Ortaokul Öğrencilerine Yönelik Türkçe Robotik Tutum Ölçeğinin Geçerlik ve Güvenirlik Çalışması
Year 2018,
, 284 - 299, 31.07.2018
Burak Şişman
,
Sevda Küçük
Abstract
Bu çalışmanın amacı giderek yaygınlaşan eğitsel robotik uygulamalarına yönelik ortaokul öğrencilerinin tutumlarını belirlemek amacıyla geliştirilen Robotik Tutum Ölçeği’nin Türkçe’ye uyarlanmasıdır. Araştırmaya Türkiye’nin farklı illerinde özel kolejlerde öğrenim gören ve robotik eğitimi alan 510 ortaokul öğrencisi katılmıştır. 480 öğrencinin verisi ile yapılan Açımlayıcı Faktör Analizi sonucunda dört faktör altında toplam 24 maddeye sahip geçerli ve güvenilir bir ölçek oluşturulmuştur. Ölçeğin varyans toplamı %61.744 olarak belirlenmiştir. Faktör analizi sonrasında ölçeğin faktörleri “Öğrenme İsteği” (α=.925), “Özgüven” (α=.860), “Bilişimsel Düşünme” (α=.815) ve “Takım Çalışması”(α=.732) olarak ortaya çıkmıştır. Ölçeğin yapı geçerliği için benzeme geçerliği (convergent validity) çalışması yapılmıştır. Bu kapsamda ölçekteki boyutların açıkladıkları ortalama varyans değerleri [average variance extracted (AVE)], bileşik güvenirlik [composite reliability (CR)] katsayıları ve son olarak yakınsak geçerlik için bileşik güvenirlik katsayılarının alanyazındaki kriterlere uygun olduğu görülmüştür. Elde edilen ölçeğin robotik etkinliklerinin incelendiği çalışmalarda öğrencilerin tutumlarını ortaya koymada güvenilir ve kapsamlı bir araç olacağı öngörülmektedir.
References
- Alimisis, D. (2013). Educational robotics: Open questions and new challenges. Themes in Science and Technology Education, 6(1), 63-71.
- Brown, J. D. (2009). Statistics Corner. Questions and answers about language testing statistics: Choosing the right number of components or factors in PCA and EFA. Shiken: JALT Testing & Evaluation SIG Newsletter, 13(2), 19-23.
- Bruciati, A.P.(2004). Robotics technologies for K-8 educators: A semiotic approach for instructional design. Education Faculty Publications. Paper 56. http://digitalcommons.sacredheart.edu/ced_fac/56
- Büyüköztürk, Ş. (2002). Faktör analizi: Temel kavramlar ve ölçek geliştirmede kullanımı. Kuram ve uygulamada eğitim yönetimi, 32(32), 470-483.
- Büyüköztürk, Ş. (2017). Sosyal bilimler için veri analizi el kitabı. Pegem Atıf İndeksi, 1-213.
- Byrne, B. M. (2016). Structural equation modeling with AMOS: Basic concepts, applications, and programming. Routledge.
- Cross, J., Hamner, E., Zito, L., Nourbakhshh, I., & Bernstein, D. (2016, October). Development of an assessment for measuring middle school student attitudes towards robotics activities. In Frontiers in Education Conference (FIE), 2016 IEEE (pp. 1-8). IEEE.
- Eguchi, A. (2014). Educational robotics for promoting 21st century skills. Journal of Automation Mobile Robotics and Intelligent Systems, 8(1), 5-11.
- Field, A. (2013). Discovering statistics using IBM SPSS statistics. SAGE.
- Freeman, A., Adams Becker, S., Cummins, M., Davis, A., and Hall Giesinger, C. (2017). NMC/CoSN Horizon Report: 2017 K–12 Edition. Austin, Texas: The New Media Consortium.
- Gerecke, U., & Wagner, B.(2007). The challenges and benefits of using robots in higher education.Intelligent Automation and Soft Computing, 13(1), 29–43. http://dx.doi.org/10.1080/10798587.2007.10642948
- Güvendir, M. A., ve Özkan, Y. Ö. (2015). Türkiye’deki Eğitim Alanında Yayımlanan Bilimsel Dergilerde Ölçek Geliştirme Ve Uyarlama Konulu Makalelerin İncelenmesi. Elektronik Sosyal Bilimler Dergisi, 14(52).
- Hambleton, R. K., Merenda, P. F., & Spielberger, C. D. (Eds.). (2004). Adapting educational and psychological tests for cross-cultural assessment. Psychology Press.
- Hussain, S., Lindh, J., & Shukur, G. (2006). The effect of LEGO training on pupils' school performance in mathematics, problem solving ability and attitude: Swedish data. Journal of Educational Technology & Society, 9(3).
- Jung, S. E., & Won, E. S. (2018). Systematic Review of Research Trends in Robotics Education for Young Children. Sustainability, 10(4), 905.
- Lin, C., Liu, E.Z., Kou, C., Virnes, M., Sutinen, E., & Cheng, S-S. (2009). A case analysis of creative spiral instruction model and students’ creative problem solving performance in a Lego® robotics course. In: Chang, M., Kuo, R., Kinshuk, Chen, G.-D., Hirose, M. (eds.) Edutainment 2009. LNCS, vol. 5670, pp. 501-505. Springer, Heidelberg.
- Liu, E. Z. F. (2010). Early adolescents' perceptions of educational robots and learning of robotics. British Journal of Educational Technology, 41(3).
- Mauch, E. (2001). Using technological innovation to improve the problem-solving skills of middle school students: Educators' experiences with the LEGO mindstorms robotic invention system. The Clearing House, 74(4), 211-213.
- Nunnally, J. C. ve Bernstein, IH (1994), Psychometric Theory.
- Pallant, J. (2016). SPSS survival manual: a step by step guide to data analysis using IBM SPSS, 6th edition.
- Papert, S. (1971). Teaching Children Thinking. Artifical Intelligence. Cambridge : Massachusetts Institute of Technology.
- Raykov, T. (1998). Coefficient alpha and composite reliability with interrelated nonhomogeneous items. Applied psychological measurement, 22(4), 375-385.
- Tabachnick, B. G., & Fidell, L. S. (2007). Using multivariate statistics. Allyn & Bacon/Pearson Education.
A Validity and Reliability Study of the Turkish Robotics Attitude Scale for Middle School Students
Year 2018,
, 284 - 299, 31.07.2018
Burak Şişman
,
Sevda Küçük
Abstract
The purpose of this study was to adapt the Robotics Attitude Scale to Turkish. The scale was originally developed to determine the attitudes of middle school students towards the increasingly popular educational robotics applications. A total of 480 middle school students participated in the study. They were studying in private colleges in different provinces of Turkey and receiving a robotics education. As a result of an exploratory factor analysis, a valid and reliable scale with a total of 24 items under four factors was obtained as the short form of the original scale. The total variance of the scale was found to be 61.744%. The factors of the scale after the factor analysis emerged to be “Learning Desire” (α=.925), “Confidence” (α=.860), “Computational thinking” (α=.815) and “Teamwork” (α=.732). The convergent validity and the mean variance explained were calculated for the construct validity of the scale. The Cronbach alpha reliability coefficient and the composite reliability values were calculated for the reliability. It was determined that the scale that was obtained was valid and reliable in determining the attitudes of middle school students towards robotics activities.
References
- Alimisis, D. (2013). Educational robotics: Open questions and new challenges. Themes in Science and Technology Education, 6(1), 63-71.
- Brown, J. D. (2009). Statistics Corner. Questions and answers about language testing statistics: Choosing the right number of components or factors in PCA and EFA. Shiken: JALT Testing & Evaluation SIG Newsletter, 13(2), 19-23.
- Bruciati, A.P.(2004). Robotics technologies for K-8 educators: A semiotic approach for instructional design. Education Faculty Publications. Paper 56. http://digitalcommons.sacredheart.edu/ced_fac/56
- Büyüköztürk, Ş. (2002). Faktör analizi: Temel kavramlar ve ölçek geliştirmede kullanımı. Kuram ve uygulamada eğitim yönetimi, 32(32), 470-483.
- Büyüköztürk, Ş. (2017). Sosyal bilimler için veri analizi el kitabı. Pegem Atıf İndeksi, 1-213.
- Byrne, B. M. (2016). Structural equation modeling with AMOS: Basic concepts, applications, and programming. Routledge.
- Cross, J., Hamner, E., Zito, L., Nourbakhshh, I., & Bernstein, D. (2016, October). Development of an assessment for measuring middle school student attitudes towards robotics activities. In Frontiers in Education Conference (FIE), 2016 IEEE (pp. 1-8). IEEE.
- Eguchi, A. (2014). Educational robotics for promoting 21st century skills. Journal of Automation Mobile Robotics and Intelligent Systems, 8(1), 5-11.
- Field, A. (2013). Discovering statistics using IBM SPSS statistics. SAGE.
- Freeman, A., Adams Becker, S., Cummins, M., Davis, A., and Hall Giesinger, C. (2017). NMC/CoSN Horizon Report: 2017 K–12 Edition. Austin, Texas: The New Media Consortium.
- Gerecke, U., & Wagner, B.(2007). The challenges and benefits of using robots in higher education.Intelligent Automation and Soft Computing, 13(1), 29–43. http://dx.doi.org/10.1080/10798587.2007.10642948
- Güvendir, M. A., ve Özkan, Y. Ö. (2015). Türkiye’deki Eğitim Alanında Yayımlanan Bilimsel Dergilerde Ölçek Geliştirme Ve Uyarlama Konulu Makalelerin İncelenmesi. Elektronik Sosyal Bilimler Dergisi, 14(52).
- Hambleton, R. K., Merenda, P. F., & Spielberger, C. D. (Eds.). (2004). Adapting educational and psychological tests for cross-cultural assessment. Psychology Press.
- Hussain, S., Lindh, J., & Shukur, G. (2006). The effect of LEGO training on pupils' school performance in mathematics, problem solving ability and attitude: Swedish data. Journal of Educational Technology & Society, 9(3).
- Jung, S. E., & Won, E. S. (2018). Systematic Review of Research Trends in Robotics Education for Young Children. Sustainability, 10(4), 905.
- Lin, C., Liu, E.Z., Kou, C., Virnes, M., Sutinen, E., & Cheng, S-S. (2009). A case analysis of creative spiral instruction model and students’ creative problem solving performance in a Lego® robotics course. In: Chang, M., Kuo, R., Kinshuk, Chen, G.-D., Hirose, M. (eds.) Edutainment 2009. LNCS, vol. 5670, pp. 501-505. Springer, Heidelberg.
- Liu, E. Z. F. (2010). Early adolescents' perceptions of educational robots and learning of robotics. British Journal of Educational Technology, 41(3).
- Mauch, E. (2001). Using technological innovation to improve the problem-solving skills of middle school students: Educators' experiences with the LEGO mindstorms robotic invention system. The Clearing House, 74(4), 211-213.
- Nunnally, J. C. ve Bernstein, IH (1994), Psychometric Theory.
- Pallant, J. (2016). SPSS survival manual: a step by step guide to data analysis using IBM SPSS, 6th edition.
- Papert, S. (1971). Teaching Children Thinking. Artifical Intelligence. Cambridge : Massachusetts Institute of Technology.
- Raykov, T. (1998). Coefficient alpha and composite reliability with interrelated nonhomogeneous items. Applied psychological measurement, 22(4), 375-385.
- Tabachnick, B. G., & Fidell, L. S. (2007). Using multivariate statistics. Allyn & Bacon/Pearson Education.