed biomass gasifier”, Computers & Chemical Engineering, 2013, 48, 234-50.
  • Gungor, A., “Modeling the effects of the operational parameters on H2 composition in a biomass fluidized bed gasifier”, International Journal of Hydrogen Energy, 2011, 36, 6592-600.
  • Akyürek, Z., Akyüz, A.Ö., Güngör, A., “Energy potential from gasification of agricultural residues in Burdur, Turkey”, Scientific Journal of Mehmet Akif Ersoy University, 2019, 2(1), 15-19.
  • Ismail, T.M., El-Salam, M.A., “Parametric studies on biomass gasification process on updraft gasifier high temperature air gasification”, Applied Thermal Engineering, 2017, 12, 1460-73.
  • TUIK, Turkish Statistical Institute Database, 2017. http://www.tuik.gov.tr/ (Accessed February 25, 2019)
  • Basu P. Combustion and Gasification in Fluidized Beds. CRC Press. 2006. ISBN:0-8493-3396-2
  • Gungor, A., Ozbayoglu, M., Kasnakoglu, C., Biyikoglu, A., Uysal, B.Z., “A parametric study on coal gasification for the production of syngas”, Chemical Papers, 2012, 66, 677-683.
  • Ozkan, B., Kurklu, A., Akcaoz, H., “An input–output energy analysis in greenhouse vegetable production: a case study for Antalya region of Turkey”, Biomass and Bioenergy, 2004, 26(1), 89-95.
There are 22 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Makaleler
Authors

Afşin Güngör 0000-0002-4245-7741

Zuhal Akyürek 0000-0003-3102-4278

Ali Özhan Akyüz 0000-0001-9265-7293

Publication Date May 31, 2019
Submission Date February 26, 2019
Acceptance Date April 30, 2019
Published in Issue Year 2019 Volume: 6 Issue: 2

Cite

IEEE A. Güngör, Z. Akyürek, and A. Ö. Akyüz, “Biber Atıklarının Gazlaştırılmasının Hidrojen Üretim Potansiyeli”, ECJSE, vol. 6, no. 2, pp. 382–387, 2019, doi: 10.31202/ecjse.532770.