Research Article
BibTex RIS Cite

Sürekli Çelik Tel Takviyeli 3B Baskılı Parçaların Mekanik Davranışı

Year 2022, Volume: 9 Issue: 1, 276 - 289, 31.01.2022
https://doi.org/10.31202/ecjse.969810

Abstract

Günümüzün popüler teknolojisi 3D yazıcılar ile her türlü geometrik şekle sahip parçalar üretilebilmektedir. Üretilen bu parçaların, mukavemet özelliklerinin düşük olması, günlük yaşamda tam olarak yaygınlaşmasını engellemektedir. Mukavemeti artırmak için faz yapı içerisine karbon fiber eklenmesi şeklinde daha önce yapılan çalışmalar bulunmaktadır. Bu çalışmada ise yeni bir fikir olarak faz yapı içerisine sürekli çelik tel şeklinde takviye yapılmıştır. Hem faz yapının hem takviye telinin aynı anda baskıyı oluşturması için yeni bir extruder tasarımına geçilmiştir. İstenilen mukavemet artışı ve baskı kalitesi için uygun faz malzemesi, çelik tel malzemesi ve üretim deseni araştırmaları yapılmıştır. Yapılan testler sonucunda takviyesiz polimer naylon malzemeye göre, çelik tel takviyeli polimer naylon malzeme ile yapılan üretim, yaklaşık 5,58 kat daha yüksek bir mukavemet artışını sağlamıştır.

Supporting Institution

Karabük Üniversitesi Bilimsel Araştırma Projeleri Koordinatörlüğü

Project Number

KBUBAP-18-YL-096

References

  • Mikolajczyk, T., Malinowski, T., Moldovan, L., Fuwen, H., T. Paczkowski, I. C., CAD CAM System for Manufacturing Innovative Hybrid Design Using 3D Printing, Procedia Manufacturing, 2019, 32 :22-28.
  • Bakhtiar, S.M., Butt, H.A., Zeb, S., Quddusi, D.M., Gul, S., Dilshad, E., Chapter 10- 3D Printing Technologies and Their Applications in Biomedical Science, Editor(s): D. Barh, V. Azevedo, Omics Technologies and Bio-Engineering, Academic Press, 2018, 167-189.
  • Sood, A.K., Ohdar, R.K., Mahapatra, S.S., Parametric appraisal of mechanical property of fused deposition modelling processed parts, Materials & Design, 2010, 31 (1): 287-295.
  • Shahrubudin, N., Lee, T.C., Ramlan, R., An Overview on 3D Printing Technology: Technological, Materials, and Applications, Procedia Manufacturing, 2019, 35: 1286-1296.
  • Tenhunen, T.-M., Moslemian, O., Kammiovirta, K., Harlin, A., Kääriäinen, P., Österberg, M., Tammelin, T., Orelma, H., Surface tailoring and design-driven prototyping of fabrics with 3D-printing: An all-cellulose approach, Materials & Design, 2018, 140 :409-419.
  • Nickels, L., AM and aerospace: an ideal combination, Metal Powder Report, 2015, 70 (6) :300-303.
  • Roopavath, U.K., Kalaskar, D.M., 1 - Introduction to 3D printing in medicine, In 3D Printing in Medicine, Woodhead Publishing, 2017, 1-20.
  • Capelli, C., Schievano, S., 4 - Computational analyses and 3D printed models: A combined approach for patient-specific studies, In 3D Printing in Medicine, edited by Deepak M. Kalaskar, Woodhead Publishing, 2017, 73-90.
  • Sun, J., Peng, Z., Zhou, W., Fuh, J.Y.H., Hong, G.S., Chiu, A., A Review on 3D Printing for Customized Food Fabrication, Procedia Manufacturing, 2015, 1: 308-319.
  • Dankar, I., Haddarah, A., Omar, F.E.L., Sepulcre, F., Pujolà, M., 3D printing technology: The new era for food customization and elaboration, Trends in Food Science & Technology, 2018, 75: 231-242.
  • Liu, Z., Zhang, M., Bhandari, B., Wang, Y., 3D printing: Printing precision and application in food sector, Trends in Food Science & Technology, 2017, 69 (Part A): 83-94.
  • Sun, J., Zhou, W., Huang, D., 3D Printing of Food, Reference Module in Food Science, Elsevier, 2018.
  • Economidou, S.N., Lamprou, D. A., Douroumis, D., 3D printing applications for transdermal drug delivery, International Journal of Pharmaceutics, 2018, 544 (2): 415-424.
  • Clayton, D.D., O'Brien, P., Seepersad, W.J., Juenger, C., Ferron, M., Camacho, R., Salamone, S., Applications of additive manufacturing in the construction industry – A forward-looking review, Automation in Construction, 2018, 89:110-119.
  • Kim, H., Park, E., Kim, S., Park, B. Kim, N., Lee, S., Experimental Study on Mechanical Properties of Single- and Dual-material 3D Printed Products, Procedia Manufacturing, 2017, 10: 887-897.
  • Aliheidari, N., Tripuraneni, R., Ameli, A., Nadimpalli, S., Fracture resistance measurement of fused deposition modeling 3D printed polymers, Polymer Testing, 2017, 60: 94-101.
  • Song, Y., Li, Y., Song, W., Yee, K., Lee, K.-Y., Tagarielli, V.L., Measurements of the mechanical response of unidirectional 3D-printed PLA, Materials & Design, 2017, 123: 154-164.
  • Chakraborty, D., Reddy, B.A., Choudhury, A.R., Extruder path generation for Curved Layer Fused Deposition Modeling, Computer-Aided Design, 2008, 40 (2): 235-243.
  • Novakova-Marcincinova, L., Novak-Marcincin, J., Barna, J., Torok, J., Special materials used in FDM rapid prototyping technology application, 2012 IEEE 16th International Conference on Intelligent Engineering Systems (INES), Lisbon, 2012, 73-76.
  • Lille, M., Nurmela, A., Nordlund, E., Metsä-Kortelainen, S., Sozer, N., Applicability of protein and fiber-rich food materials in extrusion-based 3D printing, Journal of Food Engineering, 2018, 220: 20-27.
  • Zhang, D., Chi, B., Li, B., Gao, Z., Du, Y., Guo, J., Wei, J., Fabrication of highly conductive graphene flexible circuits by 3D printing, Synthetic Metals, 2016, 217: 79-86.
  • Yoo, C.J., Shin, B.S., Kang, B.S., Gwak, C.Y., Park, C., Ma, Y.W., Hong, S.M., A Study on a New 3D Porous Polymer Printing Based on EPP Beads Containing CO2 Gas, Procedia Engineering, 2017, 184: 10-15.
  • Gnanasekaran, K., Heijmans, T., van Bennekom, S., Woldhuis, H., Wijnia, S., de With, G., Friedrich, H., 3D printing of CNT- and graphene-based conductive polymer nanocomposites by fused deposition modeling, Applied Materials Today, 2017, 9: 21-28.
  • Ferreira, I.A., Alves, J.L., Low-cost 3D food printing, Ciência & Tecnologia dos Materiais, 2017, 29 (1): e265-e269.
  • Lanaro, M., Forrestal, D.P., Scheurer, S., Slinger, D.J., Liao, S., Powell, S.K., Woodruff, M.A., 3D printing complex chocolate objects: Platform design, optimization and evaluation, Journal of Food Engineering, 2017, 215: 13-22.
  • Gardner, J.M., Sauti, G., Kim, J.-W., Cano, R.J., Wincheski, R.A., Stelter, C.J., Grimsley, B.W., Working, D.C., Siochi, E.J., 3-D printing of multifunctional carbon nanotube yarn reinforced components, Additive Manufacturing, 2016, 12 (Part A): 38-44.
  • Bollig, L.M., Hilpisch, P.J., Mowry, G.S., Nelson-Cheeseman, B.B., 3D printed magnetic polymer composite transformers, Journal of Magnetism and Magnetic Materials, 2017, 442: 97-101.
  • Kuo, C.-C., Liu, L.-C., Teng, W.-F., Chang, H.-Y., Chien, F.-M., Liao, S.-J., Kuo, W.-F., Chen, C.-M., Preparation of starch/acrylonitrile-butadiene-styrene copolymers (ABS) biomass alloys and their feasible evaluation for 3D printing applications, Composites Part B: Engineering, 2016, 86: 36-39.
  • Liu, Z., Zhang, M., Bhandari, B., Yang, C., Impact of rheological properties of mashed potatoes on 3D printing, Journal of Food Engineering, 2018, 220: 76-82.
  • Zhuang, Y., Song, W., Ning, G., Sun, X., Sun, Z., Xu, G., Zhang, B., Chen, Y., Tao, S., 3D–printing of materials with anisotropic heat distribution using conductive polylactic acid composites, Materials & Design, 2017, 126: 135-140.
  • Aloyaydi, B., Sivasankaran, S., Mustafa, A., Investigation of infill-patterns on mechanical response of 3D printed poly-lactic-acid, Polymer Testing, 2020, 87: 106557.
  • Tekinalp, H.L., Kunc, V., Velez-Garcia, G.M., Duty, C.E., Love, L.J., Naskar, A.K., Blue, C.A., Ozcan, S., Highly oriented carbon fiber–polymer composites via additive manufacturing, Composites Science and Technology, 2014, 105: 144-150.
  • Gardner, L., Kyvelou, P., Herbert, G., Buchanan, C., Testing and initial verification of the world's first metal 3D printed bridge, Journal of Constructional Steel Research, 2020, 1721: 06233.
  • Kovalchuk, D., Ivasishin, O., 10 - Profile electron beam 3D metal printing, Additive Manufacturing for the Aerospace Industry, 2019, 213-233.
  • Mori, K.-İ., Maeno, T., Nakagawa, Y., Dieless Forming of Carbon Fibre Reinforced Plastic Parts Using 3D Printer, Procedia Engineering, 2014, 81: 1595-1600.
  • Ning, F., Cong, W., Qiu, J., Wei, J., Wang, S., Additive manufacturing of carbon fiber reinforced thermoplastic composites using fused deposition modeling, Composites Part B: Engineering, 2015, 80: 369-378.
  • Hambach, M., Volkmer, D., Properties of 3D-printed fiber-reinforced Portland cement paste, Cement and Concrete Composites, 2017, 79: 62-70.
  • Kwok, S.W., Goh, K.H.H., Tan, Z.D., Tan, S.T.M., Tjiu, W.W., Soh, J.Y., Ng, Z.J.G. Chan, Y.Z., Hui, H.K., Goh, K.E.J., Electrically conductive filament for 3D-printed circuits and sensors, Applied Materials Today, 2017, 9: 167-175.
  • Panda, B., Paul, S.C., Tan, M.J., Anisotropic mechanical performance of 3D printed fiber reinforced sustainable construction material, Materials Letters, 2017, 209: 146-149.
  • Liao, G., Li, Z., Cheng, Y., Xu, D., Zhu, D., Jiang, S., Guo, J., Chen, X., Xu, G., Zhu, Y., Properties of oriented carbon fiber/polyamide 12 composite parts fabricated by fused deposition modeling, Materials & Design, 2018, 139: 283-292.
  • Szykiedans, K., Credo, W., Osiński, D., Selected Mechanical Properties of PETG 3-D Prints, Procedia Engineering, 2017, 177: 455-461.
  • Li, N., Li, Y., Liu, S., Rapid prototyping of continuous carbon fiber reinforced polylactic acid composites by 3D printing, Journal of Materials Processing Technology, 2016, 238: 218-225.
  • Tian, X., Liu, T., Yang, C., Wang, Q., Li, D., Interface and performance of 3D printed continuous carbon fiber reinforced PLA composites, Composites Part A: Applied Science and Manufacturing, 2016, 88: 198-205.
  • Melenka, G.W., Cheung, B.K.O., Schofield, J.S., Dawson, M.R., Carey, J.P., Evaluation and prediction of the tensile properties of continuous fiber-reinforced 3D printed structures, Composite Structures, 2016, 153: 866-875.
  • Dickson, A.N., Barry, J.N., McDonnell, K.A., Dowling, D.P., Fabrication of continuous carbon, glass and Kevlar fibre reinforced polymer composites using additive manufacturing, Additive Manufacturing, 2017, 16: 146-152.
  • Dong, K., Liu, L., Huang, X., Xiao, X., 3D printing of continuous fiber reinforced diamond cellular structural composites and tensile properties, Composite Structures, 2020, 250: 112610.

Mechanical Behaviour of 3D Printed Parts with Continuous Steel Wire Reinforcement

Year 2022, Volume: 9 Issue: 1, 276 - 289, 31.01.2022
https://doi.org/10.31202/ecjse.969810

Abstract

Parts in every type of geometric shapes can be produced thanks to today’s popular technology 3D printers. The low strength characteristics of the produced parts prevent them from being fully widespread in daily life. There are previous studies regarding the addition of carbon fiber into the phase structure to increase the strength. In this study, as a new idea, reinforcement in the form of continuous steel wire was made into the phase structure. A new extruder design was adopted in order for both the phase structure and the reinforcing wire to create the printing at the same time. Research on the phase material, steel wire material and production pattern were made for the desired strength increase and printing quality. According to the test results, the production with steel wire-reinforced polymer Nylon material provided an approximately 7.76 times higher strength increase compared to the non-reinforced polymer Nylon material.

Project Number

KBUBAP-18-YL-096

References

  • Mikolajczyk, T., Malinowski, T., Moldovan, L., Fuwen, H., T. Paczkowski, I. C., CAD CAM System for Manufacturing Innovative Hybrid Design Using 3D Printing, Procedia Manufacturing, 2019, 32 :22-28.
  • Bakhtiar, S.M., Butt, H.A., Zeb, S., Quddusi, D.M., Gul, S., Dilshad, E., Chapter 10- 3D Printing Technologies and Their Applications in Biomedical Science, Editor(s): D. Barh, V. Azevedo, Omics Technologies and Bio-Engineering, Academic Press, 2018, 167-189.
  • Sood, A.K., Ohdar, R.K., Mahapatra, S.S., Parametric appraisal of mechanical property of fused deposition modelling processed parts, Materials & Design, 2010, 31 (1): 287-295.
  • Shahrubudin, N., Lee, T.C., Ramlan, R., An Overview on 3D Printing Technology: Technological, Materials, and Applications, Procedia Manufacturing, 2019, 35: 1286-1296.
  • Tenhunen, T.-M., Moslemian, O., Kammiovirta, K., Harlin, A., Kääriäinen, P., Österberg, M., Tammelin, T., Orelma, H., Surface tailoring and design-driven prototyping of fabrics with 3D-printing: An all-cellulose approach, Materials & Design, 2018, 140 :409-419.
  • Nickels, L., AM and aerospace: an ideal combination, Metal Powder Report, 2015, 70 (6) :300-303.
  • Roopavath, U.K., Kalaskar, D.M., 1 - Introduction to 3D printing in medicine, In 3D Printing in Medicine, Woodhead Publishing, 2017, 1-20.
  • Capelli, C., Schievano, S., 4 - Computational analyses and 3D printed models: A combined approach for patient-specific studies, In 3D Printing in Medicine, edited by Deepak M. Kalaskar, Woodhead Publishing, 2017, 73-90.
  • Sun, J., Peng, Z., Zhou, W., Fuh, J.Y.H., Hong, G.S., Chiu, A., A Review on 3D Printing for Customized Food Fabrication, Procedia Manufacturing, 2015, 1: 308-319.
  • Dankar, I., Haddarah, A., Omar, F.E.L., Sepulcre, F., Pujolà, M., 3D printing technology: The new era for food customization and elaboration, Trends in Food Science & Technology, 2018, 75: 231-242.
  • Liu, Z., Zhang, M., Bhandari, B., Wang, Y., 3D printing: Printing precision and application in food sector, Trends in Food Science & Technology, 2017, 69 (Part A): 83-94.
  • Sun, J., Zhou, W., Huang, D., 3D Printing of Food, Reference Module in Food Science, Elsevier, 2018.
  • Economidou, S.N., Lamprou, D. A., Douroumis, D., 3D printing applications for transdermal drug delivery, International Journal of Pharmaceutics, 2018, 544 (2): 415-424.
  • Clayton, D.D., O'Brien, P., Seepersad, W.J., Juenger, C., Ferron, M., Camacho, R., Salamone, S., Applications of additive manufacturing in the construction industry – A forward-looking review, Automation in Construction, 2018, 89:110-119.
  • Kim, H., Park, E., Kim, S., Park, B. Kim, N., Lee, S., Experimental Study on Mechanical Properties of Single- and Dual-material 3D Printed Products, Procedia Manufacturing, 2017, 10: 887-897.
  • Aliheidari, N., Tripuraneni, R., Ameli, A., Nadimpalli, S., Fracture resistance measurement of fused deposition modeling 3D printed polymers, Polymer Testing, 2017, 60: 94-101.
  • Song, Y., Li, Y., Song, W., Yee, K., Lee, K.-Y., Tagarielli, V.L., Measurements of the mechanical response of unidirectional 3D-printed PLA, Materials & Design, 2017, 123: 154-164.
  • Chakraborty, D., Reddy, B.A., Choudhury, A.R., Extruder path generation for Curved Layer Fused Deposition Modeling, Computer-Aided Design, 2008, 40 (2): 235-243.
  • Novakova-Marcincinova, L., Novak-Marcincin, J., Barna, J., Torok, J., Special materials used in FDM rapid prototyping technology application, 2012 IEEE 16th International Conference on Intelligent Engineering Systems (INES), Lisbon, 2012, 73-76.
  • Lille, M., Nurmela, A., Nordlund, E., Metsä-Kortelainen, S., Sozer, N., Applicability of protein and fiber-rich food materials in extrusion-based 3D printing, Journal of Food Engineering, 2018, 220: 20-27.
  • Zhang, D., Chi, B., Li, B., Gao, Z., Du, Y., Guo, J., Wei, J., Fabrication of highly conductive graphene flexible circuits by 3D printing, Synthetic Metals, 2016, 217: 79-86.
  • Yoo, C.J., Shin, B.S., Kang, B.S., Gwak, C.Y., Park, C., Ma, Y.W., Hong, S.M., A Study on a New 3D Porous Polymer Printing Based on EPP Beads Containing CO2 Gas, Procedia Engineering, 2017, 184: 10-15.
  • Gnanasekaran, K., Heijmans, T., van Bennekom, S., Woldhuis, H., Wijnia, S., de With, G., Friedrich, H., 3D printing of CNT- and graphene-based conductive polymer nanocomposites by fused deposition modeling, Applied Materials Today, 2017, 9: 21-28.
  • Ferreira, I.A., Alves, J.L., Low-cost 3D food printing, Ciência & Tecnologia dos Materiais, 2017, 29 (1): e265-e269.
  • Lanaro, M., Forrestal, D.P., Scheurer, S., Slinger, D.J., Liao, S., Powell, S.K., Woodruff, M.A., 3D printing complex chocolate objects: Platform design, optimization and evaluation, Journal of Food Engineering, 2017, 215: 13-22.
  • Gardner, J.M., Sauti, G., Kim, J.-W., Cano, R.J., Wincheski, R.A., Stelter, C.J., Grimsley, B.W., Working, D.C., Siochi, E.J., 3-D printing of multifunctional carbon nanotube yarn reinforced components, Additive Manufacturing, 2016, 12 (Part A): 38-44.
  • Bollig, L.M., Hilpisch, P.J., Mowry, G.S., Nelson-Cheeseman, B.B., 3D printed magnetic polymer composite transformers, Journal of Magnetism and Magnetic Materials, 2017, 442: 97-101.
  • Kuo, C.-C., Liu, L.-C., Teng, W.-F., Chang, H.-Y., Chien, F.-M., Liao, S.-J., Kuo, W.-F., Chen, C.-M., Preparation of starch/acrylonitrile-butadiene-styrene copolymers (ABS) biomass alloys and their feasible evaluation for 3D printing applications, Composites Part B: Engineering, 2016, 86: 36-39.
  • Liu, Z., Zhang, M., Bhandari, B., Yang, C., Impact of rheological properties of mashed potatoes on 3D printing, Journal of Food Engineering, 2018, 220: 76-82.
  • Zhuang, Y., Song, W., Ning, G., Sun, X., Sun, Z., Xu, G., Zhang, B., Chen, Y., Tao, S., 3D–printing of materials with anisotropic heat distribution using conductive polylactic acid composites, Materials & Design, 2017, 126: 135-140.
  • Aloyaydi, B., Sivasankaran, S., Mustafa, A., Investigation of infill-patterns on mechanical response of 3D printed poly-lactic-acid, Polymer Testing, 2020, 87: 106557.
  • Tekinalp, H.L., Kunc, V., Velez-Garcia, G.M., Duty, C.E., Love, L.J., Naskar, A.K., Blue, C.A., Ozcan, S., Highly oriented carbon fiber–polymer composites via additive manufacturing, Composites Science and Technology, 2014, 105: 144-150.
  • Gardner, L., Kyvelou, P., Herbert, G., Buchanan, C., Testing and initial verification of the world's first metal 3D printed bridge, Journal of Constructional Steel Research, 2020, 1721: 06233.
  • Kovalchuk, D., Ivasishin, O., 10 - Profile electron beam 3D metal printing, Additive Manufacturing for the Aerospace Industry, 2019, 213-233.
  • Mori, K.-İ., Maeno, T., Nakagawa, Y., Dieless Forming of Carbon Fibre Reinforced Plastic Parts Using 3D Printer, Procedia Engineering, 2014, 81: 1595-1600.
  • Ning, F., Cong, W., Qiu, J., Wei, J., Wang, S., Additive manufacturing of carbon fiber reinforced thermoplastic composites using fused deposition modeling, Composites Part B: Engineering, 2015, 80: 369-378.
  • Hambach, M., Volkmer, D., Properties of 3D-printed fiber-reinforced Portland cement paste, Cement and Concrete Composites, 2017, 79: 62-70.
  • Kwok, S.W., Goh, K.H.H., Tan, Z.D., Tan, S.T.M., Tjiu, W.W., Soh, J.Y., Ng, Z.J.G. Chan, Y.Z., Hui, H.K., Goh, K.E.J., Electrically conductive filament for 3D-printed circuits and sensors, Applied Materials Today, 2017, 9: 167-175.
  • Panda, B., Paul, S.C., Tan, M.J., Anisotropic mechanical performance of 3D printed fiber reinforced sustainable construction material, Materials Letters, 2017, 209: 146-149.
  • Liao, G., Li, Z., Cheng, Y., Xu, D., Zhu, D., Jiang, S., Guo, J., Chen, X., Xu, G., Zhu, Y., Properties of oriented carbon fiber/polyamide 12 composite parts fabricated by fused deposition modeling, Materials & Design, 2018, 139: 283-292.
  • Szykiedans, K., Credo, W., Osiński, D., Selected Mechanical Properties of PETG 3-D Prints, Procedia Engineering, 2017, 177: 455-461.
  • Li, N., Li, Y., Liu, S., Rapid prototyping of continuous carbon fiber reinforced polylactic acid composites by 3D printing, Journal of Materials Processing Technology, 2016, 238: 218-225.
  • Tian, X., Liu, T., Yang, C., Wang, Q., Li, D., Interface and performance of 3D printed continuous carbon fiber reinforced PLA composites, Composites Part A: Applied Science and Manufacturing, 2016, 88: 198-205.
  • Melenka, G.W., Cheung, B.K.O., Schofield, J.S., Dawson, M.R., Carey, J.P., Evaluation and prediction of the tensile properties of continuous fiber-reinforced 3D printed structures, Composite Structures, 2016, 153: 866-875.
  • Dickson, A.N., Barry, J.N., McDonnell, K.A., Dowling, D.P., Fabrication of continuous carbon, glass and Kevlar fibre reinforced polymer composites using additive manufacturing, Additive Manufacturing, 2017, 16: 146-152.
  • Dong, K., Liu, L., Huang, X., Xiao, X., 3D printing of continuous fiber reinforced diamond cellular structural composites and tensile properties, Composite Structures, 2020, 250: 112610.
There are 46 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Makaleler
Authors

Mustafa Güneş 0000-0002-0266-6370

İbrahim Çayıroğlu 0000-0001-5694-034X

Project Number KBUBAP-18-YL-096
Publication Date January 31, 2022
Submission Date July 12, 2021
Acceptance Date November 1, 2021
Published in Issue Year 2022 Volume: 9 Issue: 1

Cite

IEEE M. Güneş and İ. Çayıroğlu, “Mechanical Behaviour of 3D Printed Parts with Continuous Steel Wire Reinforcement”, ECJSE, vol. 9, no. 1, pp. 276–289, 2022, doi: 10.31202/ecjse.969810.