Research Article
BibTex RIS Cite

Yanlı Oransal Seyrüsefer ile İnsansız Hava Araçları için Yörünge Takibi

Year 2020, Volume: 7 Issue: 3, 1432 - 1439, 30.09.2020
https://doi.org/10.31202/ecjse.731625

Abstract

İnsansız hava araçları için yörünge takibine yönelik, geometrik yöntemleri temel alan füze güdümü alanından bir çözüm önerilmiştir. Bu çözüm yanlı saf oransal seyrüsefer olarak da tanımlanan bir yöntemdir. Sanal hedef konsepti kullanılarak yörünge takip problemi, bir kuyruk takibi problemine dönüştürülmüştür. Sanal hedefin yörünge üzerinde hareket etmesi ve takipçinin de sanal hedefi kuyruk takibine almasıyla, yörünge takibi elde edilmiştir. Sanal hedefin hızı, takipçiye olan mesafesi ile tasarımcı tarafından belirlenen sabit bir kuyruk takip mesafesinin oranına bağlıdır. Güdüm kanunu için bir seyrüsefer sabiti seçilmesi ve bir de yanlılık terimi tasarlanması gerekmektedir. Bahsi geçen yanlılık terimi, çarpma açısı ve kuyruk takibi problemlerinin benzerliği kullanılarak bulunur. Numerik benzetim çalışmaları düz ve eğri olmak üzere iki yörünge üzerinde gösterilmiştir. Farklı seyrüsefer sabitlerinin ve tasarımcının belirlediği kuyruk takip mesafesinin, takip performansı üzerindeki etkisi tartışılmıştır.

References

  • [1] Amidi, O., Thorpe, C., “Integrated Mobile Robot Control”, Mobile Robots V, 1991, 1388.
  • [2] Ollero, A., Heredia, G., “Stability Analysis Of Mobile Robot Path Tracking”, IEEE International Conference on Intelligent Robots and Systems, 1995, 3, 461-466.
  • [3] Ratnoo, A., Hayoun, S.Y., Granot, A. ve Shima, T., “Path Following Using Trajectory Shaping Guidance”, AIAA Journal of Guidance, Control, and Dynamics, 2015, 38(1), 106–116.
  • [4] Zarchan, P., Tactical and Strategic Missile Guidance, 4th ed., AIAA, Reston, 2002, 541-569.
  • [5] Sujit, P.B., Saripalli, S. ve Sousa, B.J., “Unmanned Aerial Vehicle Path Following: A Survey and Analysis of Algorithms for Fixed-Wing Unmanned Aerial Vehicles”, IEEE Control Systems, 2014, 34(1), 42–59.
  • [6] B. Rubí, R. Pérez, B. Morcego, “A Survey of Path Following Control Strategies for UAVs Focused on Quadrotors”, Journal of Intelligent. Robotic Systems, 2019, 1-25.
  • [7] Rafo, G.V., Ortega, M.G., Rubio, F.R., “Backstepping/Nonlinear H-infinity Control for Path Tracking of a Quadrotor Unmanned Aerial Vehicle”, 2008, American Control Conference, 1(12), 3356- 3361.
  • [8] Cichella, V., Choe, R., Mehdi, S.B., Xargay, E., Hovakimyan, N., Kaminer, I., Dobrokhodov, V., “A 3D Path-following Approach for a Multirotor UAV on so(3)”, IFAC Proceedings, 2013, 46, 13-18.
  • [9] Roza, A., Maggiore, M., “Path Following Controller for a Quadrotor Helicopter”, American Control Conference, 2012, 4655-4660. [10] Nelson, D.R., Barber, D.B., McLain, T.W., Beard, R.W., “Vector Field Path Following for Miniature Air Vehicles”, IEEE Transactions on Robotics, 2007, 23(3), 519-529.
  • [11] Zhou, D., Schwager, M., “Vector Field Following for Quadrotors Using Differential Flatness” IEEE International Conference on Robotics and Automation, 2014, 6567-6572.
  • [12] Micaelli, A., Samson, C., Robotique, P., Icare, P., “Trajectory Tracking for Unicycle-type and Two-Steering-Wheels Mobile Robots ”, IFAC Proceedings Volumes, 1994, 27, 249-256.
  • [13] Medagoda, E.D.B. ve Gibbens, P.W., “Synthetic-Waypoint Guidance Algorithm for Following a Desired Flight Trajectory”, AIAA Journal of Guidance, Control, and Dynamics, 2010, 33(2), 601–606.
  • [14] Erer, K.S., Tekin, R., ve Özgören, M.K., “Biased Proportional Navigation with Exponentially Decaying Error for Impact Angle Control and Path Following”, 24th Mediterranean Conference on Control and Automation (MED), 2016, IEEE Publ., Piscataway, NJ, pp. 238–243.
  • [15] Kim, B.S., Lee, J.G., Hyung, S. ve Han, H.S., “Biased PNG Law for Impact with Angular Constraint”, IEEE Transactions on Aerospace and Electronic Systems, 34(1), 277–288.
  • [16] Erer, K.S., ve Merttopçuoglu, O., “Indirect Impact-Angle-Control Against Stationary Targets Using Biased Pure Proportional Navigation”, AIAA Journal of Guidance, Control, and Dynamics, 2012, 35(2), 700–704.
Year 2020, Volume: 7 Issue: 3, 1432 - 1439, 30.09.2020
https://doi.org/10.31202/ecjse.731625

Abstract

References

  • [1] Amidi, O., Thorpe, C., “Integrated Mobile Robot Control”, Mobile Robots V, 1991, 1388.
  • [2] Ollero, A., Heredia, G., “Stability Analysis Of Mobile Robot Path Tracking”, IEEE International Conference on Intelligent Robots and Systems, 1995, 3, 461-466.
  • [3] Ratnoo, A., Hayoun, S.Y., Granot, A. ve Shima, T., “Path Following Using Trajectory Shaping Guidance”, AIAA Journal of Guidance, Control, and Dynamics, 2015, 38(1), 106–116.
  • [4] Zarchan, P., Tactical and Strategic Missile Guidance, 4th ed., AIAA, Reston, 2002, 541-569.
  • [5] Sujit, P.B., Saripalli, S. ve Sousa, B.J., “Unmanned Aerial Vehicle Path Following: A Survey and Analysis of Algorithms for Fixed-Wing Unmanned Aerial Vehicles”, IEEE Control Systems, 2014, 34(1), 42–59.
  • [6] B. Rubí, R. Pérez, B. Morcego, “A Survey of Path Following Control Strategies for UAVs Focused on Quadrotors”, Journal of Intelligent. Robotic Systems, 2019, 1-25.
  • [7] Rafo, G.V., Ortega, M.G., Rubio, F.R., “Backstepping/Nonlinear H-infinity Control for Path Tracking of a Quadrotor Unmanned Aerial Vehicle”, 2008, American Control Conference, 1(12), 3356- 3361.
  • [8] Cichella, V., Choe, R., Mehdi, S.B., Xargay, E., Hovakimyan, N., Kaminer, I., Dobrokhodov, V., “A 3D Path-following Approach for a Multirotor UAV on so(3)”, IFAC Proceedings, 2013, 46, 13-18.
  • [9] Roza, A., Maggiore, M., “Path Following Controller for a Quadrotor Helicopter”, American Control Conference, 2012, 4655-4660. [10] Nelson, D.R., Barber, D.B., McLain, T.W., Beard, R.W., “Vector Field Path Following for Miniature Air Vehicles”, IEEE Transactions on Robotics, 2007, 23(3), 519-529.
  • [11] Zhou, D., Schwager, M., “Vector Field Following for Quadrotors Using Differential Flatness” IEEE International Conference on Robotics and Automation, 2014, 6567-6572.
  • [12] Micaelli, A., Samson, C., Robotique, P., Icare, P., “Trajectory Tracking for Unicycle-type and Two-Steering-Wheels Mobile Robots ”, IFAC Proceedings Volumes, 1994, 27, 249-256.
  • [13] Medagoda, E.D.B. ve Gibbens, P.W., “Synthetic-Waypoint Guidance Algorithm for Following a Desired Flight Trajectory”, AIAA Journal of Guidance, Control, and Dynamics, 2010, 33(2), 601–606.
  • [14] Erer, K.S., Tekin, R., ve Özgören, M.K., “Biased Proportional Navigation with Exponentially Decaying Error for Impact Angle Control and Path Following”, 24th Mediterranean Conference on Control and Automation (MED), 2016, IEEE Publ., Piscataway, NJ, pp. 238–243.
  • [15] Kim, B.S., Lee, J.G., Hyung, S. ve Han, H.S., “Biased PNG Law for Impact with Angular Constraint”, IEEE Transactions on Aerospace and Electronic Systems, 34(1), 277–288.
  • [16] Erer, K.S., ve Merttopçuoglu, O., “Indirect Impact-Angle-Control Against Stationary Targets Using Biased Pure Proportional Navigation”, AIAA Journal of Guidance, Control, and Dynamics, 2012, 35(2), 700–704.
There are 15 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Makaleler
Authors

Raziye Tekin 0000-0001-7628-962X

Koray Savaş Erer This is me 0000-0002-3349-6730

Publication Date September 30, 2020
Submission Date May 4, 2020
Acceptance Date September 17, 2020
Published in Issue Year 2020 Volume: 7 Issue: 3

Cite

IEEE R. Tekin and K. S. Erer, “Yanlı Oransal Seyrüsefer ile İnsansız Hava Araçları için Yörünge Takibi”, El-Cezeri Journal of Science and Engineering, vol. 7, no. 3, pp. 1432–1439, 2020, doi: 10.31202/ecjse.731625.
Creative Commons License El-Cezeri is licensed to the public under a Creative Commons Attribution 4.0 license.
88x31.png