Research Article
BibTex RIS Cite

Sol-Jel Yöntemi ile Sentezlenen Antibakteriyel Kalsiyum Fosfat/Kitosan/Çinko Kaplamanın İncelenmesi

Year 2021, Volume: 8 Issue: 2, 942 - 950, 31.05.2021
https://doi.org/10.31202/ecjse.899987

Abstract

Ortopedik veya dental implant uygulamalarında yaygın olarak kullanılan kalsiyum fosfat kaplamalar mükemmel biyoaktivite ve osteokonduktiviteye sahip olsalar da enfeksiyon riski taşımaktadırlar. Bu çalışmada, Titanyumun yüzeyinde hem biyoaktif hem de antibakteriyel özellik sağlayan kalsiyum fosfat/kitosan/çinko içerikli biyokompozit kaplama sol-jel yöntemi ile elde edilmiştir. Kaplamanın karakterizasyon çalışmaları X-ışını kırınımı (XRD), Taramalı Elektron Mikroskobu (SEM), Enerji Dağılım Spektroskopi (EDS) ve Fourier Dönüşümlü Kızılötesi Spektroskopi (FTIR) analizleri ile gerçekleştirilmiştir. Kalsiyum fosfat içerikli kaplamaya, biyouyumlu kitosan ve çinko ilavesi antibakteriyel özellik kazandırmıştır. Elde edilen sonuçlara göre postoperatif cerrahi enfeksiyonlarının önlenmesi için antibiyotik kullanmadan geliştirilen bu kaplama umut vericidir.

Thanks

Antibakteriyel testlerde destekleri için yazarımız biyolog Mustafa Çelik'e teşekkür eder.

References

  • Referans 1 Ayday A., ''Oxidation kinetics of Ti6Al4V alloy and pure titanium (Cp-Ti)'', El-Cezeri Journal of Science Engineering,2020,(7): 402–409.
  • Referans 2 Yılmaz E., Gökçe A., Findik F., Gulsoy H.O., İyibilgin O., ''Mechanical properties and electrochemical behavior of porous Ti-Nb biomaterials'', Journal of the Mechanical Behavior of Biomedical Materials ,2018,(87): 59–67.
  • Referans 3 Yılmaz E., Gökçe A., Findik F., Gülsoy H.Ö., ''Characterization of biomedical Ti-16Nb-(0–4)Sn alloys produced by Powder Injection Molding'', Vacuum,2017, (142): 164–174.
  • Referans 4 Yılmaz E., Çakıroğlu B., Gökçe A., Findik F., Gulsoy H.O., Gulsoy N., Mutlu Ö., Özacar M., ''Novel hydroxyapatite/graphene oxide/collagen bioactive composite coating on Ti16Nb alloys by electrodeposition'', Materials Science and Engineering: C., 2019, (101): 292–305.
  • Referans 5 Arcos D., Vallet-Regí M., ''Substituted hydroxyapatite coatings of bone implants'', Journal of Materials Chemistry B., 2020, (8): 1781–1800.
  • Referans 6 Gomes D.S., Santos A.M.C., Neves G.A., Menezes R.R., Grande C., Grande C., ''A brief review on hydroxyapatite production and use in biomedicine ( Uma breve revisão sobre a obtenção de hidroxiapatita e aplicação na biomedicina )'', Cerâmica., 2019, (65): 282–302.
  • Referans 7 Yılmaz E., Kabataş F.,Gökçe A., Fındık F., ''Production and Characterization of a Bone-Like Porous Ti/Ti-Hydroxyapatite Functionally Graded Material'', Journal of Materials Engineering and Performance, 2020, (29): 6455–6467.
  • Referans 8 Kattimani V.S., Kondaka S., Lingamaneni K.P., ''Hydroxyapatite–-Past, Present, and Future in Bone Regeneration'', Bone Tissue Regeneration Insights, 2016, (7): 9-19.
  • Referans 9 Lamkhao S., Phaya M., Jansakun C., Chandet N., Thongkorn K., Rujijanagul G., Bangrak P., Randorn C., ''Synthesis of Hydroxyapatite with Antibacterial Properties Using a Microwave-Assisted Combustion Method'', Scientific Reports, 2019, (9): 1–9. Referans 10 Tian B., Chen W., Dong Y., Marymont J. V., Lei Y., Ke Q., Guo Y., Zhu Z., ''Silver nanoparticle-loaded hydroxyapatite coating: Structure, antibacterial properties, and capacity for osteogenic induction in vitro'', RSC Advances, 2016, (6): 8549–8562.
  • Referans 11 Townsend L., Williams R.L., Anuforom O., Berwick M.R., Halstead F., Hughes E., Stamboulis A., Oppenheim B., Gough J., Grover L., Scott R.A.H., Webber M., Peacock A.F.A., Belli A., Logan A., De Cogan F., ''Antimicrobial peptide coatings for hydroxyapatite: Electrostatic and covalent attachment of antimicrobial peptides to surfaces'', Journal of the Royal Society Interface, 2017, (14): 1-12.
  • Referans 12 D’Almeida M., Attik N., Amalric J., Brunon C., Renaud F., Abouelleil H., Toury B., Grosgogeat B., ''Chitosan coating as an antibacterial surface for biomedical applications'', PLoS One, 2017, (12): 1–11.
  • Referans 13 Chozhanathmisra M., Pandian K., Govindaraj D., Karthikeyan P., Mitu L., Rajavel R., ''Halloysite nanotube-reinforced ion-incorporated hydroxyapatite-chitosan composite coating on Ti-6Al-4 v alloy for implant application'', Journal of Chemistry, 2019, (2019): 1-12.
  • Referans 14 Yuwono A.H., Ramahdita G., Mu’Lanuddin M.A., Adyandra A., Gustiraharjo G., ''The study of zinc oxide addition into hydroxyapatite/chitosan scaffold for bone tissue engineering application'', AIP Conferance Proceedings, 2019,(2193): 1-7.
  • Referans 15 Li B., Xia X., Guo M., Jiang Y., Li Y., Zhang Z., Liu S., Li H., Liang C., Wang H., ''Biological and antibacterial properties of the micro-nanostructured hydroxyapatite/chitosan coating on titanium'', Scientific Reports, 2019, (9): 1–10.
  • Referans 16 El-Wassefy N.A., Reicha F.M., Aref N.S., ''Electro-chemical deposition of nano hydroxyapatite-zinc coating on titanium metal substrate'', International Journal of Implant Dentsitry, 2017, (3): 1–8.
  • Referans 17 Türk S., Altınsoy İ., Çelebi Efe G., Ipek M., Özacar M., Bindal C., ''Effect of Solution and Calcination Time on Sol-gel Synthesis of Hydroxyapatite'', Journal of Bionic Engineering, 2019, (16): 311–318.
  • Referans 18 Crémet L., Corvec S., Bémer P., Bret L., Lebrun C., Lesimple B., Miegeville A.F., Reynaud A., Lepelletier D., Caroff N., ''Orthopaedic-implant infections by Escherichia coli: Molecular and phenotypic analysis of the causative strains'', Journal of Infection, 2012, (64): 169–175.
  • Referans 19 Zhukova Y., Hiepen C., Knaus P., Osterland M., Prohaska S., Dunlop J.W.C., Fratzl P., Skorb E. V., ''The Role of Titanium Surface Nanostructuring on Preosteoblast Morphology, Adhesion, and Migration'', Advanced Healthcare Materials, 2017, (6): 1–13.
  • Referans 20 Tang X., Yan X., ''Dip-coating for fibrous materials: mechanism, methods and applications'', Journal of Sol-Gel Science and Technology, 2017, (81): 378–404.
  • Referans 21 Liu H., Yazici H., Ergun C., Webster T.J., Bermek H., ''An in vitro evaluation of the Ca/P ratio for the cytocompatibility of nano-to-micron particulate calcium phosphates for bone regeneration'', Acta Biomaterialia, 2008, (4): 1472–1479.
  • Referans 22 Ramesh S., Tan C.Y., Hamdi M., Sopyan I., Teng W.D., ''The influence of Ca/P ratio on the properties of hydroxyapatite bioceramics'', International Conferance on Smart Materials and Nanotechnology Engineering, 2007, (6423) 64233A: 1-6.
  • Referans 23 AbdElhady M.M., ''Preparation and Characterization of Chitosan/Zinc Oxide Nanoparticles for Imparting Antimicrobial and UV Protection to Cotton Fabric'', International Journal of Carbohydrate Chemistry, 2012, (2012): 1–6.
  • Referans 24 Sukhodub L.F., Sukhodub L.B., Chorna I. V., ''Chitosan-apatite composites: Synthesis and properties'', Biopolymers Cell, 2016, (32): 83–97.

Investigation of Antibacterial Calcium Phosphate / Chitosan / Zinc Coating Synthesized by Sol-Gel Method

Year 2021, Volume: 8 Issue: 2, 942 - 950, 31.05.2021
https://doi.org/10.31202/ecjse.899987

Abstract

Although calcium phosphate coatings, which are widely used in orthopedic or dental implant applications, have excellent bioactivity and osteoconductivity, they carry a risk of infection. In this study, calcium phosphate / chitosan / zinc containing biocomposite coating, which provides both bioactive and antibacterial properties on the surface of Titanium, was obtained by sol-gel method. The characterization studies of the coating were carried out by X-ray diffraction (XRD), Scanning Electron Microscope (SEM), Energy Dispersion Spectroscopy (EDS) and Fourier Transform Infrared Spectroscopy (FTIR) analyzes. The addition of biocompatible chitosan and zinc to the calcium phosphate-containing coating has provided antibacterial properties. According to the results, this coating, which was developed without using antibiotics to prevent postoperative surgical infections, is promising.

References

  • Referans 1 Ayday A., ''Oxidation kinetics of Ti6Al4V alloy and pure titanium (Cp-Ti)'', El-Cezeri Journal of Science Engineering,2020,(7): 402–409.
  • Referans 2 Yılmaz E., Gökçe A., Findik F., Gulsoy H.O., İyibilgin O., ''Mechanical properties and electrochemical behavior of porous Ti-Nb biomaterials'', Journal of the Mechanical Behavior of Biomedical Materials ,2018,(87): 59–67.
  • Referans 3 Yılmaz E., Gökçe A., Findik F., Gülsoy H.Ö., ''Characterization of biomedical Ti-16Nb-(0–4)Sn alloys produced by Powder Injection Molding'', Vacuum,2017, (142): 164–174.
  • Referans 4 Yılmaz E., Çakıroğlu B., Gökçe A., Findik F., Gulsoy H.O., Gulsoy N., Mutlu Ö., Özacar M., ''Novel hydroxyapatite/graphene oxide/collagen bioactive composite coating on Ti16Nb alloys by electrodeposition'', Materials Science and Engineering: C., 2019, (101): 292–305.
  • Referans 5 Arcos D., Vallet-Regí M., ''Substituted hydroxyapatite coatings of bone implants'', Journal of Materials Chemistry B., 2020, (8): 1781–1800.
  • Referans 6 Gomes D.S., Santos A.M.C., Neves G.A., Menezes R.R., Grande C., Grande C., ''A brief review on hydroxyapatite production and use in biomedicine ( Uma breve revisão sobre a obtenção de hidroxiapatita e aplicação na biomedicina )'', Cerâmica., 2019, (65): 282–302.
  • Referans 7 Yılmaz E., Kabataş F.,Gökçe A., Fındık F., ''Production and Characterization of a Bone-Like Porous Ti/Ti-Hydroxyapatite Functionally Graded Material'', Journal of Materials Engineering and Performance, 2020, (29): 6455–6467.
  • Referans 8 Kattimani V.S., Kondaka S., Lingamaneni K.P., ''Hydroxyapatite–-Past, Present, and Future in Bone Regeneration'', Bone Tissue Regeneration Insights, 2016, (7): 9-19.
  • Referans 9 Lamkhao S., Phaya M., Jansakun C., Chandet N., Thongkorn K., Rujijanagul G., Bangrak P., Randorn C., ''Synthesis of Hydroxyapatite with Antibacterial Properties Using a Microwave-Assisted Combustion Method'', Scientific Reports, 2019, (9): 1–9. Referans 10 Tian B., Chen W., Dong Y., Marymont J. V., Lei Y., Ke Q., Guo Y., Zhu Z., ''Silver nanoparticle-loaded hydroxyapatite coating: Structure, antibacterial properties, and capacity for osteogenic induction in vitro'', RSC Advances, 2016, (6): 8549–8562.
  • Referans 11 Townsend L., Williams R.L., Anuforom O., Berwick M.R., Halstead F., Hughes E., Stamboulis A., Oppenheim B., Gough J., Grover L., Scott R.A.H., Webber M., Peacock A.F.A., Belli A., Logan A., De Cogan F., ''Antimicrobial peptide coatings for hydroxyapatite: Electrostatic and covalent attachment of antimicrobial peptides to surfaces'', Journal of the Royal Society Interface, 2017, (14): 1-12.
  • Referans 12 D’Almeida M., Attik N., Amalric J., Brunon C., Renaud F., Abouelleil H., Toury B., Grosgogeat B., ''Chitosan coating as an antibacterial surface for biomedical applications'', PLoS One, 2017, (12): 1–11.
  • Referans 13 Chozhanathmisra M., Pandian K., Govindaraj D., Karthikeyan P., Mitu L., Rajavel R., ''Halloysite nanotube-reinforced ion-incorporated hydroxyapatite-chitosan composite coating on Ti-6Al-4 v alloy for implant application'', Journal of Chemistry, 2019, (2019): 1-12.
  • Referans 14 Yuwono A.H., Ramahdita G., Mu’Lanuddin M.A., Adyandra A., Gustiraharjo G., ''The study of zinc oxide addition into hydroxyapatite/chitosan scaffold for bone tissue engineering application'', AIP Conferance Proceedings, 2019,(2193): 1-7.
  • Referans 15 Li B., Xia X., Guo M., Jiang Y., Li Y., Zhang Z., Liu S., Li H., Liang C., Wang H., ''Biological and antibacterial properties of the micro-nanostructured hydroxyapatite/chitosan coating on titanium'', Scientific Reports, 2019, (9): 1–10.
  • Referans 16 El-Wassefy N.A., Reicha F.M., Aref N.S., ''Electro-chemical deposition of nano hydroxyapatite-zinc coating on titanium metal substrate'', International Journal of Implant Dentsitry, 2017, (3): 1–8.
  • Referans 17 Türk S., Altınsoy İ., Çelebi Efe G., Ipek M., Özacar M., Bindal C., ''Effect of Solution and Calcination Time on Sol-gel Synthesis of Hydroxyapatite'', Journal of Bionic Engineering, 2019, (16): 311–318.
  • Referans 18 Crémet L., Corvec S., Bémer P., Bret L., Lebrun C., Lesimple B., Miegeville A.F., Reynaud A., Lepelletier D., Caroff N., ''Orthopaedic-implant infections by Escherichia coli: Molecular and phenotypic analysis of the causative strains'', Journal of Infection, 2012, (64): 169–175.
  • Referans 19 Zhukova Y., Hiepen C., Knaus P., Osterland M., Prohaska S., Dunlop J.W.C., Fratzl P., Skorb E. V., ''The Role of Titanium Surface Nanostructuring on Preosteoblast Morphology, Adhesion, and Migration'', Advanced Healthcare Materials, 2017, (6): 1–13.
  • Referans 20 Tang X., Yan X., ''Dip-coating for fibrous materials: mechanism, methods and applications'', Journal of Sol-Gel Science and Technology, 2017, (81): 378–404.
  • Referans 21 Liu H., Yazici H., Ergun C., Webster T.J., Bermek H., ''An in vitro evaluation of the Ca/P ratio for the cytocompatibility of nano-to-micron particulate calcium phosphates for bone regeneration'', Acta Biomaterialia, 2008, (4): 1472–1479.
  • Referans 22 Ramesh S., Tan C.Y., Hamdi M., Sopyan I., Teng W.D., ''The influence of Ca/P ratio on the properties of hydroxyapatite bioceramics'', International Conferance on Smart Materials and Nanotechnology Engineering, 2007, (6423) 64233A: 1-6.
  • Referans 23 AbdElhady M.M., ''Preparation and Characterization of Chitosan/Zinc Oxide Nanoparticles for Imparting Antimicrobial and UV Protection to Cotton Fabric'', International Journal of Carbohydrate Chemistry, 2012, (2012): 1–6.
  • Referans 24 Sukhodub L.F., Sukhodub L.B., Chorna I. V., ''Chitosan-apatite composites: Synthesis and properties'', Biopolymers Cell, 2016, (32): 83–97.
There are 23 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Makaleler
Authors

Eren Yılmaz 0000-0001-7264-2588

Publication Date May 31, 2021
Submission Date March 19, 2021
Acceptance Date April 28, 2021
Published in Issue Year 2021 Volume: 8 Issue: 2

Cite

IEEE E. Yılmaz, “Sol-Jel Yöntemi ile Sentezlenen Antibakteriyel Kalsiyum Fosfat/Kitosan/Çinko Kaplamanın İncelenmesi”, El-Cezeri Journal of Science and Engineering, vol. 8, no. 2, pp. 942–950, 2021, doi: 10.31202/ecjse.899987.
Creative Commons License El-Cezeri is licensed to the public under a Creative Commons Attribution 4.0 license.
88x31.png