Research Article
BibTex RIS Cite

RF Blocks for Biomedical Engineering

Year 2021, Volume: 8 Issue: 2, 782 - 792, 31.05.2021
https://doi.org/10.31202/ecjse.875641

Abstract

Biyomedikal mühendisliği uygulamaları için Radyo Frekansı (RF) güç amplifikatörü (PA), güç osilatörü (PO), mikser ve test devresi simülasyon sonuçları sunulmuştur. Yeni bir Sınıf-E tipi RF PA tasarlandı ve şematik devre simüle edildi. RF devre blokları 130 nanometre (nm) standart CMOS RF teknolojisinde tasarlanmış ve uygulanmıştır. Şematik test devresi simülasyonları, spiral endüktansı ve anten iç direnci içeren anten bağlantısı ile test edilmiştir. Devre simülasyon sonuçlarına göre, PA, PO ve mikser çıkışı ile anten giriş katları arasında ekstra uyumsuzluk ayar devresine ihtiyaç duyulmadı. Gösterim amacıyla, 33 GHz çok yüksek frekans (EHF) bandı PA giriş voltajı, 300 mV tepeden tepeye (pp) voltaj seviyesinde uygulanmıştır. Sınıf-E tipi aktif transistör anahtarı olarak teknoloji standardı 1V RF n-kanallı Metal-Oksit-Silikon (MOS) transistör kullanıldı. PA devre simülasyonu için test sonuçları, önerilen devrenin geleneksel E Sınıfı tipi RF PA' lardan daha iyi çalıştığını göstermektedir. 40 harmonik için 33 GHz RF giriş frekansında -8,5 dBm güç girişi için % 70 güç amplifikatörü verimliliği (PAE) ve harmonik salınım dengesi modunda 15 adımuygulanmıştır. Tümdevre blokları, özellikle glükoz algılama sistemi için talep edilen biyomedikal mühendisliği için tasarlanmış ve yapılmıştır. Yeni bir Radyo Frekansı (RF) güç osilatörü (PO) devresi tasarlandı ve simülasyon sonuçları da sunuldu. PO devre konsepti, giriş ve çıkış arasında anahtar elemanı olarak tek nMOS transistör kullandığından son derece kullanışlıdır. Aynı zamanda RF devrelerinin verici tarafı için osilatör devresinin kullanımını ortadan kaldırmaktadır. Osilatör devreleri genellikle n-kanal ve p-kanal standart CMOS teknoloji transistörleri ile negatif dirençli harmonik çapraz bağlı LC-tank voltaj kontrollü osilatör (LCVCO) devre yapısı kullanılarak uygulanmıştır. Verici (Tx) tarafında geleneksel olarak kullanılan LCVCO devresinin ortadan kaldırılması, özellikle iç mekan kablosuz telekomünikasyon ve biyomedikal mühendislik sistemleri için önemlidir, çünkü bu yöntem kullanılarak önemli miktarda güç kaybı ortadan kaldırılır. PO' nun uygulanması için, PA devresi gerçekleştirme adımında gösterilen E Sınıfı tipi RF PA modifiye edildi. Sorumlulukları hem salınım sinyali üretmek hem de gücünü anten yüküne yükseltmektir. Bu amaçla, RF PO da aynı 130 nm standart CMOS RF teknolojisinde tasarlandı ve uygulandı. Ana besleme voltajı vdd ve öngerilim voltajı vbias1 600 mV değerlerine ayarlandı. Güç kaynaklarından 35.6 GHz RF güç salınım frekansında toplam 8.94 miliwatt (mW) ortalama kare kök (rms) güç ve 14.9 miliamper (mA) rms akım sağlandı. Bu, tek transistör ile milimetre dalga (mmWave) çok yüksek frekans (EHF) bant (30-300 GHz) RF güç salınımı oluşturan ilk çalışmadır. Glükoz algılama yapısının tüm devre gerçekleştirilmesinin son adımında, EHF bandında mm-Dalga frekansında çalışan yeni RF mikser devresi gösterilmektedir. Bu mikser devresi tamamen yeni bir tasarımdır ve dünyada ilk kez burada sunulmuştur. Yeni konsept tek transistör karıştırıcı devresinin gerilimini ve akımını beslemek için besleme gerilimi kullanmak yerine, önceki adımda tanıtılmış olan PO benimsenmiştir. PO, hem besleme voltajını hem de akımı sağlıyor, ayrıca temel bant salınım sinyalini de getiriyor. Bu yöntemle hem güç kaynağı hem de temel bant osilatör sinyali oluşturuldu. Bu yöntem ayrıca yaygın olarak kullanılan harmonik çapraz bağlı negatif direnç geri besleme CMOS LCVCO devresini de ortadan kaldırmaktadır. Öte yandan, karmaşık Gilbert Mixer mimarisini kullanmak yerine, yeni tek transistör devre tasarım konsepti kullanıldı. Tek transistörlü karıştırıcı devresi, yalnızca bir n-kanal MOS transistörüne sahip olan düşük gürültülü amplifikatörün (LNA) kullanımına benzer. Önerilen karıştırıcı devre tasarım şemasına göre, zarf sinyalinin ikinci harmonik çıkarımı elde edilmiştir. 130 nm standart CMOS teknolojisi kullanılmıştır. 35.6 GHz frekanslı PO sinyali ve 34 GHz RF test sinyali karıştırıldı ve 3.12 GHz 2. harmonik zarf çıkarıldı. Bu çalışmanın sadece bir değil, birçok yeni tasarım konsepti vardır.

References

  • (1) F. H. Raab, “Idealized Operation of the Class E Tuned Power Amplifier,” IEEE Transactions on Circuits and Systems, vol. CAS-24, no. 12, pp. 725-735, Dec. 1977.
  • (2) N. O. Sokal, A. D. Sokal, “Class-E-new class of high-efficiency tuned single-ended switching power amplifiers,” IEEE Journal of Solid-State Circuits, vol. SC10, no. 3, pp. 168-176, 1975.
  • (3) N. O. Sokal, F. H. Raab, “Harmonic output of class-E RF power amplifiers and load coupling network design,” IEEE Journal of Solid-State Circuits.
  • (4) B. Molnar, “Basic limitations on waveforms achievable in single-ended switching-mode tuned (Class E) power amplifiers,” IEEE Journal of Solid-State Circuits, vol. 19, no. 1, pp. 144-146, 1984.
  • (5) M. Kazimierczuk, “Class E tuned power amplifier with shunt inductor,” IEEE Journal of Solid-State Circuits, vol. 16, no. 1, pp. 2-7, 1981.
  • (6) T. Sowlati, C. Salama, J. Sitch, G. Rabjohn, and D. Smith, “Low-voltage high-efficiency GaAs class-E power amplifier for wireless transmitters,” IEEE J. Solid-State Circuits, vol. 32, pp. 544–550, Apr. 1997.
  • (7) K. C. Tsai and P. R. Gray, “A 1.9-GHz 1-W CMOS class-E power amplifier for wireless communications,” IEEE J. Solid-State Circuits, vol. 34, pp. 962–970, July 1999.
  • (8) J. Ebert and M. Kazimierczuk, “Class E High-Efficiency Tuned Power Oscillator,” IEEE Journal of Solid-State Circuits, vol. SC-16, no. 2, Apr. 1981.
  • (9) A. O. Amen, K. M. Sharaf, “A 1.75 GHz CMOS class E RF power amplifier and oscillator,” International Conference on Microelectronics venue: Cairo, Egypt, pp. 53-56, Dec. 29-31, 2007.
  • (10) Y. Yamashita, D. Kanemoto, H. Kanaya, “A CMOS Class-E Power Amplifier of 40-% PAE at 5 GHz for Constant Envelope Modulation System,” IEEE 13th topical meeting on silicon monolithic integrated circuits in RF systems (SIRF), pp. 66-68, 2013.
  • (11) P. Reynaert, MSJA. Steyaert, “1.75-GHz Polar Modulated CMOS RF Power Amplifier for GSM-Edge,” IEEE Journal of Solid-State Circuits, vol. 40, no. 12, pp. 2598-2608, Dec. 2005.
  • (12) T. A. Kurniawan, T. Yoshimasu “A 2.5-GHz 1-V High Efficiency CMOS Power Amplifier IC with a Dual-Switching Transistor and Third Harmonic Tuning Technique,” Electronics, vol. 8, no. 1, pp. 1-15, Jan. 2019.
  • (13) Y. Song, S. Lee, J. Lee, S. Nam, “29 dBm CMOS Class-E Power Amplifier with 63% PAE Using Negative Capacitance,” IEEE Custom Integrated Circuits Conference, pp. 399-402, 2009.
  • (14) Y. Deng, C. Wang, “A Fully-integrated Highly Efficient CMOS Class-E Power Amplifier Using Cascode Class-E Drivers for WLAN Applications,” 3rd International Conference on Engineering Technology and Application (ICETA), pp. 23-28, 2016.
  • (15) S. Du, X. Zhu, “A Low-Power CMOS Class-E Chireix RF Out phasing Power Amplifier for WLAN Applications,” Wireless Personal Communications, vol. 90, no. 3, pp. 1547-1561, Oct. 2016.
  • (16) J. Ebert and M. Kazimierczuk, “Class E High-Efficiency Tuned Power Oscillator,” IEEE Journal of Solid-State Circuits (JSSCC), Vol. SC-16, no. 2, April 1981.
  • (17) M. Kazimierczuk, and V. Krizhanovski, J. Rassokhina,and D. Chernov, “Class-E MOSFET tuned power oscillator design procedure,” IEEE Transactions on Circuits and Systems I: Regular Papers, vol.52, no. 6, pp. 1138-1147, 2005.
  • (18) H. Madureira, N. Deltimple, E. Kerhervé and S. Haddad, "Design of a class EF2 power oscillator for RF communication application," IEEE 20th International Conference on Electronics, Circuits, and Systems (ICECS), Abu Dhabi, pp. 763-766, 2013.
  • (19) A. O. Amen, K. M. Sharaf, “A 1.75 GHz CMOS class E RF power amplifier and oscillator,” International Conference on Microelectronics venue: Cairo, Egypt, pp. 53-56, Dec. 29-31, 2007.
  • (20) J. S.A.Z Murad, M. M. Ramli, A. Azizan, M. N. M. Yasin, and I. S. Ishak, “Ultra-Low Power CMOS RF Mixer for Wireless Sensor Networks Application: A Review,” Matec Web of Conferences 97, 01037, 2017.
  • (21) J. Shah, N. Prabhakar, “Design of Single and Double Balanced Gilbert Cell Mixer using CMOS Processing Technolog,” IJSTE - International Journal of Science Technology & Engineering, vol. 3, no. 10, April 2017.
  • (22) S-H. Zhou, “The Design of CMOS RF Mixer Based on Gilbert Cell,” 2012 IEEE Symposium on Electrical & Electronics Engineering (EEESYM), 978-1-1673-2365, Sep. 2012.
  • (23) S-F. Lu and J-C. Guo, “5.5 GHz Low Voltage and High Linearity RF CMOS Mixer Desig,” Proceedings of the 3rd European Microwave Integrated Circuits Conference (EuMA), 978-2-87487-007-1, pp.171-174, Oct. 2008, Amsterdam, Netherlands.
  • (24) C-S. Lin, P-S. Wu, H-Y. Chang, and H. Wang, “A 9–50-GHz Gilbert-Cell Down-Conversion Mixer in 0.13-m CMOS Technology,” IEEE Microwave and Wireless Components Letters, vol. 16, no. 5, May 2006.
  • (25) M. Zhao, and J. Liao, “A compact low power current-mode LNA-Mixer for RF receiver,” IEICE Electronics Express, vol.14, no.18, 1–9, Sep. 2017.

RF Blocks for Biomedical Engineering

Year 2021, Volume: 8 Issue: 2, 782 - 792, 31.05.2021
https://doi.org/10.31202/ecjse.875641

Abstract

Radio Frequency (RF) power amplifier (PA), power oscillator (PO), mixer and their test circuit simulation results were presented for biomedical engineering applications. Novel efficient Class-E type RF PA was designed, and schematic circuit was simulated. RF circuit blocks were designed and implemented at the 130 nanometer (nm) standard CMOS RF technology. Schematic test circuit simulations were tested with antenna connection which includes two wire bonding inductances and antenna inner resistance. According to the circuit simulation results, no extra mismatch tuning circuit was needed between PA, PO, and mixer output and antenna input stages. For demonstration purposes, 33 GHz extremely high frequency (EHF) band PA input voltage was applied at 300 mV peak-to-peak (pp) voltage level. Technology standard 1V RF n-channel Metal-Oxide-Silicon (MOS) transistor was used as Class-E type active transistor switch. For PA circuit simulation, test results show that proposed circuit runs better than traditional Class-E type RF PAs. 70% power amplifier efficiency (PAE) for -8.5 dBm power input at 33 GHz RF input frequency for 40 harmonics and 15 steps in the harmonic shoot balance mode was achieved. The whole circuit blocks were designed and implemented for the biomedical engineering which was specifically requested for the glucose detection system. Novel Radio Frequency (RF) power oscillator (PO) circuit was designed, and simulation results were also presented. PO circuit concept is extremely useful since it is using single nMOS transistor as the switch element between input and output. It is also eliminating the usage of oscillator circuit for transmitter side of RF circuits. Oscillator circuits have been usually implemented by using negative resistance harmonic cross coupled LC-tank voltage-controlled oscillator (LCVCO) circuit structure with n-channel and p-channel standard CMOS technology transistors. Eliminating the traditionally used LCVCO circuit at transmitter (Tx) side is important especially for indoor wireless telecommunication, and biomedical engineering systems, since worth amount of power dissipation is eliminated by using this method. For implementation of PO, Class-E type RF PA was modified which was demonstrated in PA circuit realization step. Its responsibilities are both generating oscillation signal and amplify its power to the antenna load. For this purpose, RF PO was also designed and implemented at the same 130 nm standard CMOS RF technology. Main supply voltage vdd and bias voltage vbias1 was set to 600 mV. Totally 8.94-milliwatt (mW) average root-mean-square (rms) power and 14.9 milliampere (mA) rms current were delivered from power sources at 35.6 GHz RF power oscillation frequency. This is the first study, which generates millimeter wave (mmWave) extremely high frequency (EHF) band (30-300 GHz) RF power oscillation with single transistor. In the final step of whole circuit realization of glucose detection structure, novel RF mixer circuit which runs in EHF band mmWave frequency is demonstrated. This mixer circuit is completely new design and presented here first in the world. Instead of using supply voltage to feed voltage and current of new concept single transistor mixer circuit, PO which has been introduced in previous step was adopted. PO is supplying both supply voltage and current, beside it is also bringing baseband oscillation signal. By this method, both power supply and baseband oscillator signal were brought. This methodology is also eliminating the commonly used harmonic cross-coupled negative resistance feedback CMOS LCVCO circuit. On the other hand, instead of using complicated Gilbert Mixer architecture, the novel single transistor circuit design concept was used. The single transistor mixer circuit resembles the use of low-noise amplifier (LNA) which has only one n-channel MOS transistor. According to the proposed mixer circuit design schematic, second harmonic extraction of envelope signal was retrieved. 130 nm standard CMOS technology was also used. 35.6 GHz frequency PO signal and 34 GHz RF test signal were mixed, and 3.12 GHz 2nd harmonic envelope was extracted. This work has not only one, instead many novel designs concepts.

References

  • (1) F. H. Raab, “Idealized Operation of the Class E Tuned Power Amplifier,” IEEE Transactions on Circuits and Systems, vol. CAS-24, no. 12, pp. 725-735, Dec. 1977.
  • (2) N. O. Sokal, A. D. Sokal, “Class-E-new class of high-efficiency tuned single-ended switching power amplifiers,” IEEE Journal of Solid-State Circuits, vol. SC10, no. 3, pp. 168-176, 1975.
  • (3) N. O. Sokal, F. H. Raab, “Harmonic output of class-E RF power amplifiers and load coupling network design,” IEEE Journal of Solid-State Circuits.
  • (4) B. Molnar, “Basic limitations on waveforms achievable in single-ended switching-mode tuned (Class E) power amplifiers,” IEEE Journal of Solid-State Circuits, vol. 19, no. 1, pp. 144-146, 1984.
  • (5) M. Kazimierczuk, “Class E tuned power amplifier with shunt inductor,” IEEE Journal of Solid-State Circuits, vol. 16, no. 1, pp. 2-7, 1981.
  • (6) T. Sowlati, C. Salama, J. Sitch, G. Rabjohn, and D. Smith, “Low-voltage high-efficiency GaAs class-E power amplifier for wireless transmitters,” IEEE J. Solid-State Circuits, vol. 32, pp. 544–550, Apr. 1997.
  • (7) K. C. Tsai and P. R. Gray, “A 1.9-GHz 1-W CMOS class-E power amplifier for wireless communications,” IEEE J. Solid-State Circuits, vol. 34, pp. 962–970, July 1999.
  • (8) J. Ebert and M. Kazimierczuk, “Class E High-Efficiency Tuned Power Oscillator,” IEEE Journal of Solid-State Circuits, vol. SC-16, no. 2, Apr. 1981.
  • (9) A. O. Amen, K. M. Sharaf, “A 1.75 GHz CMOS class E RF power amplifier and oscillator,” International Conference on Microelectronics venue: Cairo, Egypt, pp. 53-56, Dec. 29-31, 2007.
  • (10) Y. Yamashita, D. Kanemoto, H. Kanaya, “A CMOS Class-E Power Amplifier of 40-% PAE at 5 GHz for Constant Envelope Modulation System,” IEEE 13th topical meeting on silicon monolithic integrated circuits in RF systems (SIRF), pp. 66-68, 2013.
  • (11) P. Reynaert, MSJA. Steyaert, “1.75-GHz Polar Modulated CMOS RF Power Amplifier for GSM-Edge,” IEEE Journal of Solid-State Circuits, vol. 40, no. 12, pp. 2598-2608, Dec. 2005.
  • (12) T. A. Kurniawan, T. Yoshimasu “A 2.5-GHz 1-V High Efficiency CMOS Power Amplifier IC with a Dual-Switching Transistor and Third Harmonic Tuning Technique,” Electronics, vol. 8, no. 1, pp. 1-15, Jan. 2019.
  • (13) Y. Song, S. Lee, J. Lee, S. Nam, “29 dBm CMOS Class-E Power Amplifier with 63% PAE Using Negative Capacitance,” IEEE Custom Integrated Circuits Conference, pp. 399-402, 2009.
  • (14) Y. Deng, C. Wang, “A Fully-integrated Highly Efficient CMOS Class-E Power Amplifier Using Cascode Class-E Drivers for WLAN Applications,” 3rd International Conference on Engineering Technology and Application (ICETA), pp. 23-28, 2016.
  • (15) S. Du, X. Zhu, “A Low-Power CMOS Class-E Chireix RF Out phasing Power Amplifier for WLAN Applications,” Wireless Personal Communications, vol. 90, no. 3, pp. 1547-1561, Oct. 2016.
  • (16) J. Ebert and M. Kazimierczuk, “Class E High-Efficiency Tuned Power Oscillator,” IEEE Journal of Solid-State Circuits (JSSCC), Vol. SC-16, no. 2, April 1981.
  • (17) M. Kazimierczuk, and V. Krizhanovski, J. Rassokhina,and D. Chernov, “Class-E MOSFET tuned power oscillator design procedure,” IEEE Transactions on Circuits and Systems I: Regular Papers, vol.52, no. 6, pp. 1138-1147, 2005.
  • (18) H. Madureira, N. Deltimple, E. Kerhervé and S. Haddad, "Design of a class EF2 power oscillator for RF communication application," IEEE 20th International Conference on Electronics, Circuits, and Systems (ICECS), Abu Dhabi, pp. 763-766, 2013.
  • (19) A. O. Amen, K. M. Sharaf, “A 1.75 GHz CMOS class E RF power amplifier and oscillator,” International Conference on Microelectronics venue: Cairo, Egypt, pp. 53-56, Dec. 29-31, 2007.
  • (20) J. S.A.Z Murad, M. M. Ramli, A. Azizan, M. N. M. Yasin, and I. S. Ishak, “Ultra-Low Power CMOS RF Mixer for Wireless Sensor Networks Application: A Review,” Matec Web of Conferences 97, 01037, 2017.
  • (21) J. Shah, N. Prabhakar, “Design of Single and Double Balanced Gilbert Cell Mixer using CMOS Processing Technolog,” IJSTE - International Journal of Science Technology & Engineering, vol. 3, no. 10, April 2017.
  • (22) S-H. Zhou, “The Design of CMOS RF Mixer Based on Gilbert Cell,” 2012 IEEE Symposium on Electrical & Electronics Engineering (EEESYM), 978-1-1673-2365, Sep. 2012.
  • (23) S-F. Lu and J-C. Guo, “5.5 GHz Low Voltage and High Linearity RF CMOS Mixer Desig,” Proceedings of the 3rd European Microwave Integrated Circuits Conference (EuMA), 978-2-87487-007-1, pp.171-174, Oct. 2008, Amsterdam, Netherlands.
  • (24) C-S. Lin, P-S. Wu, H-Y. Chang, and H. Wang, “A 9–50-GHz Gilbert-Cell Down-Conversion Mixer in 0.13-m CMOS Technology,” IEEE Microwave and Wireless Components Letters, vol. 16, no. 5, May 2006.
  • (25) M. Zhao, and J. Liao, “A compact low power current-mode LNA-Mixer for RF receiver,” IEICE Electronics Express, vol.14, no.18, 1–9, Sep. 2017.
There are 25 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Makaleler
Authors

Huseyin Kazanci 0000-0003-0036-7657

Publication Date May 31, 2021
Submission Date February 6, 2021
Acceptance Date April 28, 2021
Published in Issue Year 2021 Volume: 8 Issue: 2

Cite

IEEE H. Kazanci, “RF Blocks for Biomedical Engineering”, ECJSE, vol. 8, no. 2, pp. 782–792, 2021, doi: 10.31202/ecjse.875641.