Review
BibTex RIS Cite

The Effects of Silicon Addition to Bioceramic Composition on the Osteoconductive and Osteoinductive Properties

Year 2020, Volume: 7 Issue: 2, 724 - 742, 31.05.2020
https://doi.org/10.31202/ecjse.692695

Abstract

Bone replacing Ca–phosphate based materials with strong bioactive and osteoconductive properties are being used in many medical and dental applications as coating materials on implant surfaces and as scaffold for the regeneration of bone and dentin. It is possible to produce materials with enhanced biological or physico–chemical properties by doping different suitable ions into hydroxyapatite (HA) structure. Silicon (Si) is the most found element in Earth crust and has many effective properties in living bodies. The main aim of the present study is to supply the current knowledge about apatite materials which contain Si ions. After defining bone, the factors affecting new bone formation, osteoconductivity and osteoinductivity properties, the effect of Si doping into HA structure on osteoconductivite and osteoinductivite features will be mentioned.

References

  • 1. Migonney V., History of biomaterials, Wiley&Sons, 2014.
  • 2. Ratner B., Hoffman A., Schoen F., Lemons J., Biomaterials science, an introduction to materials in medicine, Elsevier, 2004.
  • 3. Ehrlich H., Biomaterials and biological materials, Marine Biological Materials of Invertebrate Origin, Springer, 2019.
  • 4. Ring M. E., Dentistry: an illustrated history, Harry N. Abrams INC, 1992.
  • 5. Hilldevrand H. F., Biomaterials, a history of 7000 years, BioNanoMat., 2013, 14(3–4): 119–133.
  • 6. Becker, M. J., Amer. J. of Archaeo., 1999, 103(1): 103–111.
  • 7. Wang M., Developing bioactive composite materials for tissue replacement, Biomaterials, 2003, 24: 2133–2151.
  • 8. Aoki H., Medical applications of hydroxyapatite, Ishiyaku EuroAmerica, Tokyo, 1994.
  • 9. Ishikawa K., In handbook of bioceramics and their applications, Woodhead Publishing Ltd. London, 2008.
  • 10. Jack L. F., Materials in dentistry: Principles and applications, Lippincott Williams & Wilkins, 2001.
  • 11. Shelton W. R. et al., Autograft versus allograft anterior cruciate ligament reconstruction, Arthroscopy, 1997.
  • 12. Vishwakarma A., Shi S., Sharpe P., Ramalingam M., Stem cell biology and tissue engeering in dental sciences, Academic Press, 2015.
  • 13. Prodromos C. C., Joyce B. T., Relative strengths of anterior crucide ligament autografts and allografts, Reconstruction and Basic Science: Second Edition, Elvevier, 2018.
  • 14. Schwartz Z. et al., J. Peridontol., 1996, 67 (9): 918–926.
  • 15. Sires B. S., Bone allograft material and method, US Patent 5,112, 354, 1992.
  • 16. Burchardt H., The biology of bone graft repair, clinical orthopaedics and related research, 1983.
  • 17. Heimann R., Surface and Coating Technology, 2013, 233: 27–38.
  • 18. Mobarakeh G. et al., Current Opinion in Biomedical Engineering, 2019, 10: 45–50.
  • 19. Hench L. L., Bioceramics: from concept to clinic, J. Am. Ceram. Soc., 1991, 74 (7): 1487–510.
  • 20. Park J. B., Biomaterials: fn introduction, Plenum Press, Newyork, 1979.
  • 21. Surmenev R. A. et al., Acta Biomater., 2014, 10: 557–579.
  • 22. Zhang N. et al., Biomaterials, 2010, 30: 7653–7665.
  • 23. Hong Y. et al., Mater. Sci. and Eng.: R: Reports, 2010, 70: 225–242.
  • 24. Daculsi G. et al., Key Eng. Mater., 2008, 361–363: 1139–1142.
  • 25. Ghannam A. E., Bone reconstruction: from bioceramics to tissue engineering, Expert Review of Medical Devices, 2005, 2: 87–101.
  • 26. Zhang X., Li X., Fan H., Liu X., Bioceramics, Trans Tech Publications Ltd., 2007.
  • 27. Ibrahim M., Wassefy N. A., Farahat D. S., Biomaterials for oral and dental tissue enginering, 8. Biocompatibility of Dental Biomaterials, 2017, 117–143.
  • 28. Kammerer P. W. et al., Clin. Oral Impl., Res., 2012, 23: 504–510.
  • 29. Sridharan R. et al., Materials Today, 2015, 18: 313–325.
  • 30. Tanaka, Y. et al., J. of Artificial Organs, 2009, 12: 182–186.
  • 31. Elias C. N., Factors affacting the success of dental implant, implant dentistry, a rapidly evolving practice, Edited by Türkyılmaz Ilser, InTech, Rijeka, Croatia, 2011.
  • 32. Harrison P., Cramer E. M., Platelet alpha–granules, Blood Rev. 1993, 1: 52–62.
  • 33. Togashi A. Y. et al., Biomedical Sci., 2016, 5:3.
  • 34. Albrektsson T., Johansson C., Osteoinduction, osteoconduction and osseointegration, Eur. Spine J., 2001, 10: 96–101.
  • 35. LeGeros R. Z., Calcium phosphate–based osteoinductive materials, Chem. Rev. 2008, 108: 4742–4753.
  • 36. Ha S. W., Weiss D., Weitzmann N., Beck G. R., Chapter 4, Applications of silica based nanomaterials in dental and skeletal biology, Nanobiomaterials in Clinic Dentistry, Micro and Nanotechnologies, 2019: 77–112.
  • 37. Farid S. B. H., Bioceramics: for materials science and engineering, Woodhead Publishing Series in Biomaterials, 2019, 77–96.
  • 38. Kämmerer P. W. et al., Clinical Oral Implants Research, 2014, 25(7): 774–780.
  • 39. Pietak, A. M. et al., Biomaterials, 2007, 28: 4023–4032.
  • 40. Yu H. et al., Silicon, 2017, 9: 543–553.
  • 41. Manchón A. et al., J. Biomed. Mater. Res. Part A, 2015, 103: 479–488.
  • 42. Wiens M. et al., Biomaterials, 2010, 31: 7716–7725.
  • 43. Alves N. M. et al., J. Mater. Chem., 2010, 20: 2911–2921.
  • 44. Marks Jr S., Odgren P. R., Structure and development of the skeleton, principles of bone biology, Academic Press, 2002.
  • 45. Ducy P. et al., Science, 2000, 289(5484): 1501–1504.
  • 46. Bateman J. P. et al., J. of Periodontal Research, 2011, 47(2): 243–247.
  • 47. Parsons A. J. et al., J. of Bionic Eng., 2010, 7: S1–S10.
  • 48. Fratzl P. et al., J. of Mater. Chem., 2004, 14: 2115–2123.
  • 49. Neo M. et al., J. Biomed. Mater. Res., 1992, 26 (11): 1419–1432.
  • 50. Jiang W., Lim H., Nanocomposites for bone repair and osteointegration with soft tissues, nanocomposites for musculoske letal tissue regenation, Editor: Huinan Liu, Woodhead Publishing, 2016.
  • 51. http://www.robaid.com/bionics/computation-3d-printing-and-testing-of-bone-inspired-composites.htm (Access Date: 21.02.2020).
  • 52. https://courses.lumenlearning.com/boundless-biology/chapter/bone/(Access Date: 21.02.2020).
  • 53. Bonewald L. F., Chapter 313–Cell–cell and cell–matrix interactions in bone, Handbook of Cell Signaling, 2647–2662, 2010.
  • 54. Manolagas S. C., Birth and death of bone cells: basic regulatory mechanisms and implications for the pathogenesis and treatment of osteoporosis, 2000, 21: 115-137.
  • 55. Camacho D. F., Pienta K. J., Cancer Metastasis Rev., 2014, 33(2–3): 545–553.
  • 56. Brown J. B., Kumbar S. G., Laurencin C. T., Bone tissue engineering, an introduction to materials, 3th Edition, Elsevier Inc., 1194–1214, 2013.
  • 57. Parvizi J., Gregory K. Kim, Chapter 163, Osteoclasts, High Yield Ortopedics, Philadelphia : Saunders/Elsevier, 337–339, 2010.
  • 58. Liu P. M. et al., Biomaterials, 2001, 13: 1721–1730.
  • 59. Yacoubi A. E. et al., Amer. J. of Mater. Sci. and Eng., 2017, 5: 1–5.
  • 60. Elliott J. C. et al., Advances in X–Ray Analysis, 2002, 45: 172–181.
  • 61. Guo S. L., Chen B .L., Durrani S. A., Chapter 4–Solid–state nuclear track detectors, Handbook of Radioactivity Analysis, 3rd Edition, 233–298, 2012.
  • 62. Okada M., Matsumoto T., Japanese Dental Sci. Rev., 2015, 51: 85–95.
  • 63. Cullinane M. C., Einhorn T. A., Chapter 2–Biomechanics of bone, principles of bone biology, Editors: Bilezikian J. P., Raisz L. G., Rodan G. A., Academic Press, 17–32, 1996.
  • 64. Rey C. et al., Osteoporos Int., 2009, 20 (6), 1013–1021.
  • 65. Vallet–Regí, M. and González–Calbet, J. M., Progress in Solid State Chemistry, 2004, 32: 1–31.
  • 66. Ehrenfest D. M. D. et al., New biomaterials and regenerative medicine strategies in periodontology, Oral Surgery, and Esthetic and Implant Dentistry 2018, BioMed Research International, 2019, 2: 1–2.
  • 67. LeGeros R. Z. et al., J. Dent. Rest., 1983, 62: 138–144.
  • 68. Zhang X., Cresswell M., Calcium phosphate materials for controlled release systems, Inorganic Controlled Release Technology, 2016, 161–187.
  • 69. Elias C. N., Factors affecting the success of dental implants, implant dentistry: a rapidly envolving practice, Editor: Türkyılmaz I., Intech, 2011, 319–362.
  • 70. LeGeros R. Z. et al., Bioceramics, 1995, 8: 81–87.
  • 71. Silva R. F. et al., BioMed Research Int., 2015, 1–17.
  • 72. Chen Z. et al., Materials Today, 2015, 1–18.
  • 73. Rambhia K. J., Ma P. X., Chapter 48–Biomineralisation and bone regeneration, principles of regenerative medicine, 3rd Edition, Academic Press, 853–866, 2019.
  • 74. Toews G. B., Chapter 11–Macrophages, asthma and copd basic mechanisms and clinical management, Academic Press, 133–143, 2009.
  • 75. Kinne R. W. et al., Arthritis Res. 2000, 2(3): 189–202.
  • 76. Davies J. E., In vitro modeling of the bone/implant interface, American Association for Anatomy, 1996, 245(2): 426–445.
  • 77. Kieswetter K. et al., Crit Rev. Oral Biol. Med., 1996, 7(4): 329–345.
  • 78. Navarrete R. O. et al., Journal of Bone and Mineral Research, 2012, 27: 1773–1783.
  • 79. Villar C. et al., Endodontic Topics, 2013, 25(1): 44–62.
  • 80. Kotha M. et al., Endosseous Integraion, EC Dental Science, 2017, 87–98.
  • 81. Lsng N. P. et al., Clin. Oral Implants Res., 2007, 18 (2): 188–196.
  • 82. Fang J. et al., Biomaterialia, 2019, 88: 503–513.
  • 83. Parithimarkalaignan S., Padmanabhan T. V., J. Indian Prosthodont Soc., 2013, 13(1): 2–6.
  • 84. Habibovic P., De Groot K., J. of Tissue Engineering and Regenerative Medicine, 2007, 1: 25–32.
  • 85. Davies J. E., Hosseini M. M., Histodynamics of end osseous wound healing, bone engineering, 1–14, 2000.
  • 86. Thorwarth M. et al., Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod., 2006, 101(3): 309–316.
  • 87. Yuan H. et al., Osteoinductive ceramics as a synthetic alternative to autologous bone grafting, Proc. Natl. Acad. Sci. USA, 2010 107(31): 13614–13619.
  • 88. Berglundh T. et al., Clin. Oral Implants Res., 2003, 14(3): 251–262.
  • 89. Ghayor C., Weber F. E., Front. Physiol., 2018, 9: 960.
  • 90. Dahiya Y. R., Bano S., Mishra S., Application of bone substitutes and its feature prospective in regenerative medicine, biomaterial–supported tissue reconstruction or regeneration, Intechopen, 2019.
  • 91. Honda M. et al., J. of Mater. Sci.: Materials in Medicine, 2012, 23: 2923–2932.
  • 92. Wu C. T., Chang J., J. Inorg. Mater., 2013, 28: 29–39.
  • 93. Wang C. et al., Biomaterials, 2013, 34: 64–77.
  • 94. Götz W. et al., Parmaceutics, 2019, 11: 117.
  • 95. Henstock J. R. et al., Acta Biomater., 2015, 11: 17–26.
  • 96. Jugdaohsingh R., J. Nutr. Health Aging, 2007, 11: 99–110.
  • 97. Rodella L. F. et al., J. Nutr. Health Aging, 2014, 18: 820–826.
  • 98. Wang X. et al., Curr. Opin. Biotechnol. 2012, 23: 570–578.
  • 99. Keeting P. E. et al., J. Bone Miner. Res, 1992, 7: 1281–1289.
  • 100. Xynos I. D. et al., Biochem. Biophys. Res. Commun., 2000, 276: 461–465.
  • 101. Szurkowska K. et al., Progress in Nature Science: Mater. Int., 2017, 27: 401–409.
  • 102. Schwarz K., A bound form of silicon in glycosaminoglycans and polyuronides, Proc. Natl. Acad. Sci. USA. 1973, 70(5): 1608–1612.
  • 103. Hench, L. L. et al., J. Non–Cryst. Solids, 1972, 8–10: 837.
  • 104. Bothelho C. M. et al., J. Biomed. Mater. Res. A., 2006; 79A: 723–730.
  • 105. Reffitt D. M. et al., Bone, 2003, 32: 127–135.
  • 106. Leventouri T. et al., Biomaterials, 2003, 24: 4205–4211.
  • 107. Botelho C. M. et al., J. Mater. Sci., Mater. Med., 2002, 13: 1123–1127.
  • 108. Zou S., Ireland D., Brooks R. A., Ruston N., Best S., The effects of silicate ions on human ostepblast adhesion, proliferation and differentiation, Wiley Inter Science, 123–130, 2008.
  • 109. Rodriguez A. D. et al., Chem. Mater., 2004, 16: 2300–2308.
  • 110. Leventouri T. et al., Biomaterials, 2003, 24: 4205–4211.
  • 111. Gibson J. R. et al., J. Biomed. Mater. Res. 44, 1999, 422–428.
  • 112. Palard M. et al., Acta Biomater., 5, 2009, 1223–1232.
  • 113. Camaioni A., Cacciotti I., Campagnolo L., Bianco A., Silicon–substitued hydroxyapatite for biomedical applications, Woodhead Publishing, Cambridge, 343–373, 2015.
  • 114. Aminian A. et al., Ceram. Int. 37, 2011, 1219, 1229.
  • 115. Gomes S. et al., Acta Biomater., 2010, 6: 3264–74.
  • 116. Yanling Z. et al., Wu C., Chang J., Materials Today, 2019, 24: 41–56.
  • 117. Zhang D. et al., Acta Biomater., 2008, 4: 1498–1505.
  • 118. Fernandes H. R., Gaddam A., Rebelo A., Brazete D., Stan E. G., Ferreira J. M. F., Bioactive glasses and glass–ceramics for healthcare applications in bone regeneration and tissue engineering, Materials (Basel), 2018, 11(12): 2530.
  • 119. Hench L. L., Andersson O., Bioactive glasses, an introduction to bioceramics, 41–62, 1993.
  • 120. Zhai W. et al., Acta Biomaterialia, 2013, 8004–8014.
  • 121. Cao L. H. et al., J. Inorg. Mater., 2011, 26: 591–596.
  • 122. Xu S. et al., Biomaterials, 2008, 29: 2588–2596.
  • 123. Varanas V. G. et al., L. Oral Implantol., 2012, 38: 325–326.
  • 124. Yamada Y. et al., J. of Asian Ceram. Soc., 2019, 7: 101–108.
  • 125. Mao Z. et al., Ceramics Int., 2020, 46: 353–364.
  • 126. Ghanaati S. et al., Implantation of silicon dioxide based nanocrystalline hydroxyapatite and pure phase beta tricalcium phosphate bone substitute granules in caprine muscle tissue does not induce new bone formation, Head Face Med., 2013, 9:1.
  • 127. Sun C. et al., Development and performance analysis of Si–CaP/fine particulate bone powder combined grafts for bone regeneration, BioMed. Eng. OnLine, 2015, 14: 47.
  • 128. Wang W., Yeung K.W.K., Bone grafts and biomaterials substitutes for bone defect repair: A review, Bioactive Materials, 2017, 224–247.
  • 129. Carlisle M., 7. Silicon, trace elements in Human and animal nutrition, Editor: Mertz W., Academic Press, 1986.
  • 130. Carlisle E. M.,, Silicon: a possible factor in bone calcification, Science, 1970, 167, 279–280.
  • 131. Bohner M., Biomaterials, 2009, 30, 6403–6406.
  • 132. Ravidran N. A. et al., J. Stem Cell Res. Ther., 2016, 2(1): 1–8.
  • 133. Roh J. et al., Materials, 2016, 2: 97.
  • 134. Sun J. et al., Comparative study of hydroxyapatite, fluor–hydroxyapatite and Si–substituted hydroxyapatite nanoparticles on osteogenic, osteoclastic and antibacterial ability, RSC Advances, 2019, 9: 16106–16118.
  • 135. Mumith A. et al., The effect of strontium and silicon substituted hydroxyapatite electrochemical coatings on bone ingrowth and osseointegration of selective laser sintered porous metal implants, Plos One, 2020, 15(1): 1–19.
  • 136. Douard N. et al., Mater. Sci. Eng. C, 2011, 31: 531–539.

Biyo–Seramik Bileşimine Silisyum Katkısının Osteokondüktif ve Osteoindüktif Özelliklere Etkisi

Year 2020, Volume: 7 Issue: 2, 724 - 742, 31.05.2020
https://doi.org/10.31202/ecjse.692695

Abstract

Güçlü biyo–aktif ve osteokondüktif özelliklere sahip, kalsiyum fosfat esaslı kemik ikame malzemeleri birçok tıp ve diş uygulamasında implant yüzeyinde çimento veya kaplama malzemesi, kemik ve dentinin yeniden oluşumu (rejenerasyonu) için de iskele olarak kullanılırlar. Kısmi iyon ikamesi için hidroksiapatit (HA) kapasitesinden yararlanılarak HA yapısına farklı iyonlar dâhil edilip gelişmiş biyolojik veya fiziko–kimyasal özellikli malzemeler üretilebilir. Yeryüzünde en fazla bulunan element olan silisyum (Si), canlı vücudunda da pek çok etkin özelliğe sahiptir. Bu çalışmanın amacı Si iyonları ile ikame edilmiş apatit malzemeleri hakkındaki güncel bilgileri sunmaktadır. Kemik, yeni kemik oluşumunu etkileyen parametreler, osteokondüktivite ve osteoindüktivite özellikleri tanımlandıktan sonra HA yapısında kısmi Si iyonu katkısının osteokondüktif ve osteoindüktif özellikleri nasıl etkilediğine dair güncel bilgiler verilmiştir.

References

  • 1. Migonney V., History of biomaterials, Wiley&Sons, 2014.
  • 2. Ratner B., Hoffman A., Schoen F., Lemons J., Biomaterials science, an introduction to materials in medicine, Elsevier, 2004.
  • 3. Ehrlich H., Biomaterials and biological materials, Marine Biological Materials of Invertebrate Origin, Springer, 2019.
  • 4. Ring M. E., Dentistry: an illustrated history, Harry N. Abrams INC, 1992.
  • 5. Hilldevrand H. F., Biomaterials, a history of 7000 years, BioNanoMat., 2013, 14(3–4): 119–133.
  • 6. Becker, M. J., Amer. J. of Archaeo., 1999, 103(1): 103–111.
  • 7. Wang M., Developing bioactive composite materials for tissue replacement, Biomaterials, 2003, 24: 2133–2151.
  • 8. Aoki H., Medical applications of hydroxyapatite, Ishiyaku EuroAmerica, Tokyo, 1994.
  • 9. Ishikawa K., In handbook of bioceramics and their applications, Woodhead Publishing Ltd. London, 2008.
  • 10. Jack L. F., Materials in dentistry: Principles and applications, Lippincott Williams & Wilkins, 2001.
  • 11. Shelton W. R. et al., Autograft versus allograft anterior cruciate ligament reconstruction, Arthroscopy, 1997.
  • 12. Vishwakarma A., Shi S., Sharpe P., Ramalingam M., Stem cell biology and tissue engeering in dental sciences, Academic Press, 2015.
  • 13. Prodromos C. C., Joyce B. T., Relative strengths of anterior crucide ligament autografts and allografts, Reconstruction and Basic Science: Second Edition, Elvevier, 2018.
  • 14. Schwartz Z. et al., J. Peridontol., 1996, 67 (9): 918–926.
  • 15. Sires B. S., Bone allograft material and method, US Patent 5,112, 354, 1992.
  • 16. Burchardt H., The biology of bone graft repair, clinical orthopaedics and related research, 1983.
  • 17. Heimann R., Surface and Coating Technology, 2013, 233: 27–38.
  • 18. Mobarakeh G. et al., Current Opinion in Biomedical Engineering, 2019, 10: 45–50.
  • 19. Hench L. L., Bioceramics: from concept to clinic, J. Am. Ceram. Soc., 1991, 74 (7): 1487–510.
  • 20. Park J. B., Biomaterials: fn introduction, Plenum Press, Newyork, 1979.
  • 21. Surmenev R. A. et al., Acta Biomater., 2014, 10: 557–579.
  • 22. Zhang N. et al., Biomaterials, 2010, 30: 7653–7665.
  • 23. Hong Y. et al., Mater. Sci. and Eng.: R: Reports, 2010, 70: 225–242.
  • 24. Daculsi G. et al., Key Eng. Mater., 2008, 361–363: 1139–1142.
  • 25. Ghannam A. E., Bone reconstruction: from bioceramics to tissue engineering, Expert Review of Medical Devices, 2005, 2: 87–101.
  • 26. Zhang X., Li X., Fan H., Liu X., Bioceramics, Trans Tech Publications Ltd., 2007.
  • 27. Ibrahim M., Wassefy N. A., Farahat D. S., Biomaterials for oral and dental tissue enginering, 8. Biocompatibility of Dental Biomaterials, 2017, 117–143.
  • 28. Kammerer P. W. et al., Clin. Oral Impl., Res., 2012, 23: 504–510.
  • 29. Sridharan R. et al., Materials Today, 2015, 18: 313–325.
  • 30. Tanaka, Y. et al., J. of Artificial Organs, 2009, 12: 182–186.
  • 31. Elias C. N., Factors affacting the success of dental implant, implant dentistry, a rapidly evolving practice, Edited by Türkyılmaz Ilser, InTech, Rijeka, Croatia, 2011.
  • 32. Harrison P., Cramer E. M., Platelet alpha–granules, Blood Rev. 1993, 1: 52–62.
  • 33. Togashi A. Y. et al., Biomedical Sci., 2016, 5:3.
  • 34. Albrektsson T., Johansson C., Osteoinduction, osteoconduction and osseointegration, Eur. Spine J., 2001, 10: 96–101.
  • 35. LeGeros R. Z., Calcium phosphate–based osteoinductive materials, Chem. Rev. 2008, 108: 4742–4753.
  • 36. Ha S. W., Weiss D., Weitzmann N., Beck G. R., Chapter 4, Applications of silica based nanomaterials in dental and skeletal biology, Nanobiomaterials in Clinic Dentistry, Micro and Nanotechnologies, 2019: 77–112.
  • 37. Farid S. B. H., Bioceramics: for materials science and engineering, Woodhead Publishing Series in Biomaterials, 2019, 77–96.
  • 38. Kämmerer P. W. et al., Clinical Oral Implants Research, 2014, 25(7): 774–780.
  • 39. Pietak, A. M. et al., Biomaterials, 2007, 28: 4023–4032.
  • 40. Yu H. et al., Silicon, 2017, 9: 543–553.
  • 41. Manchón A. et al., J. Biomed. Mater. Res. Part A, 2015, 103: 479–488.
  • 42. Wiens M. et al., Biomaterials, 2010, 31: 7716–7725.
  • 43. Alves N. M. et al., J. Mater. Chem., 2010, 20: 2911–2921.
  • 44. Marks Jr S., Odgren P. R., Structure and development of the skeleton, principles of bone biology, Academic Press, 2002.
  • 45. Ducy P. et al., Science, 2000, 289(5484): 1501–1504.
  • 46. Bateman J. P. et al., J. of Periodontal Research, 2011, 47(2): 243–247.
  • 47. Parsons A. J. et al., J. of Bionic Eng., 2010, 7: S1–S10.
  • 48. Fratzl P. et al., J. of Mater. Chem., 2004, 14: 2115–2123.
  • 49. Neo M. et al., J. Biomed. Mater. Res., 1992, 26 (11): 1419–1432.
  • 50. Jiang W., Lim H., Nanocomposites for bone repair and osteointegration with soft tissues, nanocomposites for musculoske letal tissue regenation, Editor: Huinan Liu, Woodhead Publishing, 2016.
  • 51. http://www.robaid.com/bionics/computation-3d-printing-and-testing-of-bone-inspired-composites.htm (Access Date: 21.02.2020).
  • 52. https://courses.lumenlearning.com/boundless-biology/chapter/bone/(Access Date: 21.02.2020).
  • 53. Bonewald L. F., Chapter 313–Cell–cell and cell–matrix interactions in bone, Handbook of Cell Signaling, 2647–2662, 2010.
  • 54. Manolagas S. C., Birth and death of bone cells: basic regulatory mechanisms and implications for the pathogenesis and treatment of osteoporosis, 2000, 21: 115-137.
  • 55. Camacho D. F., Pienta K. J., Cancer Metastasis Rev., 2014, 33(2–3): 545–553.
  • 56. Brown J. B., Kumbar S. G., Laurencin C. T., Bone tissue engineering, an introduction to materials, 3th Edition, Elsevier Inc., 1194–1214, 2013.
  • 57. Parvizi J., Gregory K. Kim, Chapter 163, Osteoclasts, High Yield Ortopedics, Philadelphia : Saunders/Elsevier, 337–339, 2010.
  • 58. Liu P. M. et al., Biomaterials, 2001, 13: 1721–1730.
  • 59. Yacoubi A. E. et al., Amer. J. of Mater. Sci. and Eng., 2017, 5: 1–5.
  • 60. Elliott J. C. et al., Advances in X–Ray Analysis, 2002, 45: 172–181.
  • 61. Guo S. L., Chen B .L., Durrani S. A., Chapter 4–Solid–state nuclear track detectors, Handbook of Radioactivity Analysis, 3rd Edition, 233–298, 2012.
  • 62. Okada M., Matsumoto T., Japanese Dental Sci. Rev., 2015, 51: 85–95.
  • 63. Cullinane M. C., Einhorn T. A., Chapter 2–Biomechanics of bone, principles of bone biology, Editors: Bilezikian J. P., Raisz L. G., Rodan G. A., Academic Press, 17–32, 1996.
  • 64. Rey C. et al., Osteoporos Int., 2009, 20 (6), 1013–1021.
  • 65. Vallet–Regí, M. and González–Calbet, J. M., Progress in Solid State Chemistry, 2004, 32: 1–31.
  • 66. Ehrenfest D. M. D. et al., New biomaterials and regenerative medicine strategies in periodontology, Oral Surgery, and Esthetic and Implant Dentistry 2018, BioMed Research International, 2019, 2: 1–2.
  • 67. LeGeros R. Z. et al., J. Dent. Rest., 1983, 62: 138–144.
  • 68. Zhang X., Cresswell M., Calcium phosphate materials for controlled release systems, Inorganic Controlled Release Technology, 2016, 161–187.
  • 69. Elias C. N., Factors affecting the success of dental implants, implant dentistry: a rapidly envolving practice, Editor: Türkyılmaz I., Intech, 2011, 319–362.
  • 70. LeGeros R. Z. et al., Bioceramics, 1995, 8: 81–87.
  • 71. Silva R. F. et al., BioMed Research Int., 2015, 1–17.
  • 72. Chen Z. et al., Materials Today, 2015, 1–18.
  • 73. Rambhia K. J., Ma P. X., Chapter 48–Biomineralisation and bone regeneration, principles of regenerative medicine, 3rd Edition, Academic Press, 853–866, 2019.
  • 74. Toews G. B., Chapter 11–Macrophages, asthma and copd basic mechanisms and clinical management, Academic Press, 133–143, 2009.
  • 75. Kinne R. W. et al., Arthritis Res. 2000, 2(3): 189–202.
  • 76. Davies J. E., In vitro modeling of the bone/implant interface, American Association for Anatomy, 1996, 245(2): 426–445.
  • 77. Kieswetter K. et al., Crit Rev. Oral Biol. Med., 1996, 7(4): 329–345.
  • 78. Navarrete R. O. et al., Journal of Bone and Mineral Research, 2012, 27: 1773–1783.
  • 79. Villar C. et al., Endodontic Topics, 2013, 25(1): 44–62.
  • 80. Kotha M. et al., Endosseous Integraion, EC Dental Science, 2017, 87–98.
  • 81. Lsng N. P. et al., Clin. Oral Implants Res., 2007, 18 (2): 188–196.
  • 82. Fang J. et al., Biomaterialia, 2019, 88: 503–513.
  • 83. Parithimarkalaignan S., Padmanabhan T. V., J. Indian Prosthodont Soc., 2013, 13(1): 2–6.
  • 84. Habibovic P., De Groot K., J. of Tissue Engineering and Regenerative Medicine, 2007, 1: 25–32.
  • 85. Davies J. E., Hosseini M. M., Histodynamics of end osseous wound healing, bone engineering, 1–14, 2000.
  • 86. Thorwarth M. et al., Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod., 2006, 101(3): 309–316.
  • 87. Yuan H. et al., Osteoinductive ceramics as a synthetic alternative to autologous bone grafting, Proc. Natl. Acad. Sci. USA, 2010 107(31): 13614–13619.
  • 88. Berglundh T. et al., Clin. Oral Implants Res., 2003, 14(3): 251–262.
  • 89. Ghayor C., Weber F. E., Front. Physiol., 2018, 9: 960.
  • 90. Dahiya Y. R., Bano S., Mishra S., Application of bone substitutes and its feature prospective in regenerative medicine, biomaterial–supported tissue reconstruction or regeneration, Intechopen, 2019.
  • 91. Honda M. et al., J. of Mater. Sci.: Materials in Medicine, 2012, 23: 2923–2932.
  • 92. Wu C. T., Chang J., J. Inorg. Mater., 2013, 28: 29–39.
  • 93. Wang C. et al., Biomaterials, 2013, 34: 64–77.
  • 94. Götz W. et al., Parmaceutics, 2019, 11: 117.
  • 95. Henstock J. R. et al., Acta Biomater., 2015, 11: 17–26.
  • 96. Jugdaohsingh R., J. Nutr. Health Aging, 2007, 11: 99–110.
  • 97. Rodella L. F. et al., J. Nutr. Health Aging, 2014, 18: 820–826.
  • 98. Wang X. et al., Curr. Opin. Biotechnol. 2012, 23: 570–578.
  • 99. Keeting P. E. et al., J. Bone Miner. Res, 1992, 7: 1281–1289.
  • 100. Xynos I. D. et al., Biochem. Biophys. Res. Commun., 2000, 276: 461–465.
  • 101. Szurkowska K. et al., Progress in Nature Science: Mater. Int., 2017, 27: 401–409.
  • 102. Schwarz K., A bound form of silicon in glycosaminoglycans and polyuronides, Proc. Natl. Acad. Sci. USA. 1973, 70(5): 1608–1612.
  • 103. Hench, L. L. et al., J. Non–Cryst. Solids, 1972, 8–10: 837.
  • 104. Bothelho C. M. et al., J. Biomed. Mater. Res. A., 2006; 79A: 723–730.
  • 105. Reffitt D. M. et al., Bone, 2003, 32: 127–135.
  • 106. Leventouri T. et al., Biomaterials, 2003, 24: 4205–4211.
  • 107. Botelho C. M. et al., J. Mater. Sci., Mater. Med., 2002, 13: 1123–1127.
  • 108. Zou S., Ireland D., Brooks R. A., Ruston N., Best S., The effects of silicate ions on human ostepblast adhesion, proliferation and differentiation, Wiley Inter Science, 123–130, 2008.
  • 109. Rodriguez A. D. et al., Chem. Mater., 2004, 16: 2300–2308.
  • 110. Leventouri T. et al., Biomaterials, 2003, 24: 4205–4211.
  • 111. Gibson J. R. et al., J. Biomed. Mater. Res. 44, 1999, 422–428.
  • 112. Palard M. et al., Acta Biomater., 5, 2009, 1223–1232.
  • 113. Camaioni A., Cacciotti I., Campagnolo L., Bianco A., Silicon–substitued hydroxyapatite for biomedical applications, Woodhead Publishing, Cambridge, 343–373, 2015.
  • 114. Aminian A. et al., Ceram. Int. 37, 2011, 1219, 1229.
  • 115. Gomes S. et al., Acta Biomater., 2010, 6: 3264–74.
  • 116. Yanling Z. et al., Wu C., Chang J., Materials Today, 2019, 24: 41–56.
  • 117. Zhang D. et al., Acta Biomater., 2008, 4: 1498–1505.
  • 118. Fernandes H. R., Gaddam A., Rebelo A., Brazete D., Stan E. G., Ferreira J. M. F., Bioactive glasses and glass–ceramics for healthcare applications in bone regeneration and tissue engineering, Materials (Basel), 2018, 11(12): 2530.
  • 119. Hench L. L., Andersson O., Bioactive glasses, an introduction to bioceramics, 41–62, 1993.
  • 120. Zhai W. et al., Acta Biomaterialia, 2013, 8004–8014.
  • 121. Cao L. H. et al., J. Inorg. Mater., 2011, 26: 591–596.
  • 122. Xu S. et al., Biomaterials, 2008, 29: 2588–2596.
  • 123. Varanas V. G. et al., L. Oral Implantol., 2012, 38: 325–326.
  • 124. Yamada Y. et al., J. of Asian Ceram. Soc., 2019, 7: 101–108.
  • 125. Mao Z. et al., Ceramics Int., 2020, 46: 353–364.
  • 126. Ghanaati S. et al., Implantation of silicon dioxide based nanocrystalline hydroxyapatite and pure phase beta tricalcium phosphate bone substitute granules in caprine muscle tissue does not induce new bone formation, Head Face Med., 2013, 9:1.
  • 127. Sun C. et al., Development and performance analysis of Si–CaP/fine particulate bone powder combined grafts for bone regeneration, BioMed. Eng. OnLine, 2015, 14: 47.
  • 128. Wang W., Yeung K.W.K., Bone grafts and biomaterials substitutes for bone defect repair: A review, Bioactive Materials, 2017, 224–247.
  • 129. Carlisle M., 7. Silicon, trace elements in Human and animal nutrition, Editor: Mertz W., Academic Press, 1986.
  • 130. Carlisle E. M.,, Silicon: a possible factor in bone calcification, Science, 1970, 167, 279–280.
  • 131. Bohner M., Biomaterials, 2009, 30, 6403–6406.
  • 132. Ravidran N. A. et al., J. Stem Cell Res. Ther., 2016, 2(1): 1–8.
  • 133. Roh J. et al., Materials, 2016, 2: 97.
  • 134. Sun J. et al., Comparative study of hydroxyapatite, fluor–hydroxyapatite and Si–substituted hydroxyapatite nanoparticles on osteogenic, osteoclastic and antibacterial ability, RSC Advances, 2019, 9: 16106–16118.
  • 135. Mumith A. et al., The effect of strontium and silicon substituted hydroxyapatite electrochemical coatings on bone ingrowth and osseointegration of selective laser sintered porous metal implants, Plos One, 2020, 15(1): 1–19.
  • 136. Douard N. et al., Mater. Sci. Eng. C, 2011, 31: 531–539.
There are 136 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Makaleler
Authors

Fazilet Ergöz This is me 0000-0002-7769-9863

Bekir Karasu 0000-0002-7769-9863

Publication Date May 31, 2020
Submission Date February 21, 2020
Acceptance Date April 13, 2020
Published in Issue Year 2020 Volume: 7 Issue: 2

Cite

IEEE F. Ergöz and B. Karasu, “Biyo–Seramik Bileşimine Silisyum Katkısının Osteokondüktif ve Osteoindüktif Özelliklere Etkisi”, El-Cezeri Journal of Science and Engineering, vol. 7, no. 2, pp. 724–742, 2020, doi: 10.31202/ecjse.692695.
Creative Commons License El-Cezeri is licensed to the public under a Creative Commons Attribution 4.0 license.
88x31.png