Electrochemical Behavior of Tin Based Film Cathodically Deposited From Non-Aqueous Media
Year 2020,
Volume: 7 Issue: 2, 639 - 648, 31.05.2020
Sitki Aktaş
,
Abdulcabbar Yavuz
,
Kaan Kaplan
,
Metin Bedir
Abstract
Platinum electrode was coated with Sn in order to study electrochemical behavior of Sn based modified electrode in acidic electrolyte. A deep eutectic solvent consisting of ethylene glycol and choline chloride (called Ethaline) was used as deposition electrolyte by applying different voltage and time at two different temperature (room temperature and 55 °C). Tin coated platinum electrode was immersed in Na2SO4 and KOH solutions for the formation of tin oxide and tin hydroxide, respectively. Tin hydroxide and tin oxide films cycled in H2SO4 were not electroactive and these films cannot be used in acidic media for electrochemical devices. Sn electrode electrodeposited at high temperature was more than 500 times thicker than that at room temperature. Thick tin modified electrode electrodeposited in Ethaline at high temperature had the same behavior in neutral and alkaline solution as thin Sn film obtained at room temperature. Thick SnO and Sn(OH)2 films were not electroactive in acidic media the same as thin ones. Sn electrode electrodeposited from deep eutectic solvent at 55 °C and treated with acidic solution was cycled in alkaline electrolyte. Reduction of the resulted film in KOH appeared. This electrode could be used for hydrogen evolution reaction in alkaline media.
Supporting Institution
The manuscript was presented in TICMET19 conference
References
- 1. Sano, H.; Sakaebe, H.; Matsumoto, H. Observation of Electrodeposited Lithium by Optical Microscope in Room Temperature Ionic Liquid-Based Electrolyte. J. Power Sources 2011, 196 (16), 6663–6669.
- 2. Low, C. T. J.; Walsh, F. C. Electrodeposition of Tin, Copper and Tin–copper Alloys from a Methanesulfonic Acid Electrolyte Containing a Perfluorinated Cationic Surfactant. Surf. Coatings Technol. 2008, 202 (8), 1339–1349.
- 3. Bicelli, L. P.; Bozzini, B.; Mele, C.; D’Urzo, L. A Review of Nanostructural Aspects of Metal Electrodeposition. Int. J. Electrochem. Sci. 2008, 3 (4), 356–408.
- 4. Tang, A.; Li, Z.; Wang, F.; Dou, M.; Liu, J.; Ji, J.; Song, Y. Electrodeposition Mechanism of Quaternary Compounds Cu2ZnSnS4: Effect of the Additives. Appl. Surf. Sci. 2018, 427, 267–275.
- 5. Arafat, Y.; Sultana, S. T.; Dutta, I.; Panat, R. Effect of Additives on the Microstructure of Electroplated Tin Films. J. Electrochem. Soc. 2018, 165 (16), D816–D824.
- 6. Neveu, B.; Lallemand, F.; Poupon, G.; Mekhalif, Z. Electrodeposition of Pb-Free Sn Alloys in Pulsed Current. Appl. Surf. Sci. 2006, 252 (10), 3561–3573.
- 7. Collazo, A.; Figueroa, R.; Nóvoa, X. R.; Pérez, C. Corrosion of Electrodeposited Sn in 0.01 M NaCl Solution. A EQCM and EIS Study. Electrochim. Acta 2016, 202, 288–298.
- 8. Wurm, C.; Oettinger, O.; Wittkaemper, S.; Zauter, R.; Vuorilehto, K. Anode Materials for Lithium-Ion Batteries. In Lithium-Ion Batteries: Basics and Applications; Springer, 2018; pp 43–58.
- 9. Soulmi, N.; Porras-Gutierrez, A.-G.; Mordvinova, N. E.; Lebedev, O. I.; Rizzi, C.; Sirieix-Plénet, J.; Groult, H.; Dambournet, D.; Gaillon, L. Sn (TFSI) 2 as a Suitable Salt for the Electrodeposition of Nanostructured Cu 6 Sn 5–Sn Composites Obtained on a Cu Electrode in an Ionic Liquid. Inorg. Chem. Front. 2019, 6 (1), 248–256.
- 10. Mahapatra, S. Das; Dutta, I. Co-Electrodeposition of Tin with 0.2–20% Indium: Implications on Tin Whisker Growth. Surf. Coatings Technol. 2018, 337, 478–483.
- 11. Abbott, A. P.; Frisch, G.; Ryder, K. S. Electroplating Using Ionic Liquids. Annu. Rev. Mater. Res. 2013, 43, 335–358.
- 12. Smith, E. L.; Abbott, A. P.; Ryder, K. S. Deep Eutectic Solvents (DESs) and Their Applications. Chem. Rev. 2014, 114 (21), 11060–11082.
- 13. Abbott, A. P.; Capper, G.; McKenzie, K. J.; Ryder, K. S. Electrodeposition of Zinc–tin Alloys from Deep Eutectic Solvents Based on Choline Chloride. J. Electroanal. Chem. 2007, 599 (2), 288–294.
- 14. Srivastava, M.; Yoganandan, G.; William Grips, V. K. Electrodeposition of Ni and Co Coatings from Ionic Liquid. Surf. Eng. 2012, 28 (6), 424–429.
- 15. Cao, F.; Zhao, M.; Yu, Y.; Chen, B.; Huang, Y.; Yang, J.; Cao, X.; Lu, Q.; Zhang, X.; Zhang, Z.; et al. Synthesis of Two-Dimensional CoS1.097/Nitrogen-Doped Carbon Nanocomposites Using Metal-Organic Framework Nanosheets as Precursors for Supercapacitor Application. J. Am. Chem. Soc. 2016, 138 (22), 6924–6927.
- 16. Silvester, D. S.; Aldous, L.; Hardacre, C.; Compton, R. G. An Electrochemical Study of the Oxidation of Hydrogen at Platinum Electrodes in Several Room Temperature Ionic Liquids. J. Phys. Chem. B 2007, 111 (18), 5000–5007.
- 17. Abbott, A. P.; Ballantyne, A.; Harris, R. C.; Juma, J. A.; Ryder, K. S.; Forrest, G. A Comparative Study of Nickel Electrodeposition Using Deep Eutectic Solvents and Aqueous Solutions. Electrochim. Acta 2015, 176, 718–726.
Sulu Olmayan Ortamlarda Katodik olarak elde edilen Kalay Esaslı Filmin Elektrokimyasal Davranışı
Year 2020,
Volume: 7 Issue: 2, 639 - 648, 31.05.2020
Sitki Aktaş
,
Abdulcabbar Yavuz
,
Kaan Kaplan
,
Metin Bedir
Abstract
Platinum elektrot, Sn bazlı modifiye edilmiş elektrodun asidik elektrolit içindeki elektrokimyasal davranışını incelemek için Sn ile kaplanmıştır. İki farklı sıcaklıkta (oda sıcaklığı ve 55 ° C) farklı voltaj ve zaman uygulanarak çökeltme elektroliti olarak etilen glikol ve kolin klorür (Ethaline olarak adlandırılan) içeren derin bir ötektik çözücü kullanıldı. Kalay kaplı platin elektrot, sırasıyla kalay oksit ve kalay hidroksit oluşumu için Na2S04 ve KOH çözeltilerine daldırıldı. H2SO4 içinde voltaj uygulanan kalay hidroksit ve kalay oksit filmler elektroaktif değildi ve bu filmler asidik ortamda elektrokimyasal cihazlar için kullanılamaz. Yüksek sıcaklıkta elektrodepozitlenmiş Sn elektrodu, oda sıcaklığındakinden 500 kat daha kalındı. Ethaline'da yüksek sıcaklıkta elektro-çökeltilmiş kalın kalay modifiye elektrot, oda sıcaklığında elde edilen ince Sn filmi ile nötr ve alkali çözeltide aynı davranışa sahipti. Kalın SnO ve Sn(OH)2 filmleri, asidik ortamda ince filmler kadar elektroaktif değildi. 55 °C'de derin ötektik çözücüden elektrodepozitlenen ve asidik çözelti ile işlenmiş Sn elektroduna, alkalin elektrolit içinde potansiyel fark ugulandı. Nihai filmin KOH içerisinde azalması ortaya çıktı. Bu elektrot, alkalin ortamdaki hidrojen evrim reaksiyonu için kullanılabilir.
References
- 1. Sano, H.; Sakaebe, H.; Matsumoto, H. Observation of Electrodeposited Lithium by Optical Microscope in Room Temperature Ionic Liquid-Based Electrolyte. J. Power Sources 2011, 196 (16), 6663–6669.
- 2. Low, C. T. J.; Walsh, F. C. Electrodeposition of Tin, Copper and Tin–copper Alloys from a Methanesulfonic Acid Electrolyte Containing a Perfluorinated Cationic Surfactant. Surf. Coatings Technol. 2008, 202 (8), 1339–1349.
- 3. Bicelli, L. P.; Bozzini, B.; Mele, C.; D’Urzo, L. A Review of Nanostructural Aspects of Metal Electrodeposition. Int. J. Electrochem. Sci. 2008, 3 (4), 356–408.
- 4. Tang, A.; Li, Z.; Wang, F.; Dou, M.; Liu, J.; Ji, J.; Song, Y. Electrodeposition Mechanism of Quaternary Compounds Cu2ZnSnS4: Effect of the Additives. Appl. Surf. Sci. 2018, 427, 267–275.
- 5. Arafat, Y.; Sultana, S. T.; Dutta, I.; Panat, R. Effect of Additives on the Microstructure of Electroplated Tin Films. J. Electrochem. Soc. 2018, 165 (16), D816–D824.
- 6. Neveu, B.; Lallemand, F.; Poupon, G.; Mekhalif, Z. Electrodeposition of Pb-Free Sn Alloys in Pulsed Current. Appl. Surf. Sci. 2006, 252 (10), 3561–3573.
- 7. Collazo, A.; Figueroa, R.; Nóvoa, X. R.; Pérez, C. Corrosion of Electrodeposited Sn in 0.01 M NaCl Solution. A EQCM and EIS Study. Electrochim. Acta 2016, 202, 288–298.
- 8. Wurm, C.; Oettinger, O.; Wittkaemper, S.; Zauter, R.; Vuorilehto, K. Anode Materials for Lithium-Ion Batteries. In Lithium-Ion Batteries: Basics and Applications; Springer, 2018; pp 43–58.
- 9. Soulmi, N.; Porras-Gutierrez, A.-G.; Mordvinova, N. E.; Lebedev, O. I.; Rizzi, C.; Sirieix-Plénet, J.; Groult, H.; Dambournet, D.; Gaillon, L. Sn (TFSI) 2 as a Suitable Salt for the Electrodeposition of Nanostructured Cu 6 Sn 5–Sn Composites Obtained on a Cu Electrode in an Ionic Liquid. Inorg. Chem. Front. 2019, 6 (1), 248–256.
- 10. Mahapatra, S. Das; Dutta, I. Co-Electrodeposition of Tin with 0.2–20% Indium: Implications on Tin Whisker Growth. Surf. Coatings Technol. 2018, 337, 478–483.
- 11. Abbott, A. P.; Frisch, G.; Ryder, K. S. Electroplating Using Ionic Liquids. Annu. Rev. Mater. Res. 2013, 43, 335–358.
- 12. Smith, E. L.; Abbott, A. P.; Ryder, K. S. Deep Eutectic Solvents (DESs) and Their Applications. Chem. Rev. 2014, 114 (21), 11060–11082.
- 13. Abbott, A. P.; Capper, G.; McKenzie, K. J.; Ryder, K. S. Electrodeposition of Zinc–tin Alloys from Deep Eutectic Solvents Based on Choline Chloride. J. Electroanal. Chem. 2007, 599 (2), 288–294.
- 14. Srivastava, M.; Yoganandan, G.; William Grips, V. K. Electrodeposition of Ni and Co Coatings from Ionic Liquid. Surf. Eng. 2012, 28 (6), 424–429.
- 15. Cao, F.; Zhao, M.; Yu, Y.; Chen, B.; Huang, Y.; Yang, J.; Cao, X.; Lu, Q.; Zhang, X.; Zhang, Z.; et al. Synthesis of Two-Dimensional CoS1.097/Nitrogen-Doped Carbon Nanocomposites Using Metal-Organic Framework Nanosheets as Precursors for Supercapacitor Application. J. Am. Chem. Soc. 2016, 138 (22), 6924–6927.
- 16. Silvester, D. S.; Aldous, L.; Hardacre, C.; Compton, R. G. An Electrochemical Study of the Oxidation of Hydrogen at Platinum Electrodes in Several Room Temperature Ionic Liquids. J. Phys. Chem. B 2007, 111 (18), 5000–5007.
- 17. Abbott, A. P.; Ballantyne, A.; Harris, R. C.; Juma, J. A.; Ryder, K. S.; Forrest, G. A Comparative Study of Nickel Electrodeposition Using Deep Eutectic Solvents and Aqueous Solutions. Electrochim. Acta 2015, 176, 718–726.