Research Article
BibTex RIS Cite

Effect of Star Structure Versus Linear Polymers on Structure and Shear Rheology

Year 2025, Volume: 12 Issue: 3, 365 - 374, 30.09.2025
https://doi.org/10.31202/ecjse.1735047

Abstract

The research focuses on developing a star-shaped polymer with a poly(divinylbenzene) nucleus and poly(styrene) arms through ATRP polymerization. The rheology of linear and star polymers with narrow molecular weight distributions was compared with commercially available high molecular weight PS. The polymers containing DOA plasticizer were subjected to rheology experiments at 25°C at varying shear rates. The entangled and randomly oriented polymer chains dispersed during flow, increasing free space and reducing molecular interactions. At elevated shear rates, the polymers achieved the infinite shear viscosity plateau (η∞). The shear rate-independent behavior of the commercially used linear PS mixture containing DOA was observed. In contrast, star polymers exhibited a smaller hydrodynamic volume and gyration radius, leading to a lower viscosity.

References

  • [1] Ren, J. M., McKenzie, T. G., Fu, Q., Wong, E. H., Xu, J., An, Z., Shanmugam, S., Davis, T. P., Boyer, C. and Qiao, G. G. (2016). Star polymers, Chemical Reviews, 116 (12), 6743-6836.
  • [2] Tikhonov, P., Vasilenko, N. and Muzafarov, A. (2021). Multiarm star polymers. Fundamental aspects. A review, Doklady Chemistry: Springer, Vol. 496, pp 1-17
  • [3] Wu, W., Wang, W. and Li, J. (2015). Star polymers: Advances in biomedical applications, Progress in Polymer Science, 46, 55-85.
  • [4] Du, J. and Chen, Y. (2004). Preparation of poly (ethylene oxide) star polymers and poly (ethylene oxide)–polystyrene heteroarm star polymers by atom transfer radical polymerization, Journal of Polymer Science Part A: Polymer Chemistry, 42 (9), 2263-2271.
  • [5] Herberg, A., Yu, X. and Kuckling, D. (2019). End group stability of atom transfer radical polymerization (ATRP)- synthesized poly (N-isopropylacrylamide): Perspectives for diblock copolymer synthesis, Polymers, 11 (4), 678.
  • [6] Xia, J., Zhang, X. and Matyjaszewski, K. (1999). Synthesis of star-shaped polystyrene by atom transfer radical polymerization using an “arm first” approach, Macromolecules, 32 (13), 4482-4484.
  • [7] Spiniello, M., Blencowe, A. and Qiao, G. G. (2008). Synthesis and characterization of fluorescently labeled core crosslinked star polymers, Journal of Polymer Science Part A: Polymer Chemistry, 46 (7), 2422-2432.
  • [8] Cakir Yigit, N., Hizal, G. and Tunca, U. (2018). A powerful tool for preparing peripherally post-functionalized multiarm star block copolymer, Polymer Bulletin, 75, 3523-3538.
  • [9] Esen, D. S., Cakir Yigit, N., Tunca, U., Hizal, G. and Arsu, N. (2021). Synthesis and characterization of multiarm (Benzoin‐PS) m‐polyDVB star polymer as a polymeric photoinitiator for polymerization of acrylates and methacrylates, Journal of Polymer Science, 59 (18), 2082-2093.
  • [10] Dai, Y., Sun, H., Pal, S., Zhang, Y., Park, S., Kabb, C. P., Wei, W. D. and Sumerlin, B. S. (2017). Near-IR-induced dissociation of thermally-sensitive star polymers, Chemical Science, 8 (3), 1815-1821.
  • [11] Goh, T. K., Coventry, K. D., Blencowe, A. and Qiao, G. G. (2008). Rheology of core cross-linked star polymers, Polymer, 49 (23), 5095-5104.
  • [12] Truzzolillo, D., Vlassopoulos, D. and Gauthier, M. (2011). Osmotic interactions, rheology, and arrested phaseseparation of star–linear polymer mixtures, Macromolecules, 44 (12), 5043-5052.
  • [13] Wang, C., He, W., Wang, F., Yong, H., Bo, T., Yao, D. and Li, M. (2024). Recent progress of non-linear topological structure polymers: synthesis, and gene delivery. Journal of Nanobiotechnology, 22(1), 40.
  • [14] Navaie, F., Esmaeilnezhad, E. and Choi, H.-J. (2022). Effect of rheological properties of polymer solution on polymer flooding characteristics, Polymers, 14 (24), 5555.
  • [15] Gury, L., Gauthier, M., Cloitre, M. and Vlassopoulos, D. (2019). Colloidal jamming in multiarm star polymer melts, Macromolecules, 52 (12), 4617-4623.
  • [16] Ebrahimi, T., Hatzikiriakos, S. G. and Mehrkhodavandi, P. (2015). Synthesis and Rheological Characterization of Star- Shaped and Linear Poly (hydroxybutyrate), Macromolecules, 48 (18), 6672-6681.
  • [17] Snijkers, F., Cho, H. Y., Nese, A., Matyjaszewski, K., Pyckhout-Hintzen, W. and Vlassopoulos, D. (2014). Effects of core microstructure on structure and dynamics of star polymer melts: from polymeric to colloidal response, Macromolecules, 47 (15), 5347-5356.
  • [18] Miros, A., Vlassopoulos, D., Likhtman, A. and Roovers, J. (2003). Linear rheology of multiarm star polymers diluted with short linear chains, Journal of Rheology, 47 (1), 163-176.
  • [19] Polanowski, P., Hałagan, K. and Sikorski, A. (2022). Star polymers vs. dendrimers: Studies of the synthesis based on computer simulations, Polymers, 14 (13), 2522.
  • [20] Liu, S., Zhang, J., Hutchings, L. R., Peng, L., Huang, X. and Huang, Q. (2023). The “solvent” effect of short arms on linear and nonlinear shear rheology of entangled asymmetric star polymers, Polymer, 281, 126125.
  • [21] Van Ruymbeke, E., Muliawan, E. B., Vlassopoulos, D., Gao, H. and Matyjaszewski, K. (2011). Melt rheology of star polymers with large number of small arms, prepared by crosslinking poly (n-butyl acrylate) macromonomers via ATRP, European Polymer Journal, 47 (4), 746-751.
  • [22] Ren, J. M., McKenzie, T. G., Fu, Q., Wong, E. H., Xu, J., An, Z. and Qiao, G. G. (2016). Star polymers. Chemical reviews, 116(12), 6743-6836.
  • [23] Mandal, A. and Kilbinger, A. F. (2023). Catalytic Living ROMP: Synthesis of Degradable Star Polymers. ACS Macro Letters, 12(10), 1372-1378.
  • [24] Sparnacci, K., Frison, T., Podda, E., Antonioli, D., Laus, M., Notari, M. and Po, R. (2022). Core-crosslinked star copolymers as viscosity index improvers for lubricants. ACS Applied Polymer Materials, 4(12), 8722-8730.
  • [25] Luo, Z., Wang, L., Pei, J., Yu, P. and Xia, B. (2018). A novel star-shaped copolymer as a rheology modifier in waterbased drilling fluids, Journal of Petroleum Science Engineering, 168, 98-106.
  • [26] Jian, G., Santra, A., Mbuncha, C. and Ross, G. (2023). A novel star polymer for regulating fluid loss in oil-based mud under high temperature conditions, Journal of Molecular Liquids, 389, 122815.
  • [27] Cakir Yigit, N., Hızal, G. and Tunca, U. (2022). Synthesis of multiarm star block copolymer based on host-guest inclusion complexation, Journal of innovative engineering and natural science (Online), 2 (1), 1-16.
  • [28] Srivastva, D. and Nikoubashman, A. (2018). Flow behavior of chain and star polymers and their mixtures, Polymers, 10 (6), 599.
  • [29] Kratochvil, P. and Netopilik, M. (2014). On the contraction factors of long-chain branched macromolecules, European Polymer Journal, 51, 177-181.

Yıldız Yapısının Doğrusal Polimerlere Karşı Yapı ve Kesme Reolojisi Üzerindeki Etkisi

Year 2025, Volume: 12 Issue: 3, 365 - 374, 30.09.2025
https://doi.org/10.31202/ecjse.1735047

Abstract

Araştırma, ATRP polimerizasyonu yoluyla poli(divinilbenzen) çekirdeği ve poli(stiren) kolları olan yıldız şekilli bir polimer geliştirmeye odaklanmıştır. Dar moleküler ağırlık dağılımlarına sahip doğrusal ve yıldız polimerlerin reolojisi, ticari olarak temin edilebilen yüksek moleküler ağırlıklı PS ile karşılaştırılmıştır. DOA plastikleştirici içeren polimerler, değişen kayma hızlarında 25°C'de reoloji deneylerine tabi tutulmuştur. Dolaşık ve rastgele yönlendirilmiş polimer zincirleri akış sırasında dağılmış, serbest alanı artırmış ve moleküler etkileşimleri azaltmıştır. Yüksek kayma hızlarında, polimerler sonsuz kayma viskozite platosuna (η∞) ulaşmıştır. DOA içeren ticari olarak kullanılan doğrusal PS karışımının kayma hızından bağımsız davranışı gözlemlenmiştir. Bunun aksine, yıldız polimerler daha küçük bir hidrodinamik hacim ve dönme yarıçapı sergilemiş ve bu da daha düşük bir viskoziteye yol açmıştır.

References

  • [1] Ren, J. M., McKenzie, T. G., Fu, Q., Wong, E. H., Xu, J., An, Z., Shanmugam, S., Davis, T. P., Boyer, C. and Qiao, G. G. (2016). Star polymers, Chemical Reviews, 116 (12), 6743-6836.
  • [2] Tikhonov, P., Vasilenko, N. and Muzafarov, A. (2021). Multiarm star polymers. Fundamental aspects. A review, Doklady Chemistry: Springer, Vol. 496, pp 1-17
  • [3] Wu, W., Wang, W. and Li, J. (2015). Star polymers: Advances in biomedical applications, Progress in Polymer Science, 46, 55-85.
  • [4] Du, J. and Chen, Y. (2004). Preparation of poly (ethylene oxide) star polymers and poly (ethylene oxide)–polystyrene heteroarm star polymers by atom transfer radical polymerization, Journal of Polymer Science Part A: Polymer Chemistry, 42 (9), 2263-2271.
  • [5] Herberg, A., Yu, X. and Kuckling, D. (2019). End group stability of atom transfer radical polymerization (ATRP)- synthesized poly (N-isopropylacrylamide): Perspectives for diblock copolymer synthesis, Polymers, 11 (4), 678.
  • [6] Xia, J., Zhang, X. and Matyjaszewski, K. (1999). Synthesis of star-shaped polystyrene by atom transfer radical polymerization using an “arm first” approach, Macromolecules, 32 (13), 4482-4484.
  • [7] Spiniello, M., Blencowe, A. and Qiao, G. G. (2008). Synthesis and characterization of fluorescently labeled core crosslinked star polymers, Journal of Polymer Science Part A: Polymer Chemistry, 46 (7), 2422-2432.
  • [8] Cakir Yigit, N., Hizal, G. and Tunca, U. (2018). A powerful tool for preparing peripherally post-functionalized multiarm star block copolymer, Polymer Bulletin, 75, 3523-3538.
  • [9] Esen, D. S., Cakir Yigit, N., Tunca, U., Hizal, G. and Arsu, N. (2021). Synthesis and characterization of multiarm (Benzoin‐PS) m‐polyDVB star polymer as a polymeric photoinitiator for polymerization of acrylates and methacrylates, Journal of Polymer Science, 59 (18), 2082-2093.
  • [10] Dai, Y., Sun, H., Pal, S., Zhang, Y., Park, S., Kabb, C. P., Wei, W. D. and Sumerlin, B. S. (2017). Near-IR-induced dissociation of thermally-sensitive star polymers, Chemical Science, 8 (3), 1815-1821.
  • [11] Goh, T. K., Coventry, K. D., Blencowe, A. and Qiao, G. G. (2008). Rheology of core cross-linked star polymers, Polymer, 49 (23), 5095-5104.
  • [12] Truzzolillo, D., Vlassopoulos, D. and Gauthier, M. (2011). Osmotic interactions, rheology, and arrested phaseseparation of star–linear polymer mixtures, Macromolecules, 44 (12), 5043-5052.
  • [13] Wang, C., He, W., Wang, F., Yong, H., Bo, T., Yao, D. and Li, M. (2024). Recent progress of non-linear topological structure polymers: synthesis, and gene delivery. Journal of Nanobiotechnology, 22(1), 40.
  • [14] Navaie, F., Esmaeilnezhad, E. and Choi, H.-J. (2022). Effect of rheological properties of polymer solution on polymer flooding characteristics, Polymers, 14 (24), 5555.
  • [15] Gury, L., Gauthier, M., Cloitre, M. and Vlassopoulos, D. (2019). Colloidal jamming in multiarm star polymer melts, Macromolecules, 52 (12), 4617-4623.
  • [16] Ebrahimi, T., Hatzikiriakos, S. G. and Mehrkhodavandi, P. (2015). Synthesis and Rheological Characterization of Star- Shaped and Linear Poly (hydroxybutyrate), Macromolecules, 48 (18), 6672-6681.
  • [17] Snijkers, F., Cho, H. Y., Nese, A., Matyjaszewski, K., Pyckhout-Hintzen, W. and Vlassopoulos, D. (2014). Effects of core microstructure on structure and dynamics of star polymer melts: from polymeric to colloidal response, Macromolecules, 47 (15), 5347-5356.
  • [18] Miros, A., Vlassopoulos, D., Likhtman, A. and Roovers, J. (2003). Linear rheology of multiarm star polymers diluted with short linear chains, Journal of Rheology, 47 (1), 163-176.
  • [19] Polanowski, P., Hałagan, K. and Sikorski, A. (2022). Star polymers vs. dendrimers: Studies of the synthesis based on computer simulations, Polymers, 14 (13), 2522.
  • [20] Liu, S., Zhang, J., Hutchings, L. R., Peng, L., Huang, X. and Huang, Q. (2023). The “solvent” effect of short arms on linear and nonlinear shear rheology of entangled asymmetric star polymers, Polymer, 281, 126125.
  • [21] Van Ruymbeke, E., Muliawan, E. B., Vlassopoulos, D., Gao, H. and Matyjaszewski, K. (2011). Melt rheology of star polymers with large number of small arms, prepared by crosslinking poly (n-butyl acrylate) macromonomers via ATRP, European Polymer Journal, 47 (4), 746-751.
  • [22] Ren, J. M., McKenzie, T. G., Fu, Q., Wong, E. H., Xu, J., An, Z. and Qiao, G. G. (2016). Star polymers. Chemical reviews, 116(12), 6743-6836.
  • [23] Mandal, A. and Kilbinger, A. F. (2023). Catalytic Living ROMP: Synthesis of Degradable Star Polymers. ACS Macro Letters, 12(10), 1372-1378.
  • [24] Sparnacci, K., Frison, T., Podda, E., Antonioli, D., Laus, M., Notari, M. and Po, R. (2022). Core-crosslinked star copolymers as viscosity index improvers for lubricants. ACS Applied Polymer Materials, 4(12), 8722-8730.
  • [25] Luo, Z., Wang, L., Pei, J., Yu, P. and Xia, B. (2018). A novel star-shaped copolymer as a rheology modifier in waterbased drilling fluids, Journal of Petroleum Science Engineering, 168, 98-106.
  • [26] Jian, G., Santra, A., Mbuncha, C. and Ross, G. (2023). A novel star polymer for regulating fluid loss in oil-based mud under high temperature conditions, Journal of Molecular Liquids, 389, 122815.
  • [27] Cakir Yigit, N., Hızal, G. and Tunca, U. (2022). Synthesis of multiarm star block copolymer based on host-guest inclusion complexation, Journal of innovative engineering and natural science (Online), 2 (1), 1-16.
  • [28] Srivastva, D. and Nikoubashman, A. (2018). Flow behavior of chain and star polymers and their mixtures, Polymers, 10 (6), 599.
  • [29] Kratochvil, P. and Netopilik, M. (2014). On the contraction factors of long-chain branched macromolecules, European Polymer Journal, 51, 177-181.
There are 29 citations in total.

Details

Primary Language English
Subjects Engineering Design
Journal Section Research Articles
Authors

Neşe Çakır Yiğit 0000-0002-4714-4488

Publication Date September 30, 2025
Submission Date July 5, 2025
Acceptance Date September 30, 2025
Published in Issue Year 2025 Volume: 12 Issue: 3

Cite

IEEE N. Çakır Yiğit, “Effect of Star Structure Versus Linear Polymers on Structure and Shear Rheology”, El-Cezeri Journal of Science and Engineering, vol. 12, no. 3, pp. 365–374, 2025, doi: 10.31202/ecjse.1735047.
Creative Commons License El-Cezeri is licensed to the public under a Creative Commons Attribution 4.0 license.
88x31.png