Research Article
BibTex RIS Cite

Değişik Ortam Ve Sistem Parametreleri İçin Sualtı Kablosuz Optik Haberleşme Monte Carlo Kanal Kapasitesinin İncelenmesi

Year 2021, Volume: 8 Issue: 2, 567 - 581, 31.05.2021
https://doi.org/10.31202/ecjse.842290

Abstract

Okyanuslara olan ilginin gün geçtikçe artması, bu alanda yapılan ve sualtı kablosuz haberleşme
sistemlerinin sıklıkla kullanıldığı bilimsel, ticari ve askeri ağırlıklı çalışmaları da artırmaktadır. Literatürde,
sualtında kablosuz olarak senkron ve yüksek hızlı veri aktarımı ancak optik sistemlerle yapılabilmektedir. Sualtı
ortamının optik dalgalar üzerindeki bozucu etkileri, sualtı kablosuz optik haberleşme (UWOC) sistemlerinin
haberleşme mesafesini ve hızını önemli ölçüde etkilemektedir. Bu nedenle, güvenilir UWOC sistemlerinin
tasarlanabilmesi için farklı sualtı ortamlarının UWOC sistemleri üzerindeki etkilerinin detaylı bir şekilde
incelenmesi ve bu incelemelerin de gerçekçi bir kanal modeli üzerinden yapılması önem arz etmektedir. Bu
çalışmada, yaklaşık kanal modelleri yerine, sağladığı yüksek doğruluk ve hassasiyeti ile literatürde kabul
görmüş olan Monte Carlo yaklaşımlı UWOC kanal modeli kullanılmış olup, UWOC sistemleri için önemli
tasarım parametreleri olan vericinin ışını yayma açısı, alıcının açıklık çapı parametrelerinin tipik bir UWOC
sistemi üzerindeki etkileri incelenmiştir. Yapılan incelemelerde, literatürde sıklıkla karşılaştırma amacıyla
kullanılan temiz okyanus suyu, kıyı okyanus suyu ve liman suyu olmak üzere üç farklı sualtı ortamı dikkate
alınmış olup, her sualtı ortamı için kanal dürtü yanıtları, sinyal gürültü oranı ve kanal kapasitesi dağılımları
sunulmuş ve yorumlanmıştır. Elde edilen sonuçlar ile tipik bir UWOC sisteminin haberleşme hızı ve mesafe
sınırları belirlenmiş olup, farklı sualtı ortamlarında ve parametre değerlerinde kullanılabilecek UWOC
sistemleri için bir öngörü sağlanmıştır.

References

  • [1] Miramirkhani F., Uysal, M., Visible Light Communication Channel Modeling for Underwater Environments with Blocking and Shadowing, IEEE Access, 2017, 6: 1082-1090.
  • [2] Chen H., Chen X., Lu J., Liu X., Shi J., Zheng L., Liu R., Zhou X., Tian P., Toward Long-Distance Underwater Wireless Optical Communication Based on A High-Sensitivity Single Photon Avalanche Diode, IEEE Photonics Journal, 2020, 12(3): 7902510.
  • [3] Shihada B., Amin O., Bainbridge C., Jardak S., Alkhazragi O., Ng T.K., Ooi B., Berumen M., Alouini M.S., Aqua-Fi: Delivering Internet Underwater Using Wireless Optical Networks, IEEE Communications Magazine, 2020, 58(5): 84-89.
  • [4] Lin T., Gong C., Luo J., Xu Z., Dynamic Optical Wireless Communication Channel Characterization Through Air-Water Interface, IEEE/CIC International Conference On Communications in China, 2020, Chongqing, China.
  • [5] Kaushal H., Kaddoum G., Underwater Optical Wireless Communication, IEEE Access, 2016, 4: 1518–1547.
  • [6] Mahmutoglu Y., Hava Taşıtlarının Denizaltı Pasif Akustik Sistemle Uzaktan Algılanma Mesafelerinin İncelenmesi, El-Cezeri Fen ve Mühendislik Dergisi (2020 Basılmak üzere kabul edildi).
  • [7] Arnon S., Kedar D., Non-Line-of-Sight Underwater Optical Wireless Communication Network, Journal of Optical Society of America A, 2009, 26(3): 530-539.
  • [8] Che X., Wells I., Dickers G., Kear P., Gong X., Re-Evaluation of RF Electromagnetic Communication in Underwater Sensor Networks, IEEE Communications Magazin, 2010, 48(12): 143–151.
  • [9] Wu T.C., Chi Y.C., Wang H.Y., Blue laser diode enables underwater communication at 12.4Gbps, Scientific Report, 2017, 7: 40480.
  • [10] Miller J.K., Morgan K., Li W., Li Y., Johnson E., Data Agile Underwater Optical Communication Link using Flexible Data Formats and Orbital Angular Momentum Multiplexing, OCEANS 2018 MTS/IEEE, 2018, Charleston, SC, USA.
  • [11] Cochenour B., Mullen L., Laux A., Spatial and temporal dispersion in high bandwidth underwater laser communication links, IEEE Military Commununications Conference, 2008, San Diego, CA, USA.
  • [12] Jaruwatanadilok S., Underwater wireless optical communication channel modeling and performance evaluation using vector radiative transfer theory, IEEE Journal on Selected Areas in Communications, 2008, 26(9): 1620–1627.
  • [13] Gabriel C., Khalighi A., Bourennane S., Léon R., Rigaud V., Optical communication system for an underwater wireless sensor network, EGU General Assembly, 2012, Vienna, Austria.
  • [14] Ali M., Characteristics of Optical Channel for Underwater Optical Wireless Communication System, IOSR Journal of Electrical and Electronics Engineering, 2015, 10: 1-9.
  • [15] Matta G., Agrawal M., Bahl R., Channel Capacity for Underwater Visible Light Communication Systems, Oceans, 2019, Marseille, France.
  • [16] Mahmutoglu Y., Albayrak C., Turk K., Investigation of Underwater Optical Communication Channel Capacity for Different Environment and System Parameters, Hittite Journal of Science & Engineering (2020 Basılmak üzere kabul edildi).
  • [17] Li J., Ma Y., Zhou Q., Wang H., Channel capacity study of underwater wireless optical communications links based on Monte Carlo simulation, Journal Of Optics A: Pure And Applied Optics, 2012, 14(1): 015403.
  • [18] Shin M, Park K, Alouini M. Statistical Modeling of the Impact of Underwater Bubbles on an Optical Wireless Channel, IEEE Open Journal of the Communications Society, 2020 1: 808-818.
  • [19] Zhang S., Zhang L., Wang Z., Quan J., Cheng J., Dong Y., On Performance of Underwater Wireless Optical Communications Under Turbulence, IEEE 17th Annual Consumer Communications & Networking Conference (CCNC), 2020, Las Vegas, NV, USA.
  • [20] Zeng Z., Fu S., Zhang H., Dong Y., Cheng J., A Survey of Underwater Optical Wireless Communications, IEEE Communications Surveys & Tutorials, 2017, 19(1): 204-238.
  • [21] Tang S., Dong Y., Zhang X., Impulse Response Modeling for Underwater Wireless Optical Communication Links, IEEE Transactions on Communications, 2014, 62(1): 226-234.
  • [22] Ding H., Chen G., Majumdar A.K., Sadler B.M., Xu Z., Modeling of Non-Line-of-Sight Ultraviolet Scattering Channels for Communication, IEEE Journal on Selected Areas in Communications, 2009, 27(9): 1535-1544.
  • [23] Dong F., Xu L., Jiang D., Zhang T., Monte-Carlo-Based Impulse Response Modeling for Underwater Wireless Optical Communication, Progress in Electromagnetics Research M, 2017, 54: 137-144.
  • [24] Cox W.C., Simulation, Modeling, and Design of Underwater Optical Communication Systems, (Doktora Tezi), Department of Electrical Engineering, North Carolina State University, Raleigh, NC, USA, 2012.
  • [25] Petzold, T.J., Volume Scattering Functions for Selected Ocean Waters, Scripps Inst. Oceanogr., La Jolla, CA, USA, Tech. Rep. SIO 7278, 1972.
  • [26] Giles J.W., Bankman I.N., Underwater optical communications systems, Part 2: basic design considerations, IEEE Military Communications Conference, 2005, Atlantic City, NJ, USA.
  • [27] Sticklus J., Hoeher P.A., Röttgers R., Optical Underwater Communication: The Potential of Using Converted Green LEDs in Coastal Waters, IEEE Journal Of Oceanic Engineering, 2019, 44(2): 535–547.
  • [28] Manor H., Arnon S., Performance of an optical wireless communication system as a function of wavelength, Applied Optics, 2003, 42(21): 4285-4294.
  • [29] Boucouvalas A.C., Underwater Optical Wireless Communications With Optical Amplification and Spatial Diversity, IEEE Photonics Technology Letters, 2016, 28(22): 2613–2616.

Investigation Of Underwater Wireless Optical Communication Monte Carlo Channel Capacity For Various Environments And System Parameters

Year 2021, Volume: 8 Issue: 2, 567 - 581, 31.05.2021
https://doi.org/10.31202/ecjse.842290

Abstract

Increasing interest in oceans increases the scientific, commercial and military studies in this field,
in which underwater wireless communication systems are frequently used. In literature, underwater wireless,
synchronous, high speed data transfer can only be done with optical systems. The distorting effects of
underwater environment (UE) on optical waves significantly affect the communication distance and speed of
underwater wireless optical communication (UWOC) systems. Therefore, in order to design reliable UWOC
systems, it is important to examine effects of various UEs on UWOC systems on a realistic channel model. In this study, instead of the approximate channel models, Monte Carlo approach UWOC channel model, which is
accepted in literature with its high accuracy and sensitivity, was used, and effects of the transmitter's beam
divergence angle and aperture diameter of receiver parameters, which are important design parameters for
UWOC systems, on a typical UWOC system were investigated. In this study, three various UEs, namely clean
ocean, coastal ocean and harbor waters, which are frequently used as benchmarks in the literature, were taken
into consideration, and channel impulse responses, signal to noise ratios and channel capacity distributions were
presented and interpreted for each UE. With the results obtained, the communication speed and distance limits
of a typical UWOC system were determined, and a prediction was provided for UWOC systems that can be
used in various UEs and parameter values.

References

  • [1] Miramirkhani F., Uysal, M., Visible Light Communication Channel Modeling for Underwater Environments with Blocking and Shadowing, IEEE Access, 2017, 6: 1082-1090.
  • [2] Chen H., Chen X., Lu J., Liu X., Shi J., Zheng L., Liu R., Zhou X., Tian P., Toward Long-Distance Underwater Wireless Optical Communication Based on A High-Sensitivity Single Photon Avalanche Diode, IEEE Photonics Journal, 2020, 12(3): 7902510.
  • [3] Shihada B., Amin O., Bainbridge C., Jardak S., Alkhazragi O., Ng T.K., Ooi B., Berumen M., Alouini M.S., Aqua-Fi: Delivering Internet Underwater Using Wireless Optical Networks, IEEE Communications Magazine, 2020, 58(5): 84-89.
  • [4] Lin T., Gong C., Luo J., Xu Z., Dynamic Optical Wireless Communication Channel Characterization Through Air-Water Interface, IEEE/CIC International Conference On Communications in China, 2020, Chongqing, China.
  • [5] Kaushal H., Kaddoum G., Underwater Optical Wireless Communication, IEEE Access, 2016, 4: 1518–1547.
  • [6] Mahmutoglu Y., Hava Taşıtlarının Denizaltı Pasif Akustik Sistemle Uzaktan Algılanma Mesafelerinin İncelenmesi, El-Cezeri Fen ve Mühendislik Dergisi (2020 Basılmak üzere kabul edildi).
  • [7] Arnon S., Kedar D., Non-Line-of-Sight Underwater Optical Wireless Communication Network, Journal of Optical Society of America A, 2009, 26(3): 530-539.
  • [8] Che X., Wells I., Dickers G., Kear P., Gong X., Re-Evaluation of RF Electromagnetic Communication in Underwater Sensor Networks, IEEE Communications Magazin, 2010, 48(12): 143–151.
  • [9] Wu T.C., Chi Y.C., Wang H.Y., Blue laser diode enables underwater communication at 12.4Gbps, Scientific Report, 2017, 7: 40480.
  • [10] Miller J.K., Morgan K., Li W., Li Y., Johnson E., Data Agile Underwater Optical Communication Link using Flexible Data Formats and Orbital Angular Momentum Multiplexing, OCEANS 2018 MTS/IEEE, 2018, Charleston, SC, USA.
  • [11] Cochenour B., Mullen L., Laux A., Spatial and temporal dispersion in high bandwidth underwater laser communication links, IEEE Military Commununications Conference, 2008, San Diego, CA, USA.
  • [12] Jaruwatanadilok S., Underwater wireless optical communication channel modeling and performance evaluation using vector radiative transfer theory, IEEE Journal on Selected Areas in Communications, 2008, 26(9): 1620–1627.
  • [13] Gabriel C., Khalighi A., Bourennane S., Léon R., Rigaud V., Optical communication system for an underwater wireless sensor network, EGU General Assembly, 2012, Vienna, Austria.
  • [14] Ali M., Characteristics of Optical Channel for Underwater Optical Wireless Communication System, IOSR Journal of Electrical and Electronics Engineering, 2015, 10: 1-9.
  • [15] Matta G., Agrawal M., Bahl R., Channel Capacity for Underwater Visible Light Communication Systems, Oceans, 2019, Marseille, France.
  • [16] Mahmutoglu Y., Albayrak C., Turk K., Investigation of Underwater Optical Communication Channel Capacity for Different Environment and System Parameters, Hittite Journal of Science & Engineering (2020 Basılmak üzere kabul edildi).
  • [17] Li J., Ma Y., Zhou Q., Wang H., Channel capacity study of underwater wireless optical communications links based on Monte Carlo simulation, Journal Of Optics A: Pure And Applied Optics, 2012, 14(1): 015403.
  • [18] Shin M, Park K, Alouini M. Statistical Modeling of the Impact of Underwater Bubbles on an Optical Wireless Channel, IEEE Open Journal of the Communications Society, 2020 1: 808-818.
  • [19] Zhang S., Zhang L., Wang Z., Quan J., Cheng J., Dong Y., On Performance of Underwater Wireless Optical Communications Under Turbulence, IEEE 17th Annual Consumer Communications & Networking Conference (CCNC), 2020, Las Vegas, NV, USA.
  • [20] Zeng Z., Fu S., Zhang H., Dong Y., Cheng J., A Survey of Underwater Optical Wireless Communications, IEEE Communications Surveys & Tutorials, 2017, 19(1): 204-238.
  • [21] Tang S., Dong Y., Zhang X., Impulse Response Modeling for Underwater Wireless Optical Communication Links, IEEE Transactions on Communications, 2014, 62(1): 226-234.
  • [22] Ding H., Chen G., Majumdar A.K., Sadler B.M., Xu Z., Modeling of Non-Line-of-Sight Ultraviolet Scattering Channels for Communication, IEEE Journal on Selected Areas in Communications, 2009, 27(9): 1535-1544.
  • [23] Dong F., Xu L., Jiang D., Zhang T., Monte-Carlo-Based Impulse Response Modeling for Underwater Wireless Optical Communication, Progress in Electromagnetics Research M, 2017, 54: 137-144.
  • [24] Cox W.C., Simulation, Modeling, and Design of Underwater Optical Communication Systems, (Doktora Tezi), Department of Electrical Engineering, North Carolina State University, Raleigh, NC, USA, 2012.
  • [25] Petzold, T.J., Volume Scattering Functions for Selected Ocean Waters, Scripps Inst. Oceanogr., La Jolla, CA, USA, Tech. Rep. SIO 7278, 1972.
  • [26] Giles J.W., Bankman I.N., Underwater optical communications systems, Part 2: basic design considerations, IEEE Military Communications Conference, 2005, Atlantic City, NJ, USA.
  • [27] Sticklus J., Hoeher P.A., Röttgers R., Optical Underwater Communication: The Potential of Using Converted Green LEDs in Coastal Waters, IEEE Journal Of Oceanic Engineering, 2019, 44(2): 535–547.
  • [28] Manor H., Arnon S., Performance of an optical wireless communication system as a function of wavelength, Applied Optics, 2003, 42(21): 4285-4294.
  • [29] Boucouvalas A.C., Underwater Optical Wireless Communications With Optical Amplification and Spatial Diversity, IEEE Photonics Technology Letters, 2016, 28(22): 2613–2616.
There are 29 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Makaleler
Authors

Yiğit Mahmutoğlu 0000-0003-4409-2587

Cenk Albayrak 0000-0002-1989-1697

Kadir Turk 0000-0002-4504-8417

Publication Date May 31, 2021
Submission Date December 17, 2020
Acceptance Date March 5, 2021
Published in Issue Year 2021 Volume: 8 Issue: 2

Cite

IEEE Y. Mahmutoğlu, C. Albayrak, and K. Turk, “Değişik Ortam Ve Sistem Parametreleri İçin Sualtı Kablosuz Optik Haberleşme Monte Carlo Kanal Kapasitesinin İncelenmesi”, El-Cezeri Journal of Science and Engineering, vol. 8, no. 2, pp. 567–581, 2021, doi: 10.31202/ecjse.842290.
Creative Commons License El-Cezeri is licensed to the public under a Creative Commons Attribution 4.0 license.
88x31.png