Bu
çalışmanın amacı üç farklı makroalgin (Codium sp., Cystoseira sp., ve Polyides sp.) üzerinde en çok çalışılan
ve araştırma yapılan model canlı olan Drosophila melanogaster’ in
hayatta kalışına etkisinin araştırılmasıdır. Drosophila melanogaster’inniçin çalışıldığının birincil nedeni; bu türün, çok
kısa sürede ve hızlı üreme oranına sahip olmasıdır. Diğer laboratuvar
hayvanları ile karşılaştırıldıklarında Drosophila melanogaster’in genetik bilgi birikiminin yeterli olmasıdır. Bu
nedenle, birçok sentetik ve doğal bileşenin canlının hayatta kalma oranı
üzerine etkisi, ökaryotik bir canlı olan Drosophila’da sıklıkla test
edilmiştir. Tam metamorfoz geçiren bu canlıya test bileşikleri larva evresinde
uygulanır, ve döngü tamamlandığında, yetişkin formda etki araştırılır. Bu
çalışmada, makroalglerden Codium sp., Cystoseira sp., and Polyides
sp., özütleri Instant Drosophila
Medium Formula 4-24’ e eklenip Drosophila melanogaster’e
larval dönemde, üç grupta verilmiş, kontrol grubunda
ise su kullanılmıştır. Bu çalışma, makroalglerden Codium sp., Cystoseira
sp., and Polyides sp., özütlerinin, Drosophila
melanogaster’in hayatta kalışına pozitif
etkisini göstermiştir.
Ak, İ. (2015). Sucul ortamın ekonomik bitkileri; makro algler. Dünya Gıda Dergisi. Aralık Sayısı: 88-97.
Arasaki, S. & Arasaki, T. (1983). Vegetables from the sea. Japanese Publishing Industry Japan Publ. Inc., Tokyo, 96:251-223.
Baghel, R.S., Mantri, V.A. & Reddy, C.R.K. (2017). A New Wave of Research Interest in Marine Macroalgae for Chemicals and Fuels: Challenges and Potentials. Fuels, Chemicals and Materials from the Oceans and Aquatic Sources, 43-63. doi: 10.1002/9781119117193.ch3
Becker, E.W. (2007). Micro-algae as a source of protein. Biotechnology Advances, 25(2): 207-210. doi: 10.1016/j.biotechadv.2006.11.002
Broughton, S., Alic, N., Slack, C., Bass, T., Ikeya, T., Vinti, G. & Partridge, L. (2008). Reduction of DILP2 in Drosophila triages a metabolic phenotype from lifespan revealing redundancy and compensation among DILPs. PloS one, 3(11), e3721. doi: 10.1371/journal.pone.0003721
Chandini, S.K., Ganesan, P. & Bhaskar, N. (2008). In vitro antioxidant activities of three selected brown seaweeds of India. Food Chemistry, 107(2):707-713. doi: 10.1016/j.foodchem.2007.08.081
Creed, J.C., Kain, J.M. & Norton, T.A. (1998). An Experimental Evaluation of Density and Plant Size in Two Large Brown Seaweeds. J Phycol, 34:39-52. doi: 10.1046/j.1529-8817.1998.340039.x
Çakı, Z. (2009). Ege Denizi kıyısında bulunan bazı makro yosun türleri antimikrobiyal ve antioksidan aktiviteleri tanımlamaktadır. Celal Bayar Üniversitesi, Fen Bilimleri Enstitüsü Yüksek Lisans Tezi (pp 119) Manisa, Türkiye.
Çakır, Ş. & Bozcuk, A.N. (2000). Longevity in some wild type and hybrid strains of Drosophila melanogaster. Turkish Journal of Biology, 24(2):321-330.
Çakır, Ş. & Sarıkaya, R. (2005). Genotoxicity testing of some organophosphate insecticides in the Drosophila wing spot test. Food and Chemical Toxicology, 43(3):443-450. doi: 10.1016/j.fct.2004.11.010
Çetingül, V., Aysel, V. & Kurumlu, Y. (1996). Cystoseira barbata (Good et Woodw) C.Ag., (Fucales, Fucophyceae)’nin Aminoasit İçeriklerinin Saptanması. Ege Journal of Fisheries and Aquatic Sciences, 13(1-2):119-121.
Durmaz, Y., Işık, O., Bandarrra, N.M., Cirik, S., Turan, G. & Gökpınar, Ş. (2002). Porphyridium cruentum (Rhodophyceae) yağ asitleri kompozisyonuna kurutma yöntemlerinin etkisi. Ege Journal of Fisheries and Aquatic Sciences, 19(1-2):189-195.
Figueiredo, F., Encarnação, T. & Campos, M.G. (2016). Algae as Functional Foods for the Elderly. Food and Nutrition Sciences, 7(12):1122. doi: 10.4236/fns.2016.712107
Freile‐Pelegrín, Y. & Robledo, D. (2014). Bioactive phenolic compounds from algae. Bioactive Compounds from Marine Foods: Plant and Animal Sources, 113-129.
Gökpınar, Ş., Göksan, T. & Durmaz, Y. (2001). PUFA Kaynağı Olarak Mikroalgler, XI. Ulusal Balıkçılık Bilim Sempozyumu, Hatay, Türkiye: Bildiriler Kitabı.
Graf, S.A. & Sokolowski, M.B. (1989). Rover/sitter Drosophila melanogaster larval foraging polymorphism as a function of larval development, food-patch quality, and starvation. Journal of Insect Behavior, 2(3):301-313. doi: 10.1007/BF01068057
Koç, Y. & Gülel, A. (2006). Fotoperiyot ve Besin Çeşidinin Drosophila melanogaster Meigen, 1830 (Diptera: Drosophiladae) Gelişim Süresi, Ömür Uznluğu, Verim ve Eşey Oranına Etkisi. Ondokuz Mayıs Üniversitesi Ziraat Fakültesi Dergisi, 21(2):204-212.
Lanciani, Carmine A., John Anderson F. & James Giesel. T. (1991). Effect of photoperiod on metabolic rate in a subtropical population of Drosophila melanogaster. Comparative Biochemistry & Physiology Part A: Physiology 100(2):347-348. doi: 10.1016/0300-9629(91)90480-Z
Laurent, R.S., O’Brien, L.M., & Ahmad, S.T. (2013). Sodium butyrate improves locomotor impairment and early mortality in a rotenone-induced Drosophila model of Parkinson’s disease. Neuroscience, 246: 382-390. doi: 10.1016/j.neuroscience.2013.04.037
Macedo, L.P.M., Souza, B., Carvaiho, C.F. & Ecole, C.C. (2003). Influence of the Photoperiod on Development and Reproduction of Chrysoperia externa (Neuroptera: Chrysopidae). Neutropical Entomology, 32(1):91-96. doi: 10.1590/S1519-566X2003000100013
McHugh, D.J. (2003), A guide to the Seaweed Industry. Food and Agriculture Organization of the United Nations, Roma, Italya, 103 p.
Mohseni, S., Pishvaee, M.S. & Sahebi, H. (2016). Robust design and planning of microalgae biomass-to-biodiesel supply chain: A case study in Iran. Energy, 111:736-755. doi: 10.1016/j.energy.2016.06.025
Murdinah, V.D. (2008). Application of Bio Activatörs to Produce Organic Fertilizer From Seaweed Processing Waste. Journal of Applied and Industrial Biotechnology in Tropical Region, Vol. 1 (Special Edition) ISSN:1979 9748
Öz, S. & Çakır Arıca, Ş. (2016). Evaluation of antigenotoxic effect of Myrtus communis L. (myrtle) fruit extract. International Conference on Natural Science and Engineering (ICNASE’16), March 19-20 2016, Kilis, Türkiye, Oral presentation, Proceeding Book, 2474-2481.
Özdemir, N. & Erkmen, J. (2013). Yenilebilir Biyoplastik Üretiminde Alglerin Kullanımı. Karadeniz Fen Bilimleri Dergisi, 3(8):89-104.
Özvarol, Y. (2009). Doğu Akdeniz Kıyılarının (Gazipaşa- İskenderun) Makrobentik Deniz Florasının. Belirlenmesi. Süleyman Demirel Üniversitesi, Fen Bilimleri Enstitüsü (pp 130) Isparta, Türkiye.
Pandey, U.B. & Nichols, C.D. (2011). Human disease models in Drosophila melanogaster and the role of the fly in therapeutic drug discovery. Pharmacological reviews, 63(2):411-436. doi: 10.1124/pr.110.003293
Peleg, S., Feller, C., Forne, I., Schiller, E., Sévin, D.C., Schauer, T. & Nogueira, M.S. (2016). Life span extension by targeting a link between metabolism and histone acetylation in Drosophila. European Molecular Biology Organization reports: 17(3):455-469.
Prathep, A., Marrs, R.H. & Norton, T.A. (2003). Spatial and Temporal Variations in Sediment Accumulation in An Algal Turf and Their İmpact on Associated Fauna. Mar Biol 142:381-90. doi: 10.1007/s00227-002-0940-4
Sarıkaya, R., Çakır, Ş. & Solak, K. (2006). Development of protective agents Drosophila melanogaster’de (mwhxflr) the effect of the length of life (in Turkish). Kastamonu Education Magazine, 14(1):173-184.
Sivasankari, V.D. (2006). Effect of seaweed extracts on the growth and biochemical constituents of Vigna sinensis. Bioresource Technology, 97(14):1745-1751. doi: 10.1016/j.biortech.2005.06.016
Taşkın, E. & Öztürk, M. (2005). Evaluation of Species in taxonomy of Algae and Brown Turkey (in Turkish). Turkish Journal of Aquatic Life, 3(4):137-144.
Viola, R. Nyvall P. & Pedersén M. (2001). The unique features of starch metabolism in red algae." Proceedings of the Royal Society of London B: Biological Sciences, 268.1474:1417-1422. doi: 10.1098/rspb.2001.1644
Wells, M.L., Potin, P., Craigie, J.S., Raven, J.A., Merchant, S.S., Helliwell, K.E. & Brawley, S. H. (2017). Algae as nutritional and functional food sources: revisiting our understanding. Journal of Applied Phycology, 29(2):949-982. doi: 10.1007/s10811-016-0974-5
Wilson, S. 2002. Nutritional Value of Detritus and Algae in Blenny Territories on the Great Barrier Reef. J. of Exp. Mar. Biol. Ecol., 271:155-169. doi: 10.1016/S0022-0981(02)00035-7
Zhang, F., Zhao, Y. & Han, Z. (2013). An in vivo functional analysis system for renal gene discovery in Drosophila pericardial nephrocytes. Journal of the American Society of Nephrology, 24:1-7. doi: 10.1681/ASN.2012080769
The effects of some macroalgae on viability of Drosophila melanogaster
Year 2017,
Volume: 34 Issue: 4, 451 - 454, 15.12.2017
The aim of this
study is to investigate the effects of three different macroalgae (Codium sp., Cystoseira sp.,
and Polyides sp.) on viability of
Drosophila melanogasterwhich is the most widely studied insect
species in scientific researches. One of the primary reasons why Drosophila melanogaster is
one of so widely studied insect is because of their extremely fast breeding
rate in a very short time. Compared to other laboratory animals, the Drosophila melanogaster
gene pattern is one of the most widely understood. This may allow some
modifications to be made with a very good survival rate. Once these basic
functions are completed, the insect hatches and develops into a larval form and
stars feeding. At this point, the larvae are feed with what kind of feed want
to be tested. In this current study, extracts of macroalgae, Codium sp., Cystoseira sp.,
and Polyides sp., were added into Instant Drosophila Medium Formula 4-24 and
given the Drosophila melanogaster in three groups. There was also a fourth group
(control group) which is not added extracts of macroalgae in their feed but
water. The results of this study showed that macroalgae, Codium sp., Cystoseira sp.,
and Polyides sp., had positive effects on viability of Drosophila melanogaster.
Ak, İ. (2015). Sucul ortamın ekonomik bitkileri; makro algler. Dünya Gıda Dergisi. Aralık Sayısı: 88-97.
Arasaki, S. & Arasaki, T. (1983). Vegetables from the sea. Japanese Publishing Industry Japan Publ. Inc., Tokyo, 96:251-223.
Baghel, R.S., Mantri, V.A. & Reddy, C.R.K. (2017). A New Wave of Research Interest in Marine Macroalgae for Chemicals and Fuels: Challenges and Potentials. Fuels, Chemicals and Materials from the Oceans and Aquatic Sources, 43-63. doi: 10.1002/9781119117193.ch3
Becker, E.W. (2007). Micro-algae as a source of protein. Biotechnology Advances, 25(2): 207-210. doi: 10.1016/j.biotechadv.2006.11.002
Broughton, S., Alic, N., Slack, C., Bass, T., Ikeya, T., Vinti, G. & Partridge, L. (2008). Reduction of DILP2 in Drosophila triages a metabolic phenotype from lifespan revealing redundancy and compensation among DILPs. PloS one, 3(11), e3721. doi: 10.1371/journal.pone.0003721
Chandini, S.K., Ganesan, P. & Bhaskar, N. (2008). In vitro antioxidant activities of three selected brown seaweeds of India. Food Chemistry, 107(2):707-713. doi: 10.1016/j.foodchem.2007.08.081
Creed, J.C., Kain, J.M. & Norton, T.A. (1998). An Experimental Evaluation of Density and Plant Size in Two Large Brown Seaweeds. J Phycol, 34:39-52. doi: 10.1046/j.1529-8817.1998.340039.x
Çakı, Z. (2009). Ege Denizi kıyısında bulunan bazı makro yosun türleri antimikrobiyal ve antioksidan aktiviteleri tanımlamaktadır. Celal Bayar Üniversitesi, Fen Bilimleri Enstitüsü Yüksek Lisans Tezi (pp 119) Manisa, Türkiye.
Çakır, Ş. & Bozcuk, A.N. (2000). Longevity in some wild type and hybrid strains of Drosophila melanogaster. Turkish Journal of Biology, 24(2):321-330.
Çakır, Ş. & Sarıkaya, R. (2005). Genotoxicity testing of some organophosphate insecticides in the Drosophila wing spot test. Food and Chemical Toxicology, 43(3):443-450. doi: 10.1016/j.fct.2004.11.010
Çetingül, V., Aysel, V. & Kurumlu, Y. (1996). Cystoseira barbata (Good et Woodw) C.Ag., (Fucales, Fucophyceae)’nin Aminoasit İçeriklerinin Saptanması. Ege Journal of Fisheries and Aquatic Sciences, 13(1-2):119-121.
Durmaz, Y., Işık, O., Bandarrra, N.M., Cirik, S., Turan, G. & Gökpınar, Ş. (2002). Porphyridium cruentum (Rhodophyceae) yağ asitleri kompozisyonuna kurutma yöntemlerinin etkisi. Ege Journal of Fisheries and Aquatic Sciences, 19(1-2):189-195.
Figueiredo, F., Encarnação, T. & Campos, M.G. (2016). Algae as Functional Foods for the Elderly. Food and Nutrition Sciences, 7(12):1122. doi: 10.4236/fns.2016.712107
Freile‐Pelegrín, Y. & Robledo, D. (2014). Bioactive phenolic compounds from algae. Bioactive Compounds from Marine Foods: Plant and Animal Sources, 113-129.
Gökpınar, Ş., Göksan, T. & Durmaz, Y. (2001). PUFA Kaynağı Olarak Mikroalgler, XI. Ulusal Balıkçılık Bilim Sempozyumu, Hatay, Türkiye: Bildiriler Kitabı.
Graf, S.A. & Sokolowski, M.B. (1989). Rover/sitter Drosophila melanogaster larval foraging polymorphism as a function of larval development, food-patch quality, and starvation. Journal of Insect Behavior, 2(3):301-313. doi: 10.1007/BF01068057
Koç, Y. & Gülel, A. (2006). Fotoperiyot ve Besin Çeşidinin Drosophila melanogaster Meigen, 1830 (Diptera: Drosophiladae) Gelişim Süresi, Ömür Uznluğu, Verim ve Eşey Oranına Etkisi. Ondokuz Mayıs Üniversitesi Ziraat Fakültesi Dergisi, 21(2):204-212.
Lanciani, Carmine A., John Anderson F. & James Giesel. T. (1991). Effect of photoperiod on metabolic rate in a subtropical population of Drosophila melanogaster. Comparative Biochemistry & Physiology Part A: Physiology 100(2):347-348. doi: 10.1016/0300-9629(91)90480-Z
Laurent, R.S., O’Brien, L.M., & Ahmad, S.T. (2013). Sodium butyrate improves locomotor impairment and early mortality in a rotenone-induced Drosophila model of Parkinson’s disease. Neuroscience, 246: 382-390. doi: 10.1016/j.neuroscience.2013.04.037
Macedo, L.P.M., Souza, B., Carvaiho, C.F. & Ecole, C.C. (2003). Influence of the Photoperiod on Development and Reproduction of Chrysoperia externa (Neuroptera: Chrysopidae). Neutropical Entomology, 32(1):91-96. doi: 10.1590/S1519-566X2003000100013
McHugh, D.J. (2003), A guide to the Seaweed Industry. Food and Agriculture Organization of the United Nations, Roma, Italya, 103 p.
Mohseni, S., Pishvaee, M.S. & Sahebi, H. (2016). Robust design and planning of microalgae biomass-to-biodiesel supply chain: A case study in Iran. Energy, 111:736-755. doi: 10.1016/j.energy.2016.06.025
Murdinah, V.D. (2008). Application of Bio Activatörs to Produce Organic Fertilizer From Seaweed Processing Waste. Journal of Applied and Industrial Biotechnology in Tropical Region, Vol. 1 (Special Edition) ISSN:1979 9748
Öz, S. & Çakır Arıca, Ş. (2016). Evaluation of antigenotoxic effect of Myrtus communis L. (myrtle) fruit extract. International Conference on Natural Science and Engineering (ICNASE’16), March 19-20 2016, Kilis, Türkiye, Oral presentation, Proceeding Book, 2474-2481.
Özdemir, N. & Erkmen, J. (2013). Yenilebilir Biyoplastik Üretiminde Alglerin Kullanımı. Karadeniz Fen Bilimleri Dergisi, 3(8):89-104.
Özvarol, Y. (2009). Doğu Akdeniz Kıyılarının (Gazipaşa- İskenderun) Makrobentik Deniz Florasının. Belirlenmesi. Süleyman Demirel Üniversitesi, Fen Bilimleri Enstitüsü (pp 130) Isparta, Türkiye.
Pandey, U.B. & Nichols, C.D. (2011). Human disease models in Drosophila melanogaster and the role of the fly in therapeutic drug discovery. Pharmacological reviews, 63(2):411-436. doi: 10.1124/pr.110.003293
Peleg, S., Feller, C., Forne, I., Schiller, E., Sévin, D.C., Schauer, T. & Nogueira, M.S. (2016). Life span extension by targeting a link between metabolism and histone acetylation in Drosophila. European Molecular Biology Organization reports: 17(3):455-469.
Prathep, A., Marrs, R.H. & Norton, T.A. (2003). Spatial and Temporal Variations in Sediment Accumulation in An Algal Turf and Their İmpact on Associated Fauna. Mar Biol 142:381-90. doi: 10.1007/s00227-002-0940-4
Sarıkaya, R., Çakır, Ş. & Solak, K. (2006). Development of protective agents Drosophila melanogaster’de (mwhxflr) the effect of the length of life (in Turkish). Kastamonu Education Magazine, 14(1):173-184.
Sivasankari, V.D. (2006). Effect of seaweed extracts on the growth and biochemical constituents of Vigna sinensis. Bioresource Technology, 97(14):1745-1751. doi: 10.1016/j.biortech.2005.06.016
Taşkın, E. & Öztürk, M. (2005). Evaluation of Species in taxonomy of Algae and Brown Turkey (in Turkish). Turkish Journal of Aquatic Life, 3(4):137-144.
Viola, R. Nyvall P. & Pedersén M. (2001). The unique features of starch metabolism in red algae." Proceedings of the Royal Society of London B: Biological Sciences, 268.1474:1417-1422. doi: 10.1098/rspb.2001.1644
Wells, M.L., Potin, P., Craigie, J.S., Raven, J.A., Merchant, S.S., Helliwell, K.E. & Brawley, S. H. (2017). Algae as nutritional and functional food sources: revisiting our understanding. Journal of Applied Phycology, 29(2):949-982. doi: 10.1007/s10811-016-0974-5
Wilson, S. 2002. Nutritional Value of Detritus and Algae in Blenny Territories on the Great Barrier Reef. J. of Exp. Mar. Biol. Ecol., 271:155-169. doi: 10.1016/S0022-0981(02)00035-7
Zhang, F., Zhao, Y. & Han, Z. (2013). An in vivo functional analysis system for renal gene discovery in Drosophila pericardial nephrocytes. Journal of the American Society of Nephrology, 24:1-7. doi: 10.1681/ASN.2012080769
Çakır Arıca, Ş., Demirci, S., Özyılmaz, A., Öz, S., et al. (2017). The effects of some macroalgae on viability of Drosophila melanogaster. Ege Journal of Fisheries and Aquatic Sciences, 34(4), 451-454. https://doi.org/10.12714/egejfas.2017.34.4.12