Research Article
BibTex RIS Cite

MWCNT Takviyeli Poliüretan Nanokompozitlerin Mekanik Özellikleri ve Hasar Davranışları

Year 2022, Volume: 9 Issue: 3, 988 - 995, 30.09.2022
https://doi.org/10.31202/ecjse.1018789

Abstract

Nanomalzemeler sahip oldukları üstün mekanik özellikler, ısıl kararlılık ve hafiflik gibi özelliklerinden dolayı kompozit malzemelere alternatif olarak geliştirilmiştir. Bu çalışmamızda, ağırlıkça farklı oranlarda çok cidarlı karbon nanotüp (MWCNT) takviyeli/takviyesiz poliüretan nanokompozit malzemelerin statik yük altında çekme ve sertlik testleri yapılarak sonuçları incelendi. Ağırlıkça % 0.25 ,% 0.35 ve % 0.45 oranlarında MWCNT takviyeli poliüretan nanokompozit malzemeler ASTM D638 standardına göre hazırlanarak, elastiklik modülü, çekme dayanımı, tokluk, birim şekil değişimi ve sertlik değerleri saf poliüretan ile karşılaştırılmıştır. Sertlik ölçüm testleri Shore D skalasına göre yapılmıştır. Saf poliüretan malzemenin çekme dayanımı ve elastiklik modülü sırasıyla 20.94 MPa ve 0.601 GPa iken ağırlıkça % 0.45 oranında MWCNT ilave edilmiş poliüretan nanokompozit malzemelerde % 11.0 ve % 79.0 artış oranıyla çekme dayanımı 26.80 MPA ve elastiklik modülü 1.077 GPa elde edilmiştir. Ayrıca hasar mekanizmalarını belirlemek için kırık yüzeyler Taramalı Elektron Mikroskobu (SEM) ile incelenmiştir.

References

  • [1] Tijing LD, Park CH, Choi WL, Ruelo MTG, Amarjargal A, Pant HR, et al., Characterization and mechanical performance comparison of multiwalled carbon nanotube/polyurethane composites fabricated by electrospinning and solution casting, Compos Part B-Eng, 2013, 44(1), 613-9.
  • [2] Kausar A. Polyurethane Composite Foams in High-Performance Applications: A Review, Polymer-Plastics Technology and Engineering, 2018, 57(4), 346-69.
  • [3] Ledru Y, Bernhart G, Piquet R, Schmidt F, Michel L. Coupled visco-mechanical and diffusion void growth modelling during composite curing, Composites Science and Technology, 2010, 70(15), 2139-45.
  • [4] Rana S, Cho JW, Tan LP. Graphene-crosslinked polyurethane block copolymer nanocomposites with enhanced mechanical, electrical, and shape memory properties, Rsc Adv, 2013, 3(33), 13796-803.
  • [5] Zhou J, Li H, Liu W, Dugnani R, Tian R, Xue W, et al., A facile method to fabricate polyurethane based graphene foams/epoxy/carbon nanotubes composite for electro-active shape memory application, Composites Part A: Applied Science and Manufacturing, 2016, 91, 292-300.
  • [6] Kausar A. Shape memory polyurethane/graphene nanocomposites: structures, properties, and applications, Journal of Plastic Film & Sheeting, 2020, 36(2), 151-66.
  • [7] Navidfar A, Trabzon L. Graphene type dependence of carbon nanotubes/graphene nanoplatelets polyurethane hybrid nanocomposites: Micromechanical modeling and mechanical properties, Composites Part B: Engineering, 2019, 176, 107337.
  • [8] Yıldırım F, Ataberk N, Ekrem M. Mechanical and thermal properties of a nanocomposite material which epoxy based and reinforced with polyvinyl alcohol nano fibers contained multiwalled carbon nanotube, Journal of Composite Materials, 2020.
  • [9] Yu K, Pan X, Zhang G, Liao X, Zhou X, Yan M, et al., Nanowires in energy storage devices: structures, synthesis, and applications, Advanced Energy Materials, 2018, 8(32), 1802369.
  • [10] Gao X, Zhu Y, Zhao X, Wang Z, An D, Ma Y, et al., Synthesis and characterization of polyurethane/SiO2 nanocomposites, Applied Surface Science, 2011, 257(10), 4719-24.
  • [11] Ekrem M, Düzcükoğlu H, Ali Şenyurt M, Sinan Şahin Ö, Avcı A. Friction and wear performance of epoxy resin reinforced with boron nitride nanoplatelets, Journal of Tribology, 2018, 140(2), 22001-7.
  • [12] Ghavidel AK, Azdast T, Shabgard M, Navidfar A, Sadighikia S. Improving electrical conductivity of poly methyl methacrylate by utilization of carbon nanotube and CO2 laser, Journal of applied polymer science, 2015, 132(42).
  • [13] Mahapatra SS, Yadav SK, Yoo HJ, Cho JW, Park JS. Highly branched polyurethane: Synthesis, characterization and effects of branching on dispersion of carbon nanotubes, Compos Part B-Eng, 2013, 45(1), 165-71.
  • [14] Luan Y, Gao F, Li Y, Yang J, Hu Y, Guo Z, et al., Healing mechanisms induced by synergy of Graphene-CNTs and microwave focusing effect for the thermoplastic polyurethane composites, Composites Part A: Applied Science and Manufacturing, 2018, 106, 34-41.
  • [15] Fernandez-d'Arlas B, Khan U, Rueda L, Coleman JN, Mondragon I, Corcuera MA, et al., Influence of hard segment content and nature on polyurethane/multiwalled carbon nanotube composites, Composites Science and Technology, 2011, 71(8), 1030-8.
  • [16] Lima AMF, de Castro VG, Borges RS, Silva GG. Electrical Conductivity and Thermal Properties of Functionalized Carbon Nanotubes/Polyurethane Composites, Polimeros, 2012, 22(2), 117-24.
  • [17] Sattar R, Kausar A, Siddiq M. Advances in thermoplastic polyurethane composites reinforced with carbon nanotubes and carbon nanofibers: A review, Journal of Plastic Film & Sheeting, 2015, 31(2), 186-224.
  • [18] Moghim MH, Zebarjad SM. Tensile properties and deformation mechanisms of PU/MWCNTs nanocomposites, Polym Bull, 2017, 74(10), 4267-77.
  • [19] Ekrem M, Şahin ÖS, Karabulut SE, Avcı A. Thermal stability and adhesive strength of boron nitride nano platelets and carbon nano tube modified adhesives, Journal of Composite Materials, 2018, 52(11), 1557-65.

Mechanical Properties and Damage Behavior of MWCNT Reinforced Polyurethane Nanocomposites

Year 2022, Volume: 9 Issue: 3, 988 - 995, 30.09.2022
https://doi.org/10.31202/ecjse.1018789

Abstract

Nanomaterials have been developed as an alternative to composites due to their superior mechanical properties, thermal stability and lightweight. In this study, tensile and hardness tests on different proportions of multi-walled carbon nanotube (MWCNT) reinforced/unreinforced polyurethane nanocomposite materials under static loading were investigated. They were prepared according to ASTM D638 standard and reinforced with MWCNT with the mass ratio of 0.25%, 0.35% and 0.45%. Their modulus of elasticity, tensile strength, toughness, elongation and hardness values were compared with those of pure polyurethane. The hardness measurements were carried out according to the Shore D scale. While the tensile strength and modulus of elasticity of the pure polyurethane materials were 20.94 MPa and 0.601 GPa, the values of the polyurethane nanocomposite materials reinforced with 0.35% MWCNT was 23.21 MPa and 1.077 GPa. The reinforced MWCNTs increased these values by 11.0% and 0.79, respectively. In addition, fractured surfaces were examined using a scanning electron microscope (SEM) to determine the damage mechanisms.

References

  • [1] Tijing LD, Park CH, Choi WL, Ruelo MTG, Amarjargal A, Pant HR, et al., Characterization and mechanical performance comparison of multiwalled carbon nanotube/polyurethane composites fabricated by electrospinning and solution casting, Compos Part B-Eng, 2013, 44(1), 613-9.
  • [2] Kausar A. Polyurethane Composite Foams in High-Performance Applications: A Review, Polymer-Plastics Technology and Engineering, 2018, 57(4), 346-69.
  • [3] Ledru Y, Bernhart G, Piquet R, Schmidt F, Michel L. Coupled visco-mechanical and diffusion void growth modelling during composite curing, Composites Science and Technology, 2010, 70(15), 2139-45.
  • [4] Rana S, Cho JW, Tan LP. Graphene-crosslinked polyurethane block copolymer nanocomposites with enhanced mechanical, electrical, and shape memory properties, Rsc Adv, 2013, 3(33), 13796-803.
  • [5] Zhou J, Li H, Liu W, Dugnani R, Tian R, Xue W, et al., A facile method to fabricate polyurethane based graphene foams/epoxy/carbon nanotubes composite for electro-active shape memory application, Composites Part A: Applied Science and Manufacturing, 2016, 91, 292-300.
  • [6] Kausar A. Shape memory polyurethane/graphene nanocomposites: structures, properties, and applications, Journal of Plastic Film & Sheeting, 2020, 36(2), 151-66.
  • [7] Navidfar A, Trabzon L. Graphene type dependence of carbon nanotubes/graphene nanoplatelets polyurethane hybrid nanocomposites: Micromechanical modeling and mechanical properties, Composites Part B: Engineering, 2019, 176, 107337.
  • [8] Yıldırım F, Ataberk N, Ekrem M. Mechanical and thermal properties of a nanocomposite material which epoxy based and reinforced with polyvinyl alcohol nano fibers contained multiwalled carbon nanotube, Journal of Composite Materials, 2020.
  • [9] Yu K, Pan X, Zhang G, Liao X, Zhou X, Yan M, et al., Nanowires in energy storage devices: structures, synthesis, and applications, Advanced Energy Materials, 2018, 8(32), 1802369.
  • [10] Gao X, Zhu Y, Zhao X, Wang Z, An D, Ma Y, et al., Synthesis and characterization of polyurethane/SiO2 nanocomposites, Applied Surface Science, 2011, 257(10), 4719-24.
  • [11] Ekrem M, Düzcükoğlu H, Ali Şenyurt M, Sinan Şahin Ö, Avcı A. Friction and wear performance of epoxy resin reinforced with boron nitride nanoplatelets, Journal of Tribology, 2018, 140(2), 22001-7.
  • [12] Ghavidel AK, Azdast T, Shabgard M, Navidfar A, Sadighikia S. Improving electrical conductivity of poly methyl methacrylate by utilization of carbon nanotube and CO2 laser, Journal of applied polymer science, 2015, 132(42).
  • [13] Mahapatra SS, Yadav SK, Yoo HJ, Cho JW, Park JS. Highly branched polyurethane: Synthesis, characterization and effects of branching on dispersion of carbon nanotubes, Compos Part B-Eng, 2013, 45(1), 165-71.
  • [14] Luan Y, Gao F, Li Y, Yang J, Hu Y, Guo Z, et al., Healing mechanisms induced by synergy of Graphene-CNTs and microwave focusing effect for the thermoplastic polyurethane composites, Composites Part A: Applied Science and Manufacturing, 2018, 106, 34-41.
  • [15] Fernandez-d'Arlas B, Khan U, Rueda L, Coleman JN, Mondragon I, Corcuera MA, et al., Influence of hard segment content and nature on polyurethane/multiwalled carbon nanotube composites, Composites Science and Technology, 2011, 71(8), 1030-8.
  • [16] Lima AMF, de Castro VG, Borges RS, Silva GG. Electrical Conductivity and Thermal Properties of Functionalized Carbon Nanotubes/Polyurethane Composites, Polimeros, 2012, 22(2), 117-24.
  • [17] Sattar R, Kausar A, Siddiq M. Advances in thermoplastic polyurethane composites reinforced with carbon nanotubes and carbon nanofibers: A review, Journal of Plastic Film & Sheeting, 2015, 31(2), 186-224.
  • [18] Moghim MH, Zebarjad SM. Tensile properties and deformation mechanisms of PU/MWCNTs nanocomposites, Polym Bull, 2017, 74(10), 4267-77.
  • [19] Ekrem M, Şahin ÖS, Karabulut SE, Avcı A. Thermal stability and adhesive strength of boron nitride nano platelets and carbon nano tube modified adhesives, Journal of Composite Materials, 2018, 52(11), 1557-65.
There are 19 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Makaleler
Authors

Müşerref Rana Kavuncu This is me 0000-0002-3505-969X

Mürsel Ekrem 0000-0001-5324-7929

Neslihan Yazıcı This is me 0000-0002-5935-065X

Publication Date September 30, 2022
Submission Date November 4, 2021
Acceptance Date February 4, 2022
Published in Issue Year 2022 Volume: 9 Issue: 3

Cite

IEEE M. R. Kavuncu, M. Ekrem, and N. Yazıcı, “Mechanical Properties and Damage Behavior of MWCNT Reinforced Polyurethane Nanocomposites”, El-Cezeri Journal of Science and Engineering, vol. 9, no. 3, pp. 988–995, 2022, doi: 10.31202/ecjse.1018789.
Creative Commons License El-Cezeri is licensed to the public under a Creative Commons Attribution 4.0 license.
88x31.png