Review
BibTex RIS Cite

A waste material rich in bioactive compounds: Hazelnut waste

Year 2023, , 15 - 25, 26.07.2023
https://doi.org/10.55147/efse.1289656

Abstract

Nowadays, increasing sensitivity to the environment leads to the development of sustainable agricultural policies. In this respect, it has become important to transform agricultural waste products into value-added products. Hazelnut, which has a significant trade volume worldwide, is processed into products, and some waste materials can be emerge. These waste products could transform into high added-value to food, cosmetics, and pharmaceutical industries due to possessing the bioactive compounds such as phenolics and, dietary fibre in them. This review represents the research on the bioactive compounds from the hazelnut waste, especially conducted in recently, and concentrates on its tree leaf, husk, and oil meal.

References

  • Acan, B. G., Toker, O. S., Palabiyik, I., Pirouzian, H. R., Bursa, K., Kilicli, M., Yaman, M., Er, T., & Konar, N. (2021). Physicochemical properties of chocolate spread with hazelnut cake: Comparative study and optimization. LWT-Food Science and Technology, 147, 111548. https://doi.org/10.1016/j.lwt.2021.111548
  • Akbarian, M., Khani, A., Eghbalpour, S., & Uversky, V. N. (2022). Bioactive peptides: synthesis, sources, applications, and proposed mechanisms of action. International Journal of Molecular Sciences, 23(3), 1445. https://doi.org/10.3390/ijms23031445
  • Alalwan, T. A., Mohammed, D., Hasan, M., Sergi, D., Ferraris, C., Gasparri, C., Rondanelli, M., & Perna, S. (2022). Almond, hazelnut, and pistachio skin: an opportunity for nutraceuticals. Nutraceuticals, 2(4), 300-310. https://doi.org/10.3390/nutraceuticals2040023
  • Alasalvar, C., Amaral, J. S., Satır, G., & Shahidi, F. (2009). Lipid characteristics and essential minerals of native Turkish hazelnut varieties (Corylus avellana L.). Food Chemistry, 113(4), 919-925. https://doi.org/10.1016/j.foodchem.2008.08.019
  • Alasalvar, C., Amaral, J. S., & Shahidi, F. (2006a). Functional lipid characteristics of Turkish Tombul hazelnut (Corylus avellana L.). Journal of Agricultural and Food Chemistry, 54(26), 10177-10183. https://doi.org/10.1021/jf061702w
  • Alasalvar, C., Karamac, M., Amarowicz, R., & Shahidi, F. (2006b). Antioxidant and antiradical activities in extracts of hazelnut kernel (Corylus avellana L.) and hazelnut green leafy cover. Journal of Agricultural and Food Chemistry, 54(13), 4826-4832. https://doi.org/10.1021/jf0601259
  • Alasalvar, C., Shahidi, F., Ohshima, T., Wanasundara, U., Yurttas, H. C., Liyanapathirana, C. M., & Rodrigues, F. B. (2003). Turkish Tombul hazelnut (Corylus avellana L.). 2. Lipid characteristics and oxidative stability. Journal of Agricultural and Food Chemistry, 51(13), 3797-3805. https://doi.org/10.1021/jf021239x
  • Altop, A., Güngör, E., & Erener, G. (2019). Improvement of nutritional quality of some oilseed meals through solid-state fermentation using Aspergillus niger. Turkish Journal of Agriculture-Food Science and Technology, 7(9), 1411-1414. https://doi.org/10.24925/turjaf.v7i9.1411-1414.2721
  • Amaral, J. S., Ferreres, F., Andrade, P. B., Valentao, P., Pinheiro, C., Santos, A., & Seabra, R. (2005). Phenolic profile of hazelnut (Corylus avellana L.) leaves cultivars grown in Portugal. Natural Product Research 19(2), 157-163. https://doi.org/10.1080/14786410410001704778
  • Anderson, J. W., Baird, P., Davis, R. H., Ferreri, S., Knudtson, M., Koraym, A., Waters, V., & Williams, C. L. (2009). Health benefits of dietary fiber. Nutrition Reviews, 67(4), 188-205. https://doi.org/10.1111/j.1753-4887.2009.00189.x
  • Anonymous. (2008). Directive 2008/98/EC Of The European Parliament And Of The Council. (22.11.2008). Official Journal of the European Union. Retrieved 07.03.2022 from https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32008L0098&from=EN
  • Anonymous. (2016). Auditing waste management. Retrieved 08.03.2022 from https://www.environmental-auditing.org/media/5375/wgea-waste-managemen_e.pdf
  • Anonymous. (2020). Waste generation, 2020. Retrieved 26.03.2022 from https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Waste_statistics#Total_waste_generation
  • Anonymous. (2023). Crops and livestock products. Retrieved 09.03.2022 from https://www.fao.org/faostat/en/#data/TCL
  • Ashokkumar, V., Venkatkarthick, R., Jayashree, S., Chuetor, S., Dharmaraj, S., Kumar, G., Chen, W. H., & Ngamcharussrivichai, C. (2022). Recent advances in lignocellulosic biomass for biofuels and value-added bioproducts - A critical review. Bioresource Technology, 344(Pt B), 126195. https://doi.org/10.1016/j.biortech.2021.126195
  • Atalar, I. (2019). Functional kefir production from high pressure homogenized hazelnut milk. LWT-Food Science and Technology, 107, 256-263. https://doi.org/10.1016/j.lwt.2019.03.013
  • Atalar, I., Kurt, A., Gul, O., & Yazici, F. (2021). Improved physicochemical, rheological and bioactive properties of ice cream: Enrichment with high pressure homogenized hazelnut milk. International Journal of Gastronomy and Food Science, 24, 100358. https://doi.org/10.1016/j.ijgfs.2021.100358
  • Aydemir, L. Y., Gökbulut, A. A., Baran, Y., & Yemenicioğlu, A. (2014). Bioactive, functional and edible film-forming properties of isolated hazelnut (Corylus avellana L.) meal proteins. Food Hydrocolloids, 36, 130-142. https://doi.org/10.1016/j.foodhyd.2013.09.014
  • Balasundram, N., Sundram, K., & Samman, S. (2006). Phenolic compounds in plants and agri-industrial by-products: Antioxidant activity, occurrence, and potential uses. Food Chemistry, 99(1), 191-203. https://doi.org/10.1016/j.foodchem.2005.07.042
  • Banerjee, S., Patti, A. F., Ranganathan, V., & Arora, A. (2019). Hemicellulose based biorefinery from pineapple peel waste: Xylan extraction and its conversion into xylooligosaccharides. Food and Bioproducts Processing, 117, 38-50. https://doi.org/10.1016/j.fbp.2019.06.012
  • Bastante, C. C., Silva, N. H., Cardoso, L. C., Serrano, C. M., de la Ossa, E. J. M., Freire, C. S., & Vilela, C. (2021). Biobased films of nanocellulose and mango leaf extract for active food packaging: Supercritical impregnation versus solvent casting. Food Hydrocolloids, 117, 106709. https://doi.org/10.1016/j.foodhyd.2021.106709
  • Baycar, A., Konar, N., Poyrazoglu, E. S., Goktas, H., & Sagdic, O. (2021). Using white spread and compound chocolate as phenolic compound delivering agent: A model study with black carrot extract. Journal of Food Processing and Preservation, 45(5). https://doi.org/10.1111/jfpp.15392
  • Benov, L., & Georgiev, N. (1994). The antioxidant activity of flavonoids isolated from Corylus colurna. Phytotherapy Research, 8(2), 92-94. https://doi.org/10.1002/ptr.2650080208
  • Beutinger, B. A. B., Sefrin, S. C., Bolson, M. K. I., Dal Pont, M. F., Rheinheimer, D. D., Picolli, D. L., & Garcia, P. N. (2020). Effects of micronization on dietary fiber composition, physicochemical properties, phenolic compounds, and antioxidant capacity of grape pomace and its dietary fiber concentrate. LWT-Food Science and Technology, 117, Article 108652. https://doi.org/10.1016/j.lwt.2019.108652
  • Bian, H. Y., Gao, Y., Luo, J., Jiao, L., Wu, W. B., Fang, G. G., & Dai, H. Q. (2019). Lignocellulosic nanofibrils produced using wheat straw and their pulping solid residue: From agricultural waste to cellulose nanomaterials. Waste Management, 91, 1-8. https://doi.org/10.1016/j.wasman.2019.04.052
  • Bursa, K., Toker, O. S., Palabiyik, I., Yaman, M., Kian-Pour, N., Konar, N., & Kilicli, M. (2021). Valorization of hazelnut cake in compound chocolate: The effect of formulation on rheological and physical properties. LWT-Food Science and Technology, 139, 110609. https://doi.org/10.1016/j.lwt.2020.110609
  • Cabo, S., Aires, A., Carvalho, R., Pascual-Seva, N., Silva, A. P., & Gonçalves, B. (2021). Corylus avellana L. husks an underutilized waste but a valuable source of polyphenols. Waste and Biomass Valorization, 12(7), 3629-3644. https://doi.org/10.1007/s12649-020-01246-4
  • Capuano, E. (2017). The behavior of dietary fiber in the gastrointestinal tract determines its physiological effect. Critical Reviews in Food Science and Nutrition, 57(16), 3543-3564. https://doi.org/10.1080/10408398.2016.1180501
  • Castrica, M., Rebucci, R., Giromini, C., Tretola, M., Cattaneo, D., & Baldi, A. (2019). Total phenolic content and antioxidant capacity of agri-food waste and by-products. Italian Journal of Animal Science, 18(1), 336-341. https://doi.org/10.1080/1828051x.2018.1529544
  • Celenk, V. U., Argon, Z. U., & Gumus, Z. P. (2020). Cold pressed hazelnut (Corylus avellana) oil. In Cold Pressed Oils (pp. 241-254). Elsevier. https://doi.org/10.1016/b978-0-12-818188-1.00020-7
  • Celenk, V. U., Gumus, Z. P., Argon, Z. U., Buyukhelvacigil, M., & Karasulu, E. (2018). Analysis of chemical compositions of 15 different cold-pressed oils produced in Turkey: a case study of tocopherol and fatty acid analysis. Journal of the Turkish Chemical Society Section A: Chemistry, 5(1), 1-18. https://doi.org/10.18596/jotcsa.335012
  • Cerulli, A., Lauro, G., Masullo, M., Cantone, V., Olas, B., Kontek, B., Nazzaro, F., Bifulco, G., & Piacente, S. (2017). Cyclic diarylheptanoids from Corylus avellana green leafy covers: determination of their absolute configurations and evaluation of their antioxidant and antimicrobial activities. Journal of Natural Products, 80(6), 1703-1713. https://doi.org/10.1021/acs.jnatprod.6b00703
  • Cerulli, A., Masullo, M., Montoro, P., Hosek, J., Pizza, C., & Piacente, S. (2018). Metabolite profiling of "green" extracts of Corylus avellana leaves by (1)H NMR spectroscopy and multivariate statistical analysis. Journal of Pharmaceutical and Biomedical, 160, 168-178. https://doi.org/10.1016/j.jpba.2018.07.046
  • Chai, K. F., Voo, A. Y. H., & Chen, W. N. (2020). Bioactive peptides from food fermentation: A comprehensive review of their sources, bioactivities, applications, and future development. Comprehensive Reviews in Food Science and Food Safety, 19(6), 3825-3885. https://doi.org/10.1111/1541-4337.12651
  • Chew, K. W., Chia, S. R., Show, P. L., Ling, T. C., Arya, S. S., & Chang, J.-S. (2018). Food waste compost as an organic nutrient source for the cultivation of Chlorella vulgaris. Bioresource Technology, 267, 356-362. https://doi.org/10.1016/j.biortech.2018.07.069
  • Çağlar, A. F., Çakır, B., & Gülseren, İ. (2021a). LC-Q-TOF/MS based identification and in silico verification of ACE-inhibitory peptides in Giresun (Turkey) hazelnut cakes. European Food Research and Technology, 247(5), 1189-1198. https://doi.org/10.1007/s00217-021-03700-6
  • Çağlar, A. F., Göksu, A. G., Çakır, B., & Gülseren, İ. (2021b). Tombul hazelnut (Corylus avellana L.) peptides with DPP-IV inhibitory activity: In vitro and in silico studies. Food Chemistry: X, 12, 100151. https://doi.org/10.1016/j.fochx.2021.100151
  • Çöpür, Y., Güler, C., Akgül, M., & Taşçıoğlu, C. (2007). Some chemical properties of hazelnut husk and its suitability for particleboard production. Building and Environment, 42(7), 2568-2572. https://doi.org/10.1016/j.buildenv.2006.07.011
  • Dervisoglu, M. (2006). Influence of hazelnut flour and skin addition on the physical, chemical and sensory properties of vanilla ice cream. International Journal of Food Science and Technology, 41(6), 657-661. https://doi.org/10.1111/j.1365-2621.2005.01127.x
  • Dey, T., Bhattacharjee, T., Nag, P., Ghati, A., & Kuila, A. (2021). Valorization of agro-waste into value added products for sustainable development. Bioresource Technology Reports, 16, 100834. https://doi.org/10.1016/j.biteb.2021.100834
  • Dusselier, M., Van Wouwe, P., Dewaele, A., Makshina, E., & Sels, B. F. (2013). Lactic acid as a platform chemical in the biobased economy: the role of chemocatalysis. Energy & Environmental Science, 6(5), 1415-1442. https://doi.org/10.1039/c3ee00069a
  • Ermis, E., & Ozkan, M. (2021). Sugar beet powder production using different drying methods, characterization and influence on sensory quality of cocoa-hazelnut cream. Journal of Food Science and Technology-Mysore, 58(6), 2068-2077. https://doi.org/10.1007/s13197-020-04715-9
  • Ermiş, E., Güneş, R., İnci, Z., Çağlar, M. Y., & Yılmaz, M. T. (2018). Characterization of hazelnut milk fermented by Lactobacillus delbrueckii subsp. bulgaricus and Streptococcus thermophilus. Gıda, 43(4), 677-686. https://doi.org/10.15237/gida.gd18022
  • Eroglu, E. C., & Aksay, S. (2017). Angiotensin-Converting Enzyme (ACE) inhibitory effects of hazelnut protein hydrolysate prepared using pepsin. Indian Journal of Pharmaceutical Education and Research, 51(3), S417-S420. https://doi.org/10.5530/ijper.51.3s.59
  • Eroglu, E. C., Oztop, K., & Aksay, S. (2020). Physiochemical properties and ace inhibitory capacity of hazelnut protein isolate and hydrolysates. Journal of Microbiology, Biotechnology and Food Sciences, 10(1), 78-82. https://doi.org/10.15414/jmbfs.2020.10.1.78-82
  • Fuso, A., Risso, D., Rosso, G., Rosso, F., Manini, F., Manera, I., & Caligiani, A. (2021). Potential valorization of hazelnut shells through extraction, purification and structural characterization of prebiotic compounds: A critical review. Foods, 10(6), 1197. https://doi.org/10.3390/foods10061197
  • Gallego, A., Malik, S., Yousefzadi, M., Makhzoum, A., Tremouillaux-Guiller, J., & Bonfill, M. (2017). Taxol from Corylus avellana: paving the way for a new source of this anti-cancer drug. Plant Cell, Tissue and Organ Culture (PCTOC), 129(1), 1-16. https://doi.org/10.1007/s11240-016-1164-5
  • Ganapathy, G., Preethi, R., Moses, J., & Anandharamakrishnan, C. (2019). Diarylheptanoids as nutraceutical: A review. Biocatalysis and Agricultural Biotechnology, 19, 101109. https://doi.org/10.1016/j.bcab.2019.101109
  • Geow, C. H., Tan, M. C., Yeap, S. P., & Chin, N. L. (2021). A review on extraction techniques and its future applications in industry. European Journal of Lipid Science and Technology, 123(4), 2000302. https://doi.org/10.1002/ejlt.202000302 Gill, S. K., Rossi, M., Bajka, B., & Whelan, K. (2021). Dietary fibre in gastrointestinal health and disease. Nature Reviews Gastroenterology & Hepatology, 18(2), 101-116. https://doi.org/10.1038/s41575-020-00375-4
  • Gonzalez-Estanol, K., Cliceri, D., Biasioli, F., & Stieger, M. (2022). Differences in dynamic sensory perception between reformulated hazelnut chocolate spreads decrease when spreads are consumed with breads and wafers. Food Quality and Preference, 98, Article 104532. https://doi.org/10.1016/j.foodqual.2022.104532 Gordobil, O., Olaizola, P., Banales, J. M., & Labidi, J. (2020). Lignins from agroindustrial by-products as natural ingredients for cosmetics: chemical structure and in vitro sunscreen and cytotoxic activities. Molecules, 25(5), Article 1131. https://doi.org/10.3390/molecules25051131
  • Göksu, A. G., Çakır, B., & Gülseren, İ. (2022). Industrial utilization of bioactive hazelnut peptide fractions in the manufacture of functional hazelnut paste: ACE-inhibition and allergy suppression. Waste and Biomass Valorization, 1-12. https://doi.org/10.1007/s12649-022-01750-9
  • Granata, M. U., Bracco, F., Gratani, L., Catoni, R., Corana, F., Mannucci, B., Sartori, F., & Martino, E. (2017). Fatty acid content profile and main constituents of Corylus avellana kernel in wild type and cultivars growing in Italy. Natural Product Research, 31(2), 204-209. https://doi.org/10.1080/14786419.2016.1217204
  • Guiné, R., & Correia, P. (2020). Hazelnut: a valuable resource. International Journal of Food Engineering, 6(2), 67-72. https://doi.org/10.18178/ijfe.6.2.67-72
  • Gul, O., Atalar, I., Mortas, M., Saricaoglu, F. T., Besir, A., Gul, L. B., & Yazici, F. (2022). Potential use of high pressure homogenized hazelnut beverage for a functional yoghurt-like product. Anais da Academia Brasileira de Ciências, 94, 1-21. https://doi.org/10.1590/0001-3765202220191172
  • Gul, O., Saricaoglu, F. T., Mortas, M., Atalar, I., & Yazici, F. (2017). Effect of high pressure homogenization (HPH) on microstructure and rheological properties of hazelnut milk. Innovative Food Science & Emerging Technologies, 41, 411-420. https://doi.org/10.1016/j.ifset.2017.05.002
  • Gülseren, İ. (2018). In silico methods to identify ACE and DPP-IV inhibitory activities of ribosomal hazelnut proteins. Journal of Food Measurement and Characterization, 12(4), 2607-2614. https://doi.org/10.1007/s11694-018-9878-1
  • Gülseren, İ., & Çakır, B. (2019). Preliminary investigations in vitro ACE-inhibitory activities of tryptic peptides produced from cold press deoiled hazelnut meals. Gıda, 44(2), 309-317. https://doi.org/10.15237/gida.GD18125
  • Gültekin-Özgüven, M., Davarcı, F., Paslı, A. A., Demir, N., & Özçelik, B. (2015). Determination of phenolic compounds by ultra high liquid chromatography-tandem mass spectrometry: Applications in nuts. LWT-Food Science and Technology, 64(1), 42-49. https://doi.org/10.1016/j.lwt.2015.05.014 Havrysh, V., Kalinichenko, A., Brzozowska, A., & Stebila, J. (2021). Agricultural residue management for sustainable power generation: the poland case study. Applied Sciences-Basel, 11(13), 5907. https://doi.org/10.3390/app11135907
  • Hoffman, A., & Shahidi, F. (2009). Paclitaxel and other taxanes in hazelnut. Journal of Functional Foods, 1(1), 33-37. https://doi.org/10.1016/j.jff.2008.09.004
  • Holscher, H. D. (2017). Dietary fiber and prebiotics and the gastrointestinal microbiota. Gut Microbes, 8(2), 172-184. https://doi.org/10.1080/19490976.2017.1290756
  • Ionesu, M., Vladut, V., Ungureanu, N., Dinca, M., Zabava, B. S., & Stefan, M. (2016). Methods for oil obtaining from oleaginous materials. Annals of the University of Craiova-Agriculture, Montanology, Cadastre Series, 46(2), 411-417.
  • Jiang, J., Liang, L., Ma, Q., & Zhao, T. (2021). Kernel nutrient composition and antioxidant ability of Corylus spp. in China. Frontiers in Plant Science, 1252. https://doi.org/10.3389/fpls.2021.690966
  • Karabulut, H. A., Kurtoğlu, İ. Z., & Kirtan, Y. E. (2019). Effects of the feeds containing hazelnut meal as plant protein source on growth performance and body composition of Siberian sturgeon (Acipenser baeri) and economic profitability value. Turkish Journal of Veterinary & Animal Sciences, 43(2), 244-252. https://doi.org/10.3906/vet-1807-7
  • Karami, Z., & Akbari-Adergani, B. (2019). Bioactive food derived peptides: A review on correlation between structure of bioactive peptides and their functional properties. Journal of Food Science and Technology, 56(2), 535-547. https://doi.org/10.1007/s13197-018-3549-4
  • Kaza, S. Y., Lisa C.; Bhada-Tata, Perinaz; Van Woerden, Frank. (2018). What a Waste 2.0 : A Global Snapshot of Solid Waste Management to 2050 https://espas.secure.europarl.europa.eu/orbis/sites/default/files/generated/document/en/211329ov.pdf
  • Kirmizigül, A., & Cufadar, Y. (2019). Japon bıldırcınlarında (Coturnix coturnix japonica) rasyona fındık küspesi ilavesinin büyüme performansı ve karkas özelliklerine etkisi. Bahri Dağdaş Hayvancılık Araştırma Dergisi, 8(1), 28-35.
  • Kizilkaya, R. (2016). Effects of hazelnut husk compost application on soil quality parameters in hazelnut orchards in Turkey. EGU General Assembly Conference Abstracts,
  • Koul, B., Yakoob, M., & Shah, M. P. (2022). Agricultural waste management strategies for environmental sustainability. Environmental Research, 206, 112285. https://doi.org/10.1016/j.envres.2021.112285
  • La Torre, C., Caputo, P., Plastina, P., Cione, E., & Fazio, A. (2021). Green husk of walnuts (Juglans regia L.) from Southern Italy as a valuable source for the recovery of glucans and pectins. Fermentation-Basel, 7(4), 305. https://doi.org/10.3390/fermentation7040305
  • Lelli, V., Molinari, R., Merendino, N., & Timperio, A. M. (2021). Detection and comparison of bioactive compounds in different extracts of two hazelnut skin varieties, tonda gentile romana and tonda di giffoni, using a metabolomics approach. Metabolites, 11(5), 296. https://doi.org/10.3390/metabo11050296
  • Liu, C. L., Fang, L., Min, W. H., Liu, J. S., & Li, H. M. (2018). Exploration of the molecular interactions between angiotensin-I-converting enzyme (ACE) and the inhibitory peptides derived from hazelnut (Corylus heterophylla Fisch.). Food Chemistry, 245, 471-480. https://doi.org/10.1016/j.foodchem.2017.10.095
  • Maraveas, C. (2020). Production of Sustainable and Biodegradable Polymers from Agricultural Waste. Polymers (Basel), 12(5), 1127. https://doi.org/10.3390/polym12051127
  • Masullo, M., Cantone, V., Cerulli, A., Lauro, G., Messano, F., Russo, G. L., Pizza, C., Bifulco, G., & Piacente, S. (2015a). Giffonins J-P, Highly hydroxylated cyclized diarylheptanoids from the leaves of corylus avellana cultivar "Tonda di Giffoni". Journal of Natural Products, 78(12), 2975-2982. https://doi.org/10.1021/acs.jnatprod.5b00695
  • Masullo, M., Cerulli, A., Olas, B., Pizza, C., & Piacente, S. (2015b). Giffonins A-I, antioxidant cyclized diarylheptanoids from the leaves of the hazelnut tree (Corylus avellana), source of the Italian PGI product "Nocciola di Giffoni". Journal of Natural Products, 78(1), 17-25. https://doi.org/10.1021/np5004966
  • Masullo, M., Lauro, G., Cerulli, A., Kontek, B., Olas, B., Bifulco, G., Piacente, S., & Pizza, C. (2021). Giffonins, antioxidant diarylheptanoids from corylus avellana, and their ability to prevent oxidative changes in human plasma proteins. Journal of Natural Products, 84(3), 646-653. https://doi.org/10.1021/acs.jnatprod.0c01251
  • Morrison, D. J., & Preston, T. (2016). Formation of short chain fatty acids by the gut microbiota and their impact on human metabolism. Gut Microbes, 7(3), 189-200. https://doi.org/10.1080/19490976.2015.1134082
  • Muller, A. K., Helms, U., Rohrer, C., Mohler, M., Hellwig, F., Glei, M., Schwerdtle, T., Lorkowski, S., & Dawczynski, C. (2020). Nutrient composition of different hazelnut cultivars grown in Germany. Foods, 9(11), 1596. https://doi.org/10.3390/foods9111596
  • Mundi, S., & Aluko, R. E. (2014). Inhibitory properties of kidney bean protein hydrolysate and its membrane fractions against renin, angiotensin converting enzyme, and free radicals. Austin Journal of Nutrition and Food Sciences, 2(1), 1008-1019.
  • Najda, A., & Gantner, M. (2012). Chemical composition of essential oils from the buds and leaves of cultivated hazelnut. Acta Scientiarum Polonorum Hortorum Cultus, 11, 91-100.
  • Naviglio, D., Scarano, P., Ciaravolo, M., & Gallo, M. (2019). Rapid solid-liquid dynamic extraction (RSLDE): A powerful and greener alternative to the latest solid-liquid extraction techniques. Foods, 8(7), 245. https://doi.org/10.3390/foods8070245
  • Nižnanský, Ľ., Osinová, D., Kuruc, R., Hengerics Szabó, A., Szórádová, A., Masár, M., & Nižnanská, Ž. (2022). Natural taxanes: from plant composition to human pharmacology and toxicity. International Journal of Molecular Sciences, 23(24), 15619. https://doi.org/10.3390/ijms232415619
  • Oguzkan, S., Karagul, B., Aksoy, E., Uzun, A., Can, M., Yilmaz, H., Ugras, H., Binici, B., & Goren, A. (2018). Determination of taxanes by validated LC-MS/MS method in hazelnut collected from different regions and altitudes in Turkey. Journal of Chemical Metrology, 12(1), 26-33. https://doi.org/10.25135/jcm.16.18.03.082
  • Oliveira, I., Sousa, A., Valentão, P., Andrade, P. B., Ferreira, I. C., Ferreres, F., Bento, A., Seabra, R., Estevinho, L., & Pereira, J. A. (2007). Hazel (Corylus avellana L.) leaves as source of antimicrobial and antioxidative compounds. Food Chemistry, 105(3), 1018-1025. https://doi.org/10.1016/j.foodchem.2007.04.059
  • Ottaggio, L., Bestoso, F., Armirotti, A., Balbi, A., Damonte, G., Mazzei, M., Sancandi, M., & Miele, M. (2008). Taxanes from Shells and Leaves of Corylus avellana. Journal of Natural Products, 71(1), 58-60. https://doi.org/10.1021/np0704046
  • Özenç, D. B. (2006). Effects of composted hazelnut husk on growth of tomato plants. Compost Science & Utilization, 14(4), 271-275. https://doi.org/10.1080/1065657x.2006.10702296
  • Öztürk, Y., & Tarakçıoğlu, C. (2016). Seasonal changes of nutrient elements in the leaves of Palaz and Tombul hazelnut cultivars. Akademik Ziraat Dergisi, 5(2), 87-96.
  • Pelvan, E., Olgun, E. Ö., Karadağ, A., & Alasalvar, C. (2018). Phenolic profiles and antioxidant activity of Turkish Tombul hazelnut samples (natural, roasted, and roasted hazelnut skin). Food Chemistry, 244, 102-108. https://doi.org/10.1016/j.foodchem.2017.10.011
  • Ragab, T. I. M., Amer, H., Mossa, A. T., Emam, M., Hasaballah, A. A., & Helmy, W. A. (2018). Anticoagulation, fibrinolytic and the cytotoxic activities of sulfated hemicellulose extracted from rice straw and husk. Biocatalysis and Agricultural Biotechnology, 15, 86-91. https://doi.org/10.1016/j.bcab.2018.05.010
  • Reddy, J. P., & Rhim, J.-W. (2018). Extraction and characterization of cellulose microfibers from agricultural wastes of onion and garlic. Journal of Natural Fibers, 15(4), 465-473. https://doi.org/10.1080/15440478.2014.945227
  • Riethmuller, E., Alberti, A., Toth, G., Beni, S., Ortolano, F., & Kery, A. (2013). Characterisation of diarylheptanoid- and flavonoid-type phenolics in Corylus avellana L. leaves and bark by HPLC/DAD-ESI/MS. Phytochemical Analysis, 24(5), 493-503. https://doi.org/10.1002/pca.2452
  • Riethmuller, E., Konczol, A., Szakal, D., Vegh, K., Balogh, G. T., & Kery, A. (2016). HPLC-DPPH screening method for evaluation of antioxidant compounds in Corylus species. Natural Product Communications, 11(5), 641-644. https://www.ncbi.nlm.nih.gov/pubmed/27319139
  • Riethmuller, E., Toth, G., Alberti, A., Sonati, M., & Kery, A. (2014). Antioxidant activity and phenolic composition of Corylus colurna. Natural Product Communications, 9(5), 679-682. https://www.ncbi.nlm.nih.gov/pubmed/25026720
  • Riethmuller, E., Toth, G., Alberti, A., Vegh, K., Burlini, I., Konczol, A., Balogh, G. T., & Kery, A. (2015). First characterisation of flavonoid- and diarylheptanoid-type antioxidant phenolics in Corylus maxima by HPLC-DAD-ESI-MS. Journal of Pharmaceutical and Biomedical, 107, 159-167. https://doi.org/10.1016/j.jpba.2014.12.016
  • Rusu, M. E., Fizeșan, I., Pop, A., Gheldiu, A.-M., Mocan, A., Crișan, G., Vlase, L., Loghin, F., Popa, D.-S., & Tomuta, I. (2019). Enhanced recovery of antioxidant compounds from hazelnut (Corylus avellana L.) involucre based on extraction optimization: Phytochemical profile and biological activities. Antioxidants, 8(10), 460. https://doi.org/10.3390/antiox8100460
  • Sajid, M., Farooq, U., Bary, G., Azim, M. M., & Zhao, X. (2021). Sustainable production of levulinic acid and its derivatives for fuel additives and chemicals: progress, challenges, and prospects. Green Chemistry, 23(23), 9198-9238. https://doi.org/10.1039/d1gc02919c
  • Saricaoglu, F. T., Gul, O., Besir, A., & Atalar, I. (2018). Effect of high pressure homogenization (HPH) on functional and rheological properties of hazelnut meal proteins obtained from hazelnut oil industry by-products. Journal of Food Engineering, 233, 98-108. https://doi.org/10.1016/j.jfoodeng.2018.04.003
  • Sayar, N. A., Pinar, O., Kazan, D., & Sayar, A. A. (2019). Bioethanol production from Turkish hazelnut husk process design and economic evaluation. Waste and Biomass Valorization, 10(4), 909-923. https://doi.org/10.1007/s12649-017-0103-y
  • Sen, D., & Kahveci, D. (2020). Production of a protein concentrate from hazelnut meal obtained as a hazelnut oil industry by-product and its application in a functional beverage. Waste and Biomass Valorization, 11(10), 5099-5107. https://doi.org/10.1007/s12649-020-00948-z
  • Shahidi, F., Alasalvar, C., & Liyana-Pathirana, C. M. (2007). Antioxidant phytochemicals in hazelnut kernel (Corylus avellana L.) and hazelnut byproducts. Journal of Agricultural and Food Chemistry, 55(4), 1212-1220. https://doi.org/10.1021/jf062472o
  • Sharma, P., Gaur, V. K., Gupta, S., Varjani, S., Pandey, A., Gnansounou, E., You, S., Ngo, H. H., & Wong, J. W. C. (2022). Trends in mitigation of industrial waste: Global health hazards, environmental implications and waste derived economy for environmental sustainability. Science of The Total Environment, 811, 152357. https://doi.org/10.1016/j.scitotenv.2021.152357
  • Shi, C., Liu, M., Zhao, H., Lv, Z., Liang, L., & Zhang, B. (2022). A novel insight into screening for antioxidant peptides from hazelnut protein: Based on the properties of amino acid residues. Antioxidants, 11(1), 127. https://doi.org/10.3390/antiox11010127
  • Simsek, A., Artik, N., & Konar, N. (2017). Phenolic profile of meals obtained from defatted hazelnut (Corylus avellana L.) varieties. International Journal of Life Sciences Biotechnology and Pharma Research. https://doi.org/10.18178/ijlbpr.6.1.7-12
  • Simsek, S. (2021). Angiotensin I-converting enzyme, dipeptidyl peptidase-IV, and α-glucosidase inhibitory potential of hazelnut meal protein hydrolysates. Journal of Food Measurement and Characterization, 15(5), 4490-4496. https://doi.org/10.1007/s11694-021-00994-8
  • Sivakumar, G., & Bacchetta, L. (2005). Determination of natural vitamin E from Italian hazelnut leaves. Chemistry of Natural Compounds, 41(6), 654-656. https://doi.org/10.1007/s10600-006-0005-x
  • Song, W., Fu, J., Zeng, Q., Lu, H., Wang, J., Fang, L., Liu, X., Min, W., & Liu, C. (2023). Improving ACE inhibitory activity of hazelnut peptide modified by plastein: Physicochemical properties and action mechanism. Food Chemistry, 402, 134498. https://doi.org/10.1016/j.foodchem.2022.134498
  • Stuetz, W., Schlörmann, W., & Glei, M. (2017). B-vitamins, carotenoids and α-/γ-tocopherol in raw and roasted nuts. Food Chemistry, 221, 222-227. https://doi.org/10.1016/j.foodchem.2016.10.065 Tas, N. G., Yilmaz, C., & Gokmen, V. (2019). Investigation of serotonin, free and protein-bound tryptophan in Turkish hazelnut varieties and effect of roasting on serotonin content. Food Research International, 120, 865-871. https://doi.org/10.1016/j.foodres.2018.11.051
  • Taş, N. G., & Gökmen, V. (2015). Bioactive compounds in different hazelnut varieties and their skins. Journal of Food Composition and Analysis, 43, 203-208. https://doi.org/10.1016/j.jfca.2015.07.003
  • Tatar, F., Tunç, M., & Kahyaoglu, T. (2015). Turkish Tombul hazelnut (Corylus avellana L.) protein concentrates: functional and rheological properties. Journal of Food Science and Technology, 52(2), 1024-1031. https://doi.org/10.1007/s13197-013-1110-z
  • Tsekos, C., Tandurella, S., & de Jong, W. (2021). Estimation of lignocellulosic biomass pyrolysis product yields using artificial neural networks. Journal of Analytical and Applied Pyrolysis, 157, 105180. https://doi.org/10.1016/j.jaap.2021.105180
  • Tufan, M., Akbas, S., Güleç, T., Tasçioglu, C., & Alma, M. H. (2015). Mechanical, thermal, morpological properties and decay resistance of filled hazelnut husk polymer composites. Maderas. Ciencia y Tecnología, 17(4), 865-874. https://doi.org/10.4067/s0718-221x2015005000075
  • Tuncil, Y. E. (2020). Dietary fibre profiles of Turkish Tombul hazelnut (Corylus avellana L.) and hazelnut skin. Food Chemistry, 316, 126338. https://doi.org/10.1016/j.foodchem.2020.126338
  • Udenigwe, C. C., & Rajendran, S. R. C. K. (2016). Old products, new applications? Considering the multiple bioactivities of plastein in peptide-based functional food design. Current Opinion in Food Science, 8, 8-13. https://doi.org/10.1016/j.cofs.2016.01.008
  • Van Putten, R.-J., Van Der Waal, J. C., De Jong, E., Rasrendra, C. B., Heeres, H. J., & de Vries, J. G. (2013). Hydroxymethylfurfural, a versatile platform chemical made from renewable resources. Chemical Reviews, 113(3), 1499-1597. https://doi.org/10.1021/cr300182k
  • Vanucci-Bacqué, C., & Bedos-Belval, F. (2021). Anti-inflammatory activity of naturally occuring diarylheptanoids–A review. Bioorganic & Medicinal Chemistry, 31, 115971. https://doi.org/10.1016/j.bmc.2020.115971
  • Venkatachalam, M., & Sathe, S. K. (2006). Chemical composition of selected edible nut seeds. Journal of agricultural and food chemistry, 54(13), 4705-4714. https://doi.org/10.1021/jf0606959
  • Wang, S., Terranova, M., Kreuzer, M., Marquardt, S., Eggerschwiler, L., & Schwarm, A. (2018). Supplementation of pelleted hazel (Corylus avellana) leaves decreases methane and urinary nitrogen emissions by sheep at unchanged forage intake. Scientific reports, 8(1), 1-10. https://doi.org/10.1038/s41598-018-23572-3
  • Wang, Y.-F., Shi, Q.-W., Dong, M., Kiyota, H., Gu, Y.-C., & Cong, B. (2011). Natural taxanes: developments since 1828. Chemical Reviews, 111(12), 7652-7709. https://doi.org/10.1021/cr100147u
  • Xu, Y., & Hanna, M. A. (2011). Nutritional and anti‐nutritional compositions of defatted Nebraska hybrid hazelnut meal. International Journal of Food Science & Technology, 46(10), 2022-2029. https://doi.org/10.1111/j.1365-2621.2011.02712.x
  • Yalçin, S., Oğuz, F., & Yalçin, S. (2005). Effect of dietary hazelnut meal supplementation on the meat composition of quails. Turkish Journal of Veterinary & Animal Sciences, 29(6), 1285-1290.
  • Yao, Y., Cai, X. Y., Fei, W. D., Ye, Y. Q., Zhao, M. D., & Zheng, C. H. (2022). The role of short-chain fatty acids in immunity, inflammation and metabolism. Critical Reviews in Food Science and Nutrition, 62(1), 1-12. https://doi.org/10.1080/10408398.2020.1854675
  • Zeytin, S., & Baran, A. (2003). Influences of composted hazelnut husk on some physical properties of soils. Bioresource Technology, 88(3), 241-244. https://doi.org/10.1016/s0960-8524(03)00005-1
  • Zhou, P., Jin, B., Li, H., & Huang, S.-Y. (2018). HPEPDOCK: a web server for blind peptide–protein docking based on a hierarchical algorithm. Nucleic Acids Research, 46(W1), W443-W450. https://doi.org/10.1093/nar/gky357
Year 2023, , 15 - 25, 26.07.2023
https://doi.org/10.55147/efse.1289656

Abstract

References

  • Acan, B. G., Toker, O. S., Palabiyik, I., Pirouzian, H. R., Bursa, K., Kilicli, M., Yaman, M., Er, T., & Konar, N. (2021). Physicochemical properties of chocolate spread with hazelnut cake: Comparative study and optimization. LWT-Food Science and Technology, 147, 111548. https://doi.org/10.1016/j.lwt.2021.111548
  • Akbarian, M., Khani, A., Eghbalpour, S., & Uversky, V. N. (2022). Bioactive peptides: synthesis, sources, applications, and proposed mechanisms of action. International Journal of Molecular Sciences, 23(3), 1445. https://doi.org/10.3390/ijms23031445
  • Alalwan, T. A., Mohammed, D., Hasan, M., Sergi, D., Ferraris, C., Gasparri, C., Rondanelli, M., & Perna, S. (2022). Almond, hazelnut, and pistachio skin: an opportunity for nutraceuticals. Nutraceuticals, 2(4), 300-310. https://doi.org/10.3390/nutraceuticals2040023
  • Alasalvar, C., Amaral, J. S., Satır, G., & Shahidi, F. (2009). Lipid characteristics and essential minerals of native Turkish hazelnut varieties (Corylus avellana L.). Food Chemistry, 113(4), 919-925. https://doi.org/10.1016/j.foodchem.2008.08.019
  • Alasalvar, C., Amaral, J. S., & Shahidi, F. (2006a). Functional lipid characteristics of Turkish Tombul hazelnut (Corylus avellana L.). Journal of Agricultural and Food Chemistry, 54(26), 10177-10183. https://doi.org/10.1021/jf061702w
  • Alasalvar, C., Karamac, M., Amarowicz, R., & Shahidi, F. (2006b). Antioxidant and antiradical activities in extracts of hazelnut kernel (Corylus avellana L.) and hazelnut green leafy cover. Journal of Agricultural and Food Chemistry, 54(13), 4826-4832. https://doi.org/10.1021/jf0601259
  • Alasalvar, C., Shahidi, F., Ohshima, T., Wanasundara, U., Yurttas, H. C., Liyanapathirana, C. M., & Rodrigues, F. B. (2003). Turkish Tombul hazelnut (Corylus avellana L.). 2. Lipid characteristics and oxidative stability. Journal of Agricultural and Food Chemistry, 51(13), 3797-3805. https://doi.org/10.1021/jf021239x
  • Altop, A., Güngör, E., & Erener, G. (2019). Improvement of nutritional quality of some oilseed meals through solid-state fermentation using Aspergillus niger. Turkish Journal of Agriculture-Food Science and Technology, 7(9), 1411-1414. https://doi.org/10.24925/turjaf.v7i9.1411-1414.2721
  • Amaral, J. S., Ferreres, F., Andrade, P. B., Valentao, P., Pinheiro, C., Santos, A., & Seabra, R. (2005). Phenolic profile of hazelnut (Corylus avellana L.) leaves cultivars grown in Portugal. Natural Product Research 19(2), 157-163. https://doi.org/10.1080/14786410410001704778
  • Anderson, J. W., Baird, P., Davis, R. H., Ferreri, S., Knudtson, M., Koraym, A., Waters, V., & Williams, C. L. (2009). Health benefits of dietary fiber. Nutrition Reviews, 67(4), 188-205. https://doi.org/10.1111/j.1753-4887.2009.00189.x
  • Anonymous. (2008). Directive 2008/98/EC Of The European Parliament And Of The Council. (22.11.2008). Official Journal of the European Union. Retrieved 07.03.2022 from https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32008L0098&from=EN
  • Anonymous. (2016). Auditing waste management. Retrieved 08.03.2022 from https://www.environmental-auditing.org/media/5375/wgea-waste-managemen_e.pdf
  • Anonymous. (2020). Waste generation, 2020. Retrieved 26.03.2022 from https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Waste_statistics#Total_waste_generation
  • Anonymous. (2023). Crops and livestock products. Retrieved 09.03.2022 from https://www.fao.org/faostat/en/#data/TCL
  • Ashokkumar, V., Venkatkarthick, R., Jayashree, S., Chuetor, S., Dharmaraj, S., Kumar, G., Chen, W. H., & Ngamcharussrivichai, C. (2022). Recent advances in lignocellulosic biomass for biofuels and value-added bioproducts - A critical review. Bioresource Technology, 344(Pt B), 126195. https://doi.org/10.1016/j.biortech.2021.126195
  • Atalar, I. (2019). Functional kefir production from high pressure homogenized hazelnut milk. LWT-Food Science and Technology, 107, 256-263. https://doi.org/10.1016/j.lwt.2019.03.013
  • Atalar, I., Kurt, A., Gul, O., & Yazici, F. (2021). Improved physicochemical, rheological and bioactive properties of ice cream: Enrichment with high pressure homogenized hazelnut milk. International Journal of Gastronomy and Food Science, 24, 100358. https://doi.org/10.1016/j.ijgfs.2021.100358
  • Aydemir, L. Y., Gökbulut, A. A., Baran, Y., & Yemenicioğlu, A. (2014). Bioactive, functional and edible film-forming properties of isolated hazelnut (Corylus avellana L.) meal proteins. Food Hydrocolloids, 36, 130-142. https://doi.org/10.1016/j.foodhyd.2013.09.014
  • Balasundram, N., Sundram, K., & Samman, S. (2006). Phenolic compounds in plants and agri-industrial by-products: Antioxidant activity, occurrence, and potential uses. Food Chemistry, 99(1), 191-203. https://doi.org/10.1016/j.foodchem.2005.07.042
  • Banerjee, S., Patti, A. F., Ranganathan, V., & Arora, A. (2019). Hemicellulose based biorefinery from pineapple peel waste: Xylan extraction and its conversion into xylooligosaccharides. Food and Bioproducts Processing, 117, 38-50. https://doi.org/10.1016/j.fbp.2019.06.012
  • Bastante, C. C., Silva, N. H., Cardoso, L. C., Serrano, C. M., de la Ossa, E. J. M., Freire, C. S., & Vilela, C. (2021). Biobased films of nanocellulose and mango leaf extract for active food packaging: Supercritical impregnation versus solvent casting. Food Hydrocolloids, 117, 106709. https://doi.org/10.1016/j.foodhyd.2021.106709
  • Baycar, A., Konar, N., Poyrazoglu, E. S., Goktas, H., & Sagdic, O. (2021). Using white spread and compound chocolate as phenolic compound delivering agent: A model study with black carrot extract. Journal of Food Processing and Preservation, 45(5). https://doi.org/10.1111/jfpp.15392
  • Benov, L., & Georgiev, N. (1994). The antioxidant activity of flavonoids isolated from Corylus colurna. Phytotherapy Research, 8(2), 92-94. https://doi.org/10.1002/ptr.2650080208
  • Beutinger, B. A. B., Sefrin, S. C., Bolson, M. K. I., Dal Pont, M. F., Rheinheimer, D. D., Picolli, D. L., & Garcia, P. N. (2020). Effects of micronization on dietary fiber composition, physicochemical properties, phenolic compounds, and antioxidant capacity of grape pomace and its dietary fiber concentrate. LWT-Food Science and Technology, 117, Article 108652. https://doi.org/10.1016/j.lwt.2019.108652
  • Bian, H. Y., Gao, Y., Luo, J., Jiao, L., Wu, W. B., Fang, G. G., & Dai, H. Q. (2019). Lignocellulosic nanofibrils produced using wheat straw and their pulping solid residue: From agricultural waste to cellulose nanomaterials. Waste Management, 91, 1-8. https://doi.org/10.1016/j.wasman.2019.04.052
  • Bursa, K., Toker, O. S., Palabiyik, I., Yaman, M., Kian-Pour, N., Konar, N., & Kilicli, M. (2021). Valorization of hazelnut cake in compound chocolate: The effect of formulation on rheological and physical properties. LWT-Food Science and Technology, 139, 110609. https://doi.org/10.1016/j.lwt.2020.110609
  • Cabo, S., Aires, A., Carvalho, R., Pascual-Seva, N., Silva, A. P., & Gonçalves, B. (2021). Corylus avellana L. husks an underutilized waste but a valuable source of polyphenols. Waste and Biomass Valorization, 12(7), 3629-3644. https://doi.org/10.1007/s12649-020-01246-4
  • Capuano, E. (2017). The behavior of dietary fiber in the gastrointestinal tract determines its physiological effect. Critical Reviews in Food Science and Nutrition, 57(16), 3543-3564. https://doi.org/10.1080/10408398.2016.1180501
  • Castrica, M., Rebucci, R., Giromini, C., Tretola, M., Cattaneo, D., & Baldi, A. (2019). Total phenolic content and antioxidant capacity of agri-food waste and by-products. Italian Journal of Animal Science, 18(1), 336-341. https://doi.org/10.1080/1828051x.2018.1529544
  • Celenk, V. U., Argon, Z. U., & Gumus, Z. P. (2020). Cold pressed hazelnut (Corylus avellana) oil. In Cold Pressed Oils (pp. 241-254). Elsevier. https://doi.org/10.1016/b978-0-12-818188-1.00020-7
  • Celenk, V. U., Gumus, Z. P., Argon, Z. U., Buyukhelvacigil, M., & Karasulu, E. (2018). Analysis of chemical compositions of 15 different cold-pressed oils produced in Turkey: a case study of tocopherol and fatty acid analysis. Journal of the Turkish Chemical Society Section A: Chemistry, 5(1), 1-18. https://doi.org/10.18596/jotcsa.335012
  • Cerulli, A., Lauro, G., Masullo, M., Cantone, V., Olas, B., Kontek, B., Nazzaro, F., Bifulco, G., & Piacente, S. (2017). Cyclic diarylheptanoids from Corylus avellana green leafy covers: determination of their absolute configurations and evaluation of their antioxidant and antimicrobial activities. Journal of Natural Products, 80(6), 1703-1713. https://doi.org/10.1021/acs.jnatprod.6b00703
  • Cerulli, A., Masullo, M., Montoro, P., Hosek, J., Pizza, C., & Piacente, S. (2018). Metabolite profiling of "green" extracts of Corylus avellana leaves by (1)H NMR spectroscopy and multivariate statistical analysis. Journal of Pharmaceutical and Biomedical, 160, 168-178. https://doi.org/10.1016/j.jpba.2018.07.046
  • Chai, K. F., Voo, A. Y. H., & Chen, W. N. (2020). Bioactive peptides from food fermentation: A comprehensive review of their sources, bioactivities, applications, and future development. Comprehensive Reviews in Food Science and Food Safety, 19(6), 3825-3885. https://doi.org/10.1111/1541-4337.12651
  • Chew, K. W., Chia, S. R., Show, P. L., Ling, T. C., Arya, S. S., & Chang, J.-S. (2018). Food waste compost as an organic nutrient source for the cultivation of Chlorella vulgaris. Bioresource Technology, 267, 356-362. https://doi.org/10.1016/j.biortech.2018.07.069
  • Çağlar, A. F., Çakır, B., & Gülseren, İ. (2021a). LC-Q-TOF/MS based identification and in silico verification of ACE-inhibitory peptides in Giresun (Turkey) hazelnut cakes. European Food Research and Technology, 247(5), 1189-1198. https://doi.org/10.1007/s00217-021-03700-6
  • Çağlar, A. F., Göksu, A. G., Çakır, B., & Gülseren, İ. (2021b). Tombul hazelnut (Corylus avellana L.) peptides with DPP-IV inhibitory activity: In vitro and in silico studies. Food Chemistry: X, 12, 100151. https://doi.org/10.1016/j.fochx.2021.100151
  • Çöpür, Y., Güler, C., Akgül, M., & Taşçıoğlu, C. (2007). Some chemical properties of hazelnut husk and its suitability for particleboard production. Building and Environment, 42(7), 2568-2572. https://doi.org/10.1016/j.buildenv.2006.07.011
  • Dervisoglu, M. (2006). Influence of hazelnut flour and skin addition on the physical, chemical and sensory properties of vanilla ice cream. International Journal of Food Science and Technology, 41(6), 657-661. https://doi.org/10.1111/j.1365-2621.2005.01127.x
  • Dey, T., Bhattacharjee, T., Nag, P., Ghati, A., & Kuila, A. (2021). Valorization of agro-waste into value added products for sustainable development. Bioresource Technology Reports, 16, 100834. https://doi.org/10.1016/j.biteb.2021.100834
  • Dusselier, M., Van Wouwe, P., Dewaele, A., Makshina, E., & Sels, B. F. (2013). Lactic acid as a platform chemical in the biobased economy: the role of chemocatalysis. Energy & Environmental Science, 6(5), 1415-1442. https://doi.org/10.1039/c3ee00069a
  • Ermis, E., & Ozkan, M. (2021). Sugar beet powder production using different drying methods, characterization and influence on sensory quality of cocoa-hazelnut cream. Journal of Food Science and Technology-Mysore, 58(6), 2068-2077. https://doi.org/10.1007/s13197-020-04715-9
  • Ermiş, E., Güneş, R., İnci, Z., Çağlar, M. Y., & Yılmaz, M. T. (2018). Characterization of hazelnut milk fermented by Lactobacillus delbrueckii subsp. bulgaricus and Streptococcus thermophilus. Gıda, 43(4), 677-686. https://doi.org/10.15237/gida.gd18022
  • Eroglu, E. C., & Aksay, S. (2017). Angiotensin-Converting Enzyme (ACE) inhibitory effects of hazelnut protein hydrolysate prepared using pepsin. Indian Journal of Pharmaceutical Education and Research, 51(3), S417-S420. https://doi.org/10.5530/ijper.51.3s.59
  • Eroglu, E. C., Oztop, K., & Aksay, S. (2020). Physiochemical properties and ace inhibitory capacity of hazelnut protein isolate and hydrolysates. Journal of Microbiology, Biotechnology and Food Sciences, 10(1), 78-82. https://doi.org/10.15414/jmbfs.2020.10.1.78-82
  • Fuso, A., Risso, D., Rosso, G., Rosso, F., Manini, F., Manera, I., & Caligiani, A. (2021). Potential valorization of hazelnut shells through extraction, purification and structural characterization of prebiotic compounds: A critical review. Foods, 10(6), 1197. https://doi.org/10.3390/foods10061197
  • Gallego, A., Malik, S., Yousefzadi, M., Makhzoum, A., Tremouillaux-Guiller, J., & Bonfill, M. (2017). Taxol from Corylus avellana: paving the way for a new source of this anti-cancer drug. Plant Cell, Tissue and Organ Culture (PCTOC), 129(1), 1-16. https://doi.org/10.1007/s11240-016-1164-5
  • Ganapathy, G., Preethi, R., Moses, J., & Anandharamakrishnan, C. (2019). Diarylheptanoids as nutraceutical: A review. Biocatalysis and Agricultural Biotechnology, 19, 101109. https://doi.org/10.1016/j.bcab.2019.101109
  • Geow, C. H., Tan, M. C., Yeap, S. P., & Chin, N. L. (2021). A review on extraction techniques and its future applications in industry. European Journal of Lipid Science and Technology, 123(4), 2000302. https://doi.org/10.1002/ejlt.202000302 Gill, S. K., Rossi, M., Bajka, B., & Whelan, K. (2021). Dietary fibre in gastrointestinal health and disease. Nature Reviews Gastroenterology & Hepatology, 18(2), 101-116. https://doi.org/10.1038/s41575-020-00375-4
  • Gonzalez-Estanol, K., Cliceri, D., Biasioli, F., & Stieger, M. (2022). Differences in dynamic sensory perception between reformulated hazelnut chocolate spreads decrease when spreads are consumed with breads and wafers. Food Quality and Preference, 98, Article 104532. https://doi.org/10.1016/j.foodqual.2022.104532 Gordobil, O., Olaizola, P., Banales, J. M., & Labidi, J. (2020). Lignins from agroindustrial by-products as natural ingredients for cosmetics: chemical structure and in vitro sunscreen and cytotoxic activities. Molecules, 25(5), Article 1131. https://doi.org/10.3390/molecules25051131
  • Göksu, A. G., Çakır, B., & Gülseren, İ. (2022). Industrial utilization of bioactive hazelnut peptide fractions in the manufacture of functional hazelnut paste: ACE-inhibition and allergy suppression. Waste and Biomass Valorization, 1-12. https://doi.org/10.1007/s12649-022-01750-9
  • Granata, M. U., Bracco, F., Gratani, L., Catoni, R., Corana, F., Mannucci, B., Sartori, F., & Martino, E. (2017). Fatty acid content profile and main constituents of Corylus avellana kernel in wild type and cultivars growing in Italy. Natural Product Research, 31(2), 204-209. https://doi.org/10.1080/14786419.2016.1217204
  • Guiné, R., & Correia, P. (2020). Hazelnut: a valuable resource. International Journal of Food Engineering, 6(2), 67-72. https://doi.org/10.18178/ijfe.6.2.67-72
  • Gul, O., Atalar, I., Mortas, M., Saricaoglu, F. T., Besir, A., Gul, L. B., & Yazici, F. (2022). Potential use of high pressure homogenized hazelnut beverage for a functional yoghurt-like product. Anais da Academia Brasileira de Ciências, 94, 1-21. https://doi.org/10.1590/0001-3765202220191172
  • Gul, O., Saricaoglu, F. T., Mortas, M., Atalar, I., & Yazici, F. (2017). Effect of high pressure homogenization (HPH) on microstructure and rheological properties of hazelnut milk. Innovative Food Science & Emerging Technologies, 41, 411-420. https://doi.org/10.1016/j.ifset.2017.05.002
  • Gülseren, İ. (2018). In silico methods to identify ACE and DPP-IV inhibitory activities of ribosomal hazelnut proteins. Journal of Food Measurement and Characterization, 12(4), 2607-2614. https://doi.org/10.1007/s11694-018-9878-1
  • Gülseren, İ., & Çakır, B. (2019). Preliminary investigations in vitro ACE-inhibitory activities of tryptic peptides produced from cold press deoiled hazelnut meals. Gıda, 44(2), 309-317. https://doi.org/10.15237/gida.GD18125
  • Gültekin-Özgüven, M., Davarcı, F., Paslı, A. A., Demir, N., & Özçelik, B. (2015). Determination of phenolic compounds by ultra high liquid chromatography-tandem mass spectrometry: Applications in nuts. LWT-Food Science and Technology, 64(1), 42-49. https://doi.org/10.1016/j.lwt.2015.05.014 Havrysh, V., Kalinichenko, A., Brzozowska, A., & Stebila, J. (2021). Agricultural residue management for sustainable power generation: the poland case study. Applied Sciences-Basel, 11(13), 5907. https://doi.org/10.3390/app11135907
  • Hoffman, A., & Shahidi, F. (2009). Paclitaxel and other taxanes in hazelnut. Journal of Functional Foods, 1(1), 33-37. https://doi.org/10.1016/j.jff.2008.09.004
  • Holscher, H. D. (2017). Dietary fiber and prebiotics and the gastrointestinal microbiota. Gut Microbes, 8(2), 172-184. https://doi.org/10.1080/19490976.2017.1290756
  • Ionesu, M., Vladut, V., Ungureanu, N., Dinca, M., Zabava, B. S., & Stefan, M. (2016). Methods for oil obtaining from oleaginous materials. Annals of the University of Craiova-Agriculture, Montanology, Cadastre Series, 46(2), 411-417.
  • Jiang, J., Liang, L., Ma, Q., & Zhao, T. (2021). Kernel nutrient composition and antioxidant ability of Corylus spp. in China. Frontiers in Plant Science, 1252. https://doi.org/10.3389/fpls.2021.690966
  • Karabulut, H. A., Kurtoğlu, İ. Z., & Kirtan, Y. E. (2019). Effects of the feeds containing hazelnut meal as plant protein source on growth performance and body composition of Siberian sturgeon (Acipenser baeri) and economic profitability value. Turkish Journal of Veterinary & Animal Sciences, 43(2), 244-252. https://doi.org/10.3906/vet-1807-7
  • Karami, Z., & Akbari-Adergani, B. (2019). Bioactive food derived peptides: A review on correlation between structure of bioactive peptides and their functional properties. Journal of Food Science and Technology, 56(2), 535-547. https://doi.org/10.1007/s13197-018-3549-4
  • Kaza, S. Y., Lisa C.; Bhada-Tata, Perinaz; Van Woerden, Frank. (2018). What a Waste 2.0 : A Global Snapshot of Solid Waste Management to 2050 https://espas.secure.europarl.europa.eu/orbis/sites/default/files/generated/document/en/211329ov.pdf
  • Kirmizigül, A., & Cufadar, Y. (2019). Japon bıldırcınlarında (Coturnix coturnix japonica) rasyona fındık küspesi ilavesinin büyüme performansı ve karkas özelliklerine etkisi. Bahri Dağdaş Hayvancılık Araştırma Dergisi, 8(1), 28-35.
  • Kizilkaya, R. (2016). Effects of hazelnut husk compost application on soil quality parameters in hazelnut orchards in Turkey. EGU General Assembly Conference Abstracts,
  • Koul, B., Yakoob, M., & Shah, M. P. (2022). Agricultural waste management strategies for environmental sustainability. Environmental Research, 206, 112285. https://doi.org/10.1016/j.envres.2021.112285
  • La Torre, C., Caputo, P., Plastina, P., Cione, E., & Fazio, A. (2021). Green husk of walnuts (Juglans regia L.) from Southern Italy as a valuable source for the recovery of glucans and pectins. Fermentation-Basel, 7(4), 305. https://doi.org/10.3390/fermentation7040305
  • Lelli, V., Molinari, R., Merendino, N., & Timperio, A. M. (2021). Detection and comparison of bioactive compounds in different extracts of two hazelnut skin varieties, tonda gentile romana and tonda di giffoni, using a metabolomics approach. Metabolites, 11(5), 296. https://doi.org/10.3390/metabo11050296
  • Liu, C. L., Fang, L., Min, W. H., Liu, J. S., & Li, H. M. (2018). Exploration of the molecular interactions between angiotensin-I-converting enzyme (ACE) and the inhibitory peptides derived from hazelnut (Corylus heterophylla Fisch.). Food Chemistry, 245, 471-480. https://doi.org/10.1016/j.foodchem.2017.10.095
  • Maraveas, C. (2020). Production of Sustainable and Biodegradable Polymers from Agricultural Waste. Polymers (Basel), 12(5), 1127. https://doi.org/10.3390/polym12051127
  • Masullo, M., Cantone, V., Cerulli, A., Lauro, G., Messano, F., Russo, G. L., Pizza, C., Bifulco, G., & Piacente, S. (2015a). Giffonins J-P, Highly hydroxylated cyclized diarylheptanoids from the leaves of corylus avellana cultivar "Tonda di Giffoni". Journal of Natural Products, 78(12), 2975-2982. https://doi.org/10.1021/acs.jnatprod.5b00695
  • Masullo, M., Cerulli, A., Olas, B., Pizza, C., & Piacente, S. (2015b). Giffonins A-I, antioxidant cyclized diarylheptanoids from the leaves of the hazelnut tree (Corylus avellana), source of the Italian PGI product "Nocciola di Giffoni". Journal of Natural Products, 78(1), 17-25. https://doi.org/10.1021/np5004966
  • Masullo, M., Lauro, G., Cerulli, A., Kontek, B., Olas, B., Bifulco, G., Piacente, S., & Pizza, C. (2021). Giffonins, antioxidant diarylheptanoids from corylus avellana, and their ability to prevent oxidative changes in human plasma proteins. Journal of Natural Products, 84(3), 646-653. https://doi.org/10.1021/acs.jnatprod.0c01251
  • Morrison, D. J., & Preston, T. (2016). Formation of short chain fatty acids by the gut microbiota and their impact on human metabolism. Gut Microbes, 7(3), 189-200. https://doi.org/10.1080/19490976.2015.1134082
  • Muller, A. K., Helms, U., Rohrer, C., Mohler, M., Hellwig, F., Glei, M., Schwerdtle, T., Lorkowski, S., & Dawczynski, C. (2020). Nutrient composition of different hazelnut cultivars grown in Germany. Foods, 9(11), 1596. https://doi.org/10.3390/foods9111596
  • Mundi, S., & Aluko, R. E. (2014). Inhibitory properties of kidney bean protein hydrolysate and its membrane fractions against renin, angiotensin converting enzyme, and free radicals. Austin Journal of Nutrition and Food Sciences, 2(1), 1008-1019.
  • Najda, A., & Gantner, M. (2012). Chemical composition of essential oils from the buds and leaves of cultivated hazelnut. Acta Scientiarum Polonorum Hortorum Cultus, 11, 91-100.
  • Naviglio, D., Scarano, P., Ciaravolo, M., & Gallo, M. (2019). Rapid solid-liquid dynamic extraction (RSLDE): A powerful and greener alternative to the latest solid-liquid extraction techniques. Foods, 8(7), 245. https://doi.org/10.3390/foods8070245
  • Nižnanský, Ľ., Osinová, D., Kuruc, R., Hengerics Szabó, A., Szórádová, A., Masár, M., & Nižnanská, Ž. (2022). Natural taxanes: from plant composition to human pharmacology and toxicity. International Journal of Molecular Sciences, 23(24), 15619. https://doi.org/10.3390/ijms232415619
  • Oguzkan, S., Karagul, B., Aksoy, E., Uzun, A., Can, M., Yilmaz, H., Ugras, H., Binici, B., & Goren, A. (2018). Determination of taxanes by validated LC-MS/MS method in hazelnut collected from different regions and altitudes in Turkey. Journal of Chemical Metrology, 12(1), 26-33. https://doi.org/10.25135/jcm.16.18.03.082
  • Oliveira, I., Sousa, A., Valentão, P., Andrade, P. B., Ferreira, I. C., Ferreres, F., Bento, A., Seabra, R., Estevinho, L., & Pereira, J. A. (2007). Hazel (Corylus avellana L.) leaves as source of antimicrobial and antioxidative compounds. Food Chemistry, 105(3), 1018-1025. https://doi.org/10.1016/j.foodchem.2007.04.059
  • Ottaggio, L., Bestoso, F., Armirotti, A., Balbi, A., Damonte, G., Mazzei, M., Sancandi, M., & Miele, M. (2008). Taxanes from Shells and Leaves of Corylus avellana. Journal of Natural Products, 71(1), 58-60. https://doi.org/10.1021/np0704046
  • Özenç, D. B. (2006). Effects of composted hazelnut husk on growth of tomato plants. Compost Science & Utilization, 14(4), 271-275. https://doi.org/10.1080/1065657x.2006.10702296
  • Öztürk, Y., & Tarakçıoğlu, C. (2016). Seasonal changes of nutrient elements in the leaves of Palaz and Tombul hazelnut cultivars. Akademik Ziraat Dergisi, 5(2), 87-96.
  • Pelvan, E., Olgun, E. Ö., Karadağ, A., & Alasalvar, C. (2018). Phenolic profiles and antioxidant activity of Turkish Tombul hazelnut samples (natural, roasted, and roasted hazelnut skin). Food Chemistry, 244, 102-108. https://doi.org/10.1016/j.foodchem.2017.10.011
  • Ragab, T. I. M., Amer, H., Mossa, A. T., Emam, M., Hasaballah, A. A., & Helmy, W. A. (2018). Anticoagulation, fibrinolytic and the cytotoxic activities of sulfated hemicellulose extracted from rice straw and husk. Biocatalysis and Agricultural Biotechnology, 15, 86-91. https://doi.org/10.1016/j.bcab.2018.05.010
  • Reddy, J. P., & Rhim, J.-W. (2018). Extraction and characterization of cellulose microfibers from agricultural wastes of onion and garlic. Journal of Natural Fibers, 15(4), 465-473. https://doi.org/10.1080/15440478.2014.945227
  • Riethmuller, E., Alberti, A., Toth, G., Beni, S., Ortolano, F., & Kery, A. (2013). Characterisation of diarylheptanoid- and flavonoid-type phenolics in Corylus avellana L. leaves and bark by HPLC/DAD-ESI/MS. Phytochemical Analysis, 24(5), 493-503. https://doi.org/10.1002/pca.2452
  • Riethmuller, E., Konczol, A., Szakal, D., Vegh, K., Balogh, G. T., & Kery, A. (2016). HPLC-DPPH screening method for evaluation of antioxidant compounds in Corylus species. Natural Product Communications, 11(5), 641-644. https://www.ncbi.nlm.nih.gov/pubmed/27319139
  • Riethmuller, E., Toth, G., Alberti, A., Sonati, M., & Kery, A. (2014). Antioxidant activity and phenolic composition of Corylus colurna. Natural Product Communications, 9(5), 679-682. https://www.ncbi.nlm.nih.gov/pubmed/25026720
  • Riethmuller, E., Toth, G., Alberti, A., Vegh, K., Burlini, I., Konczol, A., Balogh, G. T., & Kery, A. (2015). First characterisation of flavonoid- and diarylheptanoid-type antioxidant phenolics in Corylus maxima by HPLC-DAD-ESI-MS. Journal of Pharmaceutical and Biomedical, 107, 159-167. https://doi.org/10.1016/j.jpba.2014.12.016
  • Rusu, M. E., Fizeșan, I., Pop, A., Gheldiu, A.-M., Mocan, A., Crișan, G., Vlase, L., Loghin, F., Popa, D.-S., & Tomuta, I. (2019). Enhanced recovery of antioxidant compounds from hazelnut (Corylus avellana L.) involucre based on extraction optimization: Phytochemical profile and biological activities. Antioxidants, 8(10), 460. https://doi.org/10.3390/antiox8100460
  • Sajid, M., Farooq, U., Bary, G., Azim, M. M., & Zhao, X. (2021). Sustainable production of levulinic acid and its derivatives for fuel additives and chemicals: progress, challenges, and prospects. Green Chemistry, 23(23), 9198-9238. https://doi.org/10.1039/d1gc02919c
  • Saricaoglu, F. T., Gul, O., Besir, A., & Atalar, I. (2018). Effect of high pressure homogenization (HPH) on functional and rheological properties of hazelnut meal proteins obtained from hazelnut oil industry by-products. Journal of Food Engineering, 233, 98-108. https://doi.org/10.1016/j.jfoodeng.2018.04.003
  • Sayar, N. A., Pinar, O., Kazan, D., & Sayar, A. A. (2019). Bioethanol production from Turkish hazelnut husk process design and economic evaluation. Waste and Biomass Valorization, 10(4), 909-923. https://doi.org/10.1007/s12649-017-0103-y
  • Sen, D., & Kahveci, D. (2020). Production of a protein concentrate from hazelnut meal obtained as a hazelnut oil industry by-product and its application in a functional beverage. Waste and Biomass Valorization, 11(10), 5099-5107. https://doi.org/10.1007/s12649-020-00948-z
  • Shahidi, F., Alasalvar, C., & Liyana-Pathirana, C. M. (2007). Antioxidant phytochemicals in hazelnut kernel (Corylus avellana L.) and hazelnut byproducts. Journal of Agricultural and Food Chemistry, 55(4), 1212-1220. https://doi.org/10.1021/jf062472o
  • Sharma, P., Gaur, V. K., Gupta, S., Varjani, S., Pandey, A., Gnansounou, E., You, S., Ngo, H. H., & Wong, J. W. C. (2022). Trends in mitigation of industrial waste: Global health hazards, environmental implications and waste derived economy for environmental sustainability. Science of The Total Environment, 811, 152357. https://doi.org/10.1016/j.scitotenv.2021.152357
  • Shi, C., Liu, M., Zhao, H., Lv, Z., Liang, L., & Zhang, B. (2022). A novel insight into screening for antioxidant peptides from hazelnut protein: Based on the properties of amino acid residues. Antioxidants, 11(1), 127. https://doi.org/10.3390/antiox11010127
  • Simsek, A., Artik, N., & Konar, N. (2017). Phenolic profile of meals obtained from defatted hazelnut (Corylus avellana L.) varieties. International Journal of Life Sciences Biotechnology and Pharma Research. https://doi.org/10.18178/ijlbpr.6.1.7-12
  • Simsek, S. (2021). Angiotensin I-converting enzyme, dipeptidyl peptidase-IV, and α-glucosidase inhibitory potential of hazelnut meal protein hydrolysates. Journal of Food Measurement and Characterization, 15(5), 4490-4496. https://doi.org/10.1007/s11694-021-00994-8
  • Sivakumar, G., & Bacchetta, L. (2005). Determination of natural vitamin E from Italian hazelnut leaves. Chemistry of Natural Compounds, 41(6), 654-656. https://doi.org/10.1007/s10600-006-0005-x
  • Song, W., Fu, J., Zeng, Q., Lu, H., Wang, J., Fang, L., Liu, X., Min, W., & Liu, C. (2023). Improving ACE inhibitory activity of hazelnut peptide modified by plastein: Physicochemical properties and action mechanism. Food Chemistry, 402, 134498. https://doi.org/10.1016/j.foodchem.2022.134498
  • Stuetz, W., Schlörmann, W., & Glei, M. (2017). B-vitamins, carotenoids and α-/γ-tocopherol in raw and roasted nuts. Food Chemistry, 221, 222-227. https://doi.org/10.1016/j.foodchem.2016.10.065 Tas, N. G., Yilmaz, C., & Gokmen, V. (2019). Investigation of serotonin, free and protein-bound tryptophan in Turkish hazelnut varieties and effect of roasting on serotonin content. Food Research International, 120, 865-871. https://doi.org/10.1016/j.foodres.2018.11.051
  • Taş, N. G., & Gökmen, V. (2015). Bioactive compounds in different hazelnut varieties and their skins. Journal of Food Composition and Analysis, 43, 203-208. https://doi.org/10.1016/j.jfca.2015.07.003
  • Tatar, F., Tunç, M., & Kahyaoglu, T. (2015). Turkish Tombul hazelnut (Corylus avellana L.) protein concentrates: functional and rheological properties. Journal of Food Science and Technology, 52(2), 1024-1031. https://doi.org/10.1007/s13197-013-1110-z
  • Tsekos, C., Tandurella, S., & de Jong, W. (2021). Estimation of lignocellulosic biomass pyrolysis product yields using artificial neural networks. Journal of Analytical and Applied Pyrolysis, 157, 105180. https://doi.org/10.1016/j.jaap.2021.105180
  • Tufan, M., Akbas, S., Güleç, T., Tasçioglu, C., & Alma, M. H. (2015). Mechanical, thermal, morpological properties and decay resistance of filled hazelnut husk polymer composites. Maderas. Ciencia y Tecnología, 17(4), 865-874. https://doi.org/10.4067/s0718-221x2015005000075
  • Tuncil, Y. E. (2020). Dietary fibre profiles of Turkish Tombul hazelnut (Corylus avellana L.) and hazelnut skin. Food Chemistry, 316, 126338. https://doi.org/10.1016/j.foodchem.2020.126338
  • Udenigwe, C. C., & Rajendran, S. R. C. K. (2016). Old products, new applications? Considering the multiple bioactivities of plastein in peptide-based functional food design. Current Opinion in Food Science, 8, 8-13. https://doi.org/10.1016/j.cofs.2016.01.008
  • Van Putten, R.-J., Van Der Waal, J. C., De Jong, E., Rasrendra, C. B., Heeres, H. J., & de Vries, J. G. (2013). Hydroxymethylfurfural, a versatile platform chemical made from renewable resources. Chemical Reviews, 113(3), 1499-1597. https://doi.org/10.1021/cr300182k
  • Vanucci-Bacqué, C., & Bedos-Belval, F. (2021). Anti-inflammatory activity of naturally occuring diarylheptanoids–A review. Bioorganic & Medicinal Chemistry, 31, 115971. https://doi.org/10.1016/j.bmc.2020.115971
  • Venkatachalam, M., & Sathe, S. K. (2006). Chemical composition of selected edible nut seeds. Journal of agricultural and food chemistry, 54(13), 4705-4714. https://doi.org/10.1021/jf0606959
  • Wang, S., Terranova, M., Kreuzer, M., Marquardt, S., Eggerschwiler, L., & Schwarm, A. (2018). Supplementation of pelleted hazel (Corylus avellana) leaves decreases methane and urinary nitrogen emissions by sheep at unchanged forage intake. Scientific reports, 8(1), 1-10. https://doi.org/10.1038/s41598-018-23572-3
  • Wang, Y.-F., Shi, Q.-W., Dong, M., Kiyota, H., Gu, Y.-C., & Cong, B. (2011). Natural taxanes: developments since 1828. Chemical Reviews, 111(12), 7652-7709. https://doi.org/10.1021/cr100147u
  • Xu, Y., & Hanna, M. A. (2011). Nutritional and anti‐nutritional compositions of defatted Nebraska hybrid hazelnut meal. International Journal of Food Science & Technology, 46(10), 2022-2029. https://doi.org/10.1111/j.1365-2621.2011.02712.x
  • Yalçin, S., Oğuz, F., & Yalçin, S. (2005). Effect of dietary hazelnut meal supplementation on the meat composition of quails. Turkish Journal of Veterinary & Animal Sciences, 29(6), 1285-1290.
  • Yao, Y., Cai, X. Y., Fei, W. D., Ye, Y. Q., Zhao, M. D., & Zheng, C. H. (2022). The role of short-chain fatty acids in immunity, inflammation and metabolism. Critical Reviews in Food Science and Nutrition, 62(1), 1-12. https://doi.org/10.1080/10408398.2020.1854675
  • Zeytin, S., & Baran, A. (2003). Influences of composted hazelnut husk on some physical properties of soils. Bioresource Technology, 88(3), 241-244. https://doi.org/10.1016/s0960-8524(03)00005-1
  • Zhou, P., Jin, B., Li, H., & Huang, S.-Y. (2018). HPEPDOCK: a web server for blind peptide–protein docking based on a hierarchical algorithm. Nucleic Acids Research, 46(W1), W443-W450. https://doi.org/10.1093/nar/gky357
There are 122 citations in total.

Details

Primary Language English
Subjects Food Engineering
Journal Section Review
Authors

Göktürk Öztürk 0000-0001-8749-803X

Early Pub Date June 8, 2023
Publication Date July 26, 2023
Submission Date April 29, 2023
Published in Issue Year 2023

Cite

APA Öztürk, G. (2023). A waste material rich in bioactive compounds: Hazelnut waste. European Food Science and Engineering, 4(1), 15-25. https://doi.org/10.55147/efse.1289656