Experimental Investigation of Effects of the Nucleating Agent on Mechanical and Crystallization Behavior of Injection-Molded Isotactic Polypropylene
Year 2023,
Volume: 10 Issue: 1, 109 - 120, 31.01.2023
Mesut Kandemir
,
İdris Karagöz
,
Harun Sepetçioğlu
Abstract
In this study, we investigated the effect of talc (magnesium-silicate-monohydrate/3MgO.4SiO2.H2O) nucleating agent (NA) on the thermal and mechanical properties of isotactic-polypropylene (i-PP) at loadings ranging from 0.5 to 5% by weight using the melt compounding method. The results demonstrated that NA/i-PP exhibited significantly improved mechanical performance compared to neat i-PP. In addition, the influence of the concentration of the NA on the melting and crystallization behavior of neat i-PP was also analyzed through DSC curves. The tensile and flexural properties of i-PP enhanced as NA concentration increased. Furthermore, scanning electron microscopy revealed that there is a significant difference in the fracture surface between the NA/i-PP and the i-PP matrix. Consequently, it was determined that the NA (talc) used in this study was a good NA for i-PP, improved the mechanical and thermal properties of the product, affected the crystallization properties and the microstructure, and reduced the mold cycle time. Besides these, the use of various additives between talc and i-PP matrix that can improve interface features are expected to be an alternative approach to the new i-PP design with much higher mechanical and thermal properties.
Supporting Institution
Yalova Üniversitesi
Project Number
2018/YL/003
Thanks
This work was supported by the Scientific Research Support Fund of The Yalova University, Yalova, Turkey, Project number 2018/YL/003.
References
- Cui, L., Wang, P., Zhang, Y., Zhang, L., Chen, Y., Wang, L., et al. Combined effect of α-nucleating agents and glass fiber reinforcement on a polypropylene composite: A balanced approach. RSC Advances. 2017;7(68):42783-91. https://doi.org/10.1039/C7RA08322J
- Dotson, D.L., Nygard, P., A novel nucleating agent for polyethylene. Milliken & Company; 2011.
- Yu, Y., Zeng, F., Chen, J., Kang, J., Yang, F., Cao, Y., et al. Effects of ordered structure on non-isothermal crystallization kinetics and subsequent melting behavior of β-nucleated isotactic polypropylene/graphene oxide composites. J. Therm. Anal Calorim. 2019;136(4):1667-78. https://doi.org/10.1007/s10973-018-7776-8
- Xu, T., Lei, H., Xie, C. The effect of nucleating agent on the crystalline morphology of polypropylene (PP). Mater. Des. 2003;24(3):227-30. https://doi.org/10.1016/S0261-3069(02)00129-2
- Kučerová, J. Nucleating and clarifying agents for polymers; 2008.
- Lotz, B., Wittmann, J., Lovinger, A. Structure and morphology of poly(propylenes): a molecular analysis. Polymer 1996;37(22):4979-4992. https://doi.org/10.1016/0032-3861(96)00370-9
- Cao, L., Su, D.F., Su, ZQ, Chen, X.N. Morphology, crystallization behavior and tensile properties of β-nucleated isotactic polypropylene fibrous membranes prepared by melt electrospinning. Chin. J. Polym. Sci. 2014;32(9):1167-75. https://doi.org/10.1007/s10118-014-1465-2
- Bai, H., Wang, Y., Zhang, Z., Han, L., Li, Y., Liu, L., et al. Influence of annealing on microstructure and mechanical properties of isotactic polypropylene with β-phase nucleating agent. Macromolecules. 2009;42(17):6647-55. https://doi.org/10.1021/ma9001269
- Bao, R.Y., Cao, J., Liu, Z.Y., Yang, W., Xie, B.H., Yang, M.B. Towards balanced strength and toughness improvement of isotactic polypropylene nanocomposites by surface functionalized graphene oxide. J. Mater. Chem. A. 2014;2(9):3190-9. https://doi.org/10.1039/C3TA14554A
- Xu, J.Z., Liang, Y.Y., Huang, H.D., Zhong, G.J., Lei, J., Chen, C., et al. Isothermal and nonisothermal crystallization of isotactic polypropylene/graphene oxide nanosheet nanocomposites. J. Polym. Res. 2012;19(10):1-7. https://doi.org/10.1007/s10965-012-9975-5
- Reyes-de Vaaben, S., Aguilar, A., Avalos, F., Ramos-de Valle, L.F. Carbon nanoparticles as effective nucleating agents for polypropylene. J. Therm. Anal. Calorim. 2008;93(3):947-52. https://doi.org/10.1007/s10973-007-8591-9
- Zhang, Y.F., He, B., Hou, H.H., Guo, L.H. Isothermal crystallization of isotactic polypropylene nucleated with a novel aromatic heterocyclic phosphate nucleating agent. J. Macromol. Sci. Part B Phys. 2021;56(11-12):811-20. https://doi.org/10.1080/00222348.2017.1385360
- Abreu, A.A., Talabi, S.I., de Almeida Lucas, A. Influence of nucleating agents on morphology and properties of injection‐molded polypropylene. Polym. Adv. Technol. 2021;32(5):2197-206. https://doi.org/10.1002/pat.5252
- Bernland, K., Goossens, J., Smith, P., Tervoort, T.A. On clarification of haze in polypropylene. J. Polym. Sci. Part B: Polym. Phy. 2016;54(9):865-74. https://doi.org/10.1002/polb.23992
- Kristiansen, M., Tervoort, T., Smith, P., Goossens, H. Mechanical properties of sorbitol-clarified isotactic polypropylene: influence of additive concentration on polymer structure and yield behavior. Macromolecules. 2005;38(25):10461-5. https://doi.org/10.1021/ma0517401
- Kristiansen, M., Werner, M., Tervoort, T., Smith, P., Blomenhofer, M., Schmidt, H.W. The binary system isotactic polypropylene/bis (3, 4-dimethylbenzylidene) sorbitol: phase behavior, nucleation, and optical properties. Macromolecules. 2003;36(14):5150-6. https://doi.org/10.1021/ma030146t
- Kristiansen, P.M., Gress, A., Smith, P., Hanft, D., Schmidt, H.W. Phase behavior, nucleation and optical properties of the binary system isotactic polypropylene/N, N′, N ″-tris-isopentyl-1, 3, 5-benzene-tricarboxamide. Polymer. 2006;47(1):249-53. https://doi.org/10.1016/j.polymer.2005.08.053
- De Medeiros, E., Tocchetto, R., De Carvalho, L., Santos, I., Souza, A. Nucleating effect and dynamic crystallization of a poly (propylene)/talc system. J. Therm. Anal. Calorim. 2001;66(2):523-31. https://doi.org/10.1023/A:1013121102536
- Ferrage, E., Martin, F., Boudet, A., Petit, S., Fourty, G., Jouffret, F., et al. Talc as nucleating agent of polypropylene: morphology induced by lamellar particles addition and interface mineral-matrix modelization. J. Mater. Sci. 2002;37(8):1561-73. https://doi.org/10.1023/A:1014929121367
- Weidenfeller, B., Höfer, M., Schilling, F.R. Thermal conductivity, thermal diffusivity, and specific heat capacity of particle filled polypropylene. Composites Part A. 2004;35(4):423-9. https://doi.org/10.1016/j.compositesa.2003.11.005
- Weidenfeller, B., Höfer, M., Schilling, F.R. Cooling behaviour of particle filled polypropylene during injection moulding process. Composites Part A.2005;36(3):345-51. https://doi.org/10.1016/j.compositesa.2004.07.002
- Castillo, L.A., Barbosa, S.E. Influence of processing and particle morphology on final properties of polypropylene/talc nanocomposites. Polym. Compos. 2020;41(8):3170-83. https://doi.org/10.3390/polym13060906
- Lv, Z., Wang, K., Qiao, Z., Wang, W. The influence of modified zeolites as nucleating agents on crystallization behavior and mechanical properties of polypropylene. Mater. Des. 2010;31(8):3804-9. https://doi.org/10.1016/j.matdes.2010.03.028
- Yousfi, M., Livi, S., Dumas, A., Le Roux, C., Crépin-Leblond, J., Greenhill-Hooper, M., et al. Use of new synthetic talc as reinforcing nanofillers for polypropylene and polyamide 6 systems: thermal and mechanical properties. J. Colloid. Interface Sci. 2013;403:29-42. https://doi.org/10.1016/j.jcis.2013.04.019
- Kim, Y.C., Kim, C.Y., Kim, S.C. Crystallization characteristics of isotactic polypropylene with and without nucleating agents. Polym. Eng. Sci. 1991;31(14):1009-14. https://doi.org/10.1002/pen.760311403
- Qiu, W., Mai, K., Zeng, H. Effect of silane‐grafted polypropylene on the mechanical properties and crystallization behavior of talc/polypropylene composites. J. App. Polym. Sci. 2000;77(13):2974-7. https://doi.org/10.1002/1097-4628(20000923)77:13<2974::AID-APP22>3.0.CO;2-R
- Dong, M., Guo, Z., Su, Z., Yu, J. The effects of crystallization condition on the microstructure and thermal stability of istactic polypropylene nucleated by β‐form nucleating agent. J. App. Polym. Sci. 2011;119(3):1374-82. https://doi.org/10.1002/app.32487
- Abuoudah, C.K., Greish, Y.E., Abu-Jdayil, B., El-said, E.M., Iqbal, M.Z. Graphene/polypropylene nanocomposites with improved thermal and mechanical properties. J. App. Polym. Sci. 2020; https://doi.org/10.1002/app.50024
- Andrews, R., Grulke, E. Polymer handbook. John Wiley & Sons, New York; 1999.
- Simanke, A.G., Azeredo, A.P., Lemos, G., Mauler, R.S. Influence of nucleating agent on the crystallization kinetics and morphology of polypropylene. Polimeros. 2016;26(2):152-160. https://doi.org/10.1590/0104-1428.2053
- Yang, C., Xing, Z., Wang, M., Zhao, Q., Wang, M., Zhang, M., Wu, G. Better scCO2 foaming of polypropylene via earlier crystallization with the addition of composite nucleating agent. Ind. Eng. Chem. Res. 2018;57(46):15916-15923. https://doi.org/10.1021/acs.iecr.8b03866
- Rotzinger, B. Talc-filled PP: A new concept to maintain long term heat stability. Polym. Degrad. Stab. 2006;91:2884-2887. https://doi.org/10.1016/j.polymdegradstab.2006.09.008
- Menczel, J., Varga, J. Influence of nucleating agents on crystallization of polypropylene. J. Therm. Anal. 1983;28:161-174.
- Jang, G.S., Cho, W.J., Ha, C.S. Crystallization behavior of polypropylene with or without sodium benzoate as a nucleating agent. J. Polym. Sci B: Polym. Phys. 2001;39.1001-1016. https://doi.org/10.1002/polb.1077
- Libster, D., Aserin, A., Garti, N. A novel dispersion method comprising a nucleating agent solubilized in a microemulsion, in polymer matrix. J. Colloid Interface Sci. 2006;299(1):172-181. https://doi.org/10.1016/j.jcis.2006.06.060
- Zhang, X., Zhang, D., Liu, T. Influence of nucleating agent on properties of isotactic polypropylene. Energy Procedia. 2016;17:1829-1835. https://doi.org/10.1016/j.egypro.2012.02.319
- Heeley, E.L., Hughes, D.J., Taylor, P.G., Bassindale, A.R. Crystallization and morphology development in polyethylene-octakis (n-octadecyldimethylsiloxy) octasilsesquioxane nancomposite blends. RSC Adv. 2015;5:34709-34719. https://doi.org/10.1039/C5RA03267A
- Krache, R., Debbah, I. Some mechanical and thermal properties of PC/ABS blends. Mater. Sci. Appl. 2011;2:404-410. https://doi.org/10.4236/msa.2011.25052
- Perego, G., Cella, G.D., Bastioli, C. Effect of molecular weight and crsytallinity on Poly(lactic acid) mechanical properties. J. Appl. Polym. Sci. 1996;59:37-43. https://doi.org/10.1002(SICI)1097-4628(19960103)59:1<37::AID-APP6>3.0.CO;2-N
- López, D.G., Quintana, S.L., Mitre, I.G., Merino, J.C., Pastor, J.M. Study of melt compounding conditions and characterization of polyamide 6/metallocene ethylene-polypropylene-diene copolymer/maleated ethylene-polypropylene-diene copolymer blends reinforced with layered silicates. Polym. Eng. Sci. 2007;47(7):1033-1039. https://doi.org/10.1002/pen.20782
- Karagöz, İ., Öksüz, M. Microstructures occuring in the joined thermoplastics with friction stir welding. J. Fac. Eng. Archit. Gazi Üniv. 2018;33(2):503-515. https://doi.org/10.17341/gazimmfd.416359
- Karagöz, İ. An effect of mold surface temperature on final product properties in the injection molding of high-density polyethylene materials. Polym. Bull. 2021;78:2627-2644. https://doi.org/10.1007/s00289-020-03231-2
- Karagöz, İ., Tuna, Ö. Effect of melt temperature on product properties of injection-molded high-density polyethylene. Polym. Bull. 2021;78:6073-6091. https://doi.org/10.1007/s00289-021-03695-w
- Ferreira, E.S.B., Luna, C.B.B., Araujo, E.M, Siqueira, D.D., Wellen, R.M.R. Polypropylene/wood powder composites: Evaluation of PP viscosity in thermal, mechanical, thermomechanical, and morphological characters. J. Thermoplast. Compos. Mater. 2019; https://doi.org/10.1177/0892705719880958.
Çekirdekleştirici Ajanın Enjeksiyonla Kalıplanmış İzotaktik Polipropilenin Mekanik ve Kristalizasyon Davranışı Üzerindeki Etkilerinin Deneysel Olarak İncelenmesi
Year 2023,
Volume: 10 Issue: 1, 109 - 120, 31.01.2023
Mesut Kandemir
,
İdris Karagöz
,
Harun Sepetçioğlu
Abstract
Bu çalışmada, talk (magnezyum-silikat-monohidrat/3MgO.4SiO2.H2O) çekirdekleştirici ajanın (NA) izotaktik-polipropilenin (i-PP) termal ve mekanik özellikleri üzerindeki etkisi eriyik harmanlama yöntemi kullanılarak %0,5 ile %5 arasında değişen katkı oranlarına göre incelendi. Sonuçlar, NA/i-PP'nin saf i-PP'ye oranla önemli ölçüde geliştirilmiş mekanik performans sergilediğini gösterdi. Ek olarak, saf i-PP'nin erime ve kristalleşme davranışı üzerindeki NA konsantrasyonunun etkisi de DSC eğrileri aracılığıyla analiz edildi. NA konsantrasyonu arttıkça i-PP'nin gerilme ve eğilme özellikleri arttı. Ayrıca, taramalı elektron mikroskobu, NA/i-PP ve i-PP matrisi arasında kırılma yüzeyinde önemli bir fark olduğunu ortaya çıkardı. Sonuç olarak, bu çalışmada kullanılan NA'nın (talk) i-PP için iyi bir NA olduğu, ürünün mekanik ve termal özelliklerini iyileştirdiği, kristalleşme özelliklerini ve mikro yapıyı etkilediği ve kalıp çevrim süresini azalttığı belirlendi. Bunların yanı sıra, talk ile i-PP matrisi arasında arayüz özelliklerini iyileştirebilecek çeşitli katkı maddelerinin kullanılmasının, mekanik ve termal özellikleri çok daha yüksek olan yeni i-PP tasarımına alternatif bir yaklaşım olması beklenmektedir.
Project Number
2018/YL/003
References
- Cui, L., Wang, P., Zhang, Y., Zhang, L., Chen, Y., Wang, L., et al. Combined effect of α-nucleating agents and glass fiber reinforcement on a polypropylene composite: A balanced approach. RSC Advances. 2017;7(68):42783-91. https://doi.org/10.1039/C7RA08322J
- Dotson, D.L., Nygard, P., A novel nucleating agent for polyethylene. Milliken & Company; 2011.
- Yu, Y., Zeng, F., Chen, J., Kang, J., Yang, F., Cao, Y., et al. Effects of ordered structure on non-isothermal crystallization kinetics and subsequent melting behavior of β-nucleated isotactic polypropylene/graphene oxide composites. J. Therm. Anal Calorim. 2019;136(4):1667-78. https://doi.org/10.1007/s10973-018-7776-8
- Xu, T., Lei, H., Xie, C. The effect of nucleating agent on the crystalline morphology of polypropylene (PP). Mater. Des. 2003;24(3):227-30. https://doi.org/10.1016/S0261-3069(02)00129-2
- Kučerová, J. Nucleating and clarifying agents for polymers; 2008.
- Lotz, B., Wittmann, J., Lovinger, A. Structure and morphology of poly(propylenes): a molecular analysis. Polymer 1996;37(22):4979-4992. https://doi.org/10.1016/0032-3861(96)00370-9
- Cao, L., Su, D.F., Su, ZQ, Chen, X.N. Morphology, crystallization behavior and tensile properties of β-nucleated isotactic polypropylene fibrous membranes prepared by melt electrospinning. Chin. J. Polym. Sci. 2014;32(9):1167-75. https://doi.org/10.1007/s10118-014-1465-2
- Bai, H., Wang, Y., Zhang, Z., Han, L., Li, Y., Liu, L., et al. Influence of annealing on microstructure and mechanical properties of isotactic polypropylene with β-phase nucleating agent. Macromolecules. 2009;42(17):6647-55. https://doi.org/10.1021/ma9001269
- Bao, R.Y., Cao, J., Liu, Z.Y., Yang, W., Xie, B.H., Yang, M.B. Towards balanced strength and toughness improvement of isotactic polypropylene nanocomposites by surface functionalized graphene oxide. J. Mater. Chem. A. 2014;2(9):3190-9. https://doi.org/10.1039/C3TA14554A
- Xu, J.Z., Liang, Y.Y., Huang, H.D., Zhong, G.J., Lei, J., Chen, C., et al. Isothermal and nonisothermal crystallization of isotactic polypropylene/graphene oxide nanosheet nanocomposites. J. Polym. Res. 2012;19(10):1-7. https://doi.org/10.1007/s10965-012-9975-5
- Reyes-de Vaaben, S., Aguilar, A., Avalos, F., Ramos-de Valle, L.F. Carbon nanoparticles as effective nucleating agents for polypropylene. J. Therm. Anal. Calorim. 2008;93(3):947-52. https://doi.org/10.1007/s10973-007-8591-9
- Zhang, Y.F., He, B., Hou, H.H., Guo, L.H. Isothermal crystallization of isotactic polypropylene nucleated with a novel aromatic heterocyclic phosphate nucleating agent. J. Macromol. Sci. Part B Phys. 2021;56(11-12):811-20. https://doi.org/10.1080/00222348.2017.1385360
- Abreu, A.A., Talabi, S.I., de Almeida Lucas, A. Influence of nucleating agents on morphology and properties of injection‐molded polypropylene. Polym. Adv. Technol. 2021;32(5):2197-206. https://doi.org/10.1002/pat.5252
- Bernland, K., Goossens, J., Smith, P., Tervoort, T.A. On clarification of haze in polypropylene. J. Polym. Sci. Part B: Polym. Phy. 2016;54(9):865-74. https://doi.org/10.1002/polb.23992
- Kristiansen, M., Tervoort, T., Smith, P., Goossens, H. Mechanical properties of sorbitol-clarified isotactic polypropylene: influence of additive concentration on polymer structure and yield behavior. Macromolecules. 2005;38(25):10461-5. https://doi.org/10.1021/ma0517401
- Kristiansen, M., Werner, M., Tervoort, T., Smith, P., Blomenhofer, M., Schmidt, H.W. The binary system isotactic polypropylene/bis (3, 4-dimethylbenzylidene) sorbitol: phase behavior, nucleation, and optical properties. Macromolecules. 2003;36(14):5150-6. https://doi.org/10.1021/ma030146t
- Kristiansen, P.M., Gress, A., Smith, P., Hanft, D., Schmidt, H.W. Phase behavior, nucleation and optical properties of the binary system isotactic polypropylene/N, N′, N ″-tris-isopentyl-1, 3, 5-benzene-tricarboxamide. Polymer. 2006;47(1):249-53. https://doi.org/10.1016/j.polymer.2005.08.053
- De Medeiros, E., Tocchetto, R., De Carvalho, L., Santos, I., Souza, A. Nucleating effect and dynamic crystallization of a poly (propylene)/talc system. J. Therm. Anal. Calorim. 2001;66(2):523-31. https://doi.org/10.1023/A:1013121102536
- Ferrage, E., Martin, F., Boudet, A., Petit, S., Fourty, G., Jouffret, F., et al. Talc as nucleating agent of polypropylene: morphology induced by lamellar particles addition and interface mineral-matrix modelization. J. Mater. Sci. 2002;37(8):1561-73. https://doi.org/10.1023/A:1014929121367
- Weidenfeller, B., Höfer, M., Schilling, F.R. Thermal conductivity, thermal diffusivity, and specific heat capacity of particle filled polypropylene. Composites Part A. 2004;35(4):423-9. https://doi.org/10.1016/j.compositesa.2003.11.005
- Weidenfeller, B., Höfer, M., Schilling, F.R. Cooling behaviour of particle filled polypropylene during injection moulding process. Composites Part A.2005;36(3):345-51. https://doi.org/10.1016/j.compositesa.2004.07.002
- Castillo, L.A., Barbosa, S.E. Influence of processing and particle morphology on final properties of polypropylene/talc nanocomposites. Polym. Compos. 2020;41(8):3170-83. https://doi.org/10.3390/polym13060906
- Lv, Z., Wang, K., Qiao, Z., Wang, W. The influence of modified zeolites as nucleating agents on crystallization behavior and mechanical properties of polypropylene. Mater. Des. 2010;31(8):3804-9. https://doi.org/10.1016/j.matdes.2010.03.028
- Yousfi, M., Livi, S., Dumas, A., Le Roux, C., Crépin-Leblond, J., Greenhill-Hooper, M., et al. Use of new synthetic talc as reinforcing nanofillers for polypropylene and polyamide 6 systems: thermal and mechanical properties. J. Colloid. Interface Sci. 2013;403:29-42. https://doi.org/10.1016/j.jcis.2013.04.019
- Kim, Y.C., Kim, C.Y., Kim, S.C. Crystallization characteristics of isotactic polypropylene with and without nucleating agents. Polym. Eng. Sci. 1991;31(14):1009-14. https://doi.org/10.1002/pen.760311403
- Qiu, W., Mai, K., Zeng, H. Effect of silane‐grafted polypropylene on the mechanical properties and crystallization behavior of talc/polypropylene composites. J. App. Polym. Sci. 2000;77(13):2974-7. https://doi.org/10.1002/1097-4628(20000923)77:13<2974::AID-APP22>3.0.CO;2-R
- Dong, M., Guo, Z., Su, Z., Yu, J. The effects of crystallization condition on the microstructure and thermal stability of istactic polypropylene nucleated by β‐form nucleating agent. J. App. Polym. Sci. 2011;119(3):1374-82. https://doi.org/10.1002/app.32487
- Abuoudah, C.K., Greish, Y.E., Abu-Jdayil, B., El-said, E.M., Iqbal, M.Z. Graphene/polypropylene nanocomposites with improved thermal and mechanical properties. J. App. Polym. Sci. 2020; https://doi.org/10.1002/app.50024
- Andrews, R., Grulke, E. Polymer handbook. John Wiley & Sons, New York; 1999.
- Simanke, A.G., Azeredo, A.P., Lemos, G., Mauler, R.S. Influence of nucleating agent on the crystallization kinetics and morphology of polypropylene. Polimeros. 2016;26(2):152-160. https://doi.org/10.1590/0104-1428.2053
- Yang, C., Xing, Z., Wang, M., Zhao, Q., Wang, M., Zhang, M., Wu, G. Better scCO2 foaming of polypropylene via earlier crystallization with the addition of composite nucleating agent. Ind. Eng. Chem. Res. 2018;57(46):15916-15923. https://doi.org/10.1021/acs.iecr.8b03866
- Rotzinger, B. Talc-filled PP: A new concept to maintain long term heat stability. Polym. Degrad. Stab. 2006;91:2884-2887. https://doi.org/10.1016/j.polymdegradstab.2006.09.008
- Menczel, J., Varga, J. Influence of nucleating agents on crystallization of polypropylene. J. Therm. Anal. 1983;28:161-174.
- Jang, G.S., Cho, W.J., Ha, C.S. Crystallization behavior of polypropylene with or without sodium benzoate as a nucleating agent. J. Polym. Sci B: Polym. Phys. 2001;39.1001-1016. https://doi.org/10.1002/polb.1077
- Libster, D., Aserin, A., Garti, N. A novel dispersion method comprising a nucleating agent solubilized in a microemulsion, in polymer matrix. J. Colloid Interface Sci. 2006;299(1):172-181. https://doi.org/10.1016/j.jcis.2006.06.060
- Zhang, X., Zhang, D., Liu, T. Influence of nucleating agent on properties of isotactic polypropylene. Energy Procedia. 2016;17:1829-1835. https://doi.org/10.1016/j.egypro.2012.02.319
- Heeley, E.L., Hughes, D.J., Taylor, P.G., Bassindale, A.R. Crystallization and morphology development in polyethylene-octakis (n-octadecyldimethylsiloxy) octasilsesquioxane nancomposite blends. RSC Adv. 2015;5:34709-34719. https://doi.org/10.1039/C5RA03267A
- Krache, R., Debbah, I. Some mechanical and thermal properties of PC/ABS blends. Mater. Sci. Appl. 2011;2:404-410. https://doi.org/10.4236/msa.2011.25052
- Perego, G., Cella, G.D., Bastioli, C. Effect of molecular weight and crsytallinity on Poly(lactic acid) mechanical properties. J. Appl. Polym. Sci. 1996;59:37-43. https://doi.org/10.1002(SICI)1097-4628(19960103)59:1<37::AID-APP6>3.0.CO;2-N
- López, D.G., Quintana, S.L., Mitre, I.G., Merino, J.C., Pastor, J.M. Study of melt compounding conditions and characterization of polyamide 6/metallocene ethylene-polypropylene-diene copolymer/maleated ethylene-polypropylene-diene copolymer blends reinforced with layered silicates. Polym. Eng. Sci. 2007;47(7):1033-1039. https://doi.org/10.1002/pen.20782
- Karagöz, İ., Öksüz, M. Microstructures occuring in the joined thermoplastics with friction stir welding. J. Fac. Eng. Archit. Gazi Üniv. 2018;33(2):503-515. https://doi.org/10.17341/gazimmfd.416359
- Karagöz, İ. An effect of mold surface temperature on final product properties in the injection molding of high-density polyethylene materials. Polym. Bull. 2021;78:2627-2644. https://doi.org/10.1007/s00289-020-03231-2
- Karagöz, İ., Tuna, Ö. Effect of melt temperature on product properties of injection-molded high-density polyethylene. Polym. Bull. 2021;78:6073-6091. https://doi.org/10.1007/s00289-021-03695-w
- Ferreira, E.S.B., Luna, C.B.B., Araujo, E.M, Siqueira, D.D., Wellen, R.M.R. Polypropylene/wood powder composites: Evaluation of PP viscosity in thermal, mechanical, thermomechanical, and morphological characters. J. Thermoplast. Compos. Mater. 2019; https://doi.org/10.1177/0892705719880958.