Case Report
BibTex RIS Cite

Pridoksal Fosfatın Kolajen Tip VI İlişkili Miyopatilerde Potansiyel Tedavi Edici Etkisi

Year 2018, Volume: 1 Issue: 3, 111 - 115, 14.12.2018
https://doi.org/10.33713/egetbd.455485

Abstract

Giriş: Primer Hiperoksalüri Tip I (PH1) Pridoksal 5 Fosfat
bağımlı Alanin Gliksilat Aminotransferaz (AGT) 
enzimi bozukluğudur. Konjenital müsküler distrofiler (CMDs) nadir bir
kalıtsal hastalık grubudur. Ullrich Konjenital Müsküler Distrofi (UCMD) ciddi klinik
bulgusu olan CMD’lerden biridir.



Olgu: Oniki buçuk yaşında kız hasta hiperoksalüri bulgusu
ile başvurdu. Hastanın COL6A2 gen mutasyonlu UCMD hastalığı tanısı ile
izlenmekte olduğunu öğrendik. Aynı zamanda PH1 ile ilişkili AGT Pro 11 Leu/Ile
340 Met homozigot mutasyonu da bulundu. Pridoksal fosfat tedavisinden sonra, oksalozis
ile ilişkili cilt bulguları düzeldi, idrar oksalat/kreatinin oranı azaldı. Sürpriz
olarak, hastanın UCMD ile ilişkili kas bulguları da belirgin düzeldi. 



Tartışma: Pridoksal fosfatın, kollajen tip VI ile ilişkili
miyopatilerin günümüzde sadece semptomatik olan tedavisinde ne kadar etkili
olacağı konusunda ileri tetkikler yapılması gerektirmektedir.

References

  • [1] Lorenz, E.C., Michet, C.J., Milliner, D.S., Lieske, J.C., 2013. Update on Oxalate Crystal Disease. Curr Rheumatol Rep. 15:340-344.
  • [2] Zhao, F., et al., 2016. Predictors of Incident ESRD among Patients with Primary Hyperoxaluria Presenting Prior to Kidney Failure. Clin J Am Soc Nephrol. 11:119-126.
  • [3] Kuiper, J.J., 1996. Initial Manifestation of Primary Hyperoxaluria Type I in Adults Recognition, Diagnosis, and Management. West J Med. 164:42-53.
  • [4] Bhasin, B., et al., 2015. Primary and secondary hyperoxaluria: understanding the enigma World J Nephrol.4:235-244.
  • [5] Al Riyami, M.S., et al. 2105. Primary hyperoxaluria type I in 18 children: genotyping and outcome. Int J Nephrol. 2015:634175 Published online.
  • [6] Taheri, D., Gheissari, A., Dolatkhah, S., 2015. Acute oxalate nephropathy following kidney transplantation: Report of three cases. J Res Med Sci. 20:818–823.
  • [7] Kim, S., et al. 2015. A rare case of hyperoxaluria presenting with acute liver injury and stone-free kidney injury. Kidney Res Clin Pract. 34:113–116.
  • [8] Falk, N., et al., 2013. Primary Hyperoxaluria Type 1 with Systemic Calcium Oxalate Deposition: Case Report and Literature Review. Ann Clin Lab Sci.43:328-331.
  • [9] Berini, S.E., et al., 2015. Progressive polyradiculoneuropathy due to intraneural oxalate deposition in type 1 primary hyperoxaluria. Muscle Nerve. 51:449–454.
  • [10] Moorhead, P.J., Cooper, D.J., 1975. Timperley WR. Progressive Peripheral Neuropathy in Patient with Primary Hyperoxaluria. British Med J. 2:312-313.
  • [11] Bönnemann, C.G., 2011. The collagen VI-related myopathies: Ullrich congenital muscular dystrophy and Bethlem myopathy. Handb Clin Neurol.101:81–96.
  • [12] Yonekawa, T., Nishino, I., 2015. Ullrich congenital muscular dystrophy: clinicopathological features, natural history and pathomechanism(s). J Neurol Neurosurg Psych.86:280-287.
  • [13] Martín, P.J., et al., 2013. A Rare Case of Cardiomyopathy by Accumulation of Oxalate in a 53-Year-Old Woman. J Am Coll Card. 62:525.
  • [14] Blackmon, J.A., et al., 2011. Oxalosis Involving the Skin: A Case Report and Literature Review. Arch Dermatol.147:1302-1305.
  • [15] Cochat, P., et al., 1999. Combined liver-kidney transplantation in primary hyperoxaluria type 1. Eur. J. Pediatr., 158 :75-80.
  • [16] Martin-Higueras, C., Luis-Lima, S., Salido, E., 2016. Glycolate oxidase is a safe and efficient target for substrate reduction therapy in a mouse model of Primary Hyperoxaluria Type I. Mol Ther. 24:719-725.
  • [17] Bushby, K.M., Collins, j., Hicks, D., 2014. Collagen type VI myopathies. Adv Exp Med Biol.802:185-199.
  • [18] Demir, E. et al., 2002. Mutations in COL6A3 Cause Severe and Mild Phenotypes of Ullrich Congenital Muscular Dystrophy. Am J Hum Genet.70:1446–1458.
  • [19] Paco, S. et al., 2013. Gene Expression Profiling Identifies Molecular Pathways Associated with Collagen VI Deficiency and Provides Novel Therapeutic Targets. PLoS ONE. 8: e77430.
  • [20] Urciuolo, A., et al., 2013. Collagen VI regulates satellite cell self-renewal and muscle regeneration. Nat Commun.4:1964.
  • [21] Grumati, P., Coletto, L., Bonaldo, P., 2011. Physical exercise stimulates autophagy in normal skeletal muscles but is detrimental for collagen VI-deficient muscles. Autophagy.7:1415-1423.
  • [22] Bernardi, P., Bonaldo, P., 2013. Mitochondrial Dysfunction and Defective Autophagy in the Pathogenesis of Collagen VI Muscular Dystrophies. Cold Spring Harb Perspect Biol.5: 011387.
  • [23] Foley, A.R., et al., 2013. Natural history of pulmonary function in collagen VI-related myopathies. Brain.136:3625–3633.
  • [24] Irwin, W.A., et al., 2003. Mitochondrial dysfunction and apoptosis in myopathic mice with collagen VI deficiency. Nature Genetics.35:367 – 371.
  • [25] Chrisam, M., et al., 2015. Reactivation of autophagy by spermidine ameliorates the myopathic defects of collagen VI-null mice. Autophagy.11:2142-2152.
  • [26] Palma, E., et al., 2009. Genetic ablation of cyclophilin D rescues mitochondrial defects and prevents muscle apoptosis in collagen VI myopathic mice. Hum Mol Gen.18:2024–2031.
  • [27] Alexeev, V., et al., 2014. Human adipose-derived stem cell transplantation as a potential therapy for collagen VI-related congenital muscular dystrophy. Stem Cell Res Therapy.;5:5-21.
  • [28] Angelin, A., et al., 2007. Mitochondrial dysfunction in the pathogenesis of Ullrich congenital muscular dystrophy and prospective therapy with cyclosporins. PNAS. 104:991–996.
  • [29] Carsten, J.C., Bönnemann, G., 2010. Congenital Muscular Dystrophies: Toward Molecular Therapeutic Interventions. Curr Neur Neurosci Rep.10:83–91.
  • [30] Merlini, L. et al., 2008. Cyclosporin A corrects mitochondrial dysfunction and muscle apoptosis in patients with collagen VI myopathies. PNAS.105:5225–5229.
Year 2018, Volume: 1 Issue: 3, 111 - 115, 14.12.2018
https://doi.org/10.33713/egetbd.455485

Abstract

References

  • [1] Lorenz, E.C., Michet, C.J., Milliner, D.S., Lieske, J.C., 2013. Update on Oxalate Crystal Disease. Curr Rheumatol Rep. 15:340-344.
  • [2] Zhao, F., et al., 2016. Predictors of Incident ESRD among Patients with Primary Hyperoxaluria Presenting Prior to Kidney Failure. Clin J Am Soc Nephrol. 11:119-126.
  • [3] Kuiper, J.J., 1996. Initial Manifestation of Primary Hyperoxaluria Type I in Adults Recognition, Diagnosis, and Management. West J Med. 164:42-53.
  • [4] Bhasin, B., et al., 2015. Primary and secondary hyperoxaluria: understanding the enigma World J Nephrol.4:235-244.
  • [5] Al Riyami, M.S., et al. 2105. Primary hyperoxaluria type I in 18 children: genotyping and outcome. Int J Nephrol. 2015:634175 Published online.
  • [6] Taheri, D., Gheissari, A., Dolatkhah, S., 2015. Acute oxalate nephropathy following kidney transplantation: Report of three cases. J Res Med Sci. 20:818–823.
  • [7] Kim, S., et al. 2015. A rare case of hyperoxaluria presenting with acute liver injury and stone-free kidney injury. Kidney Res Clin Pract. 34:113–116.
  • [8] Falk, N., et al., 2013. Primary Hyperoxaluria Type 1 with Systemic Calcium Oxalate Deposition: Case Report and Literature Review. Ann Clin Lab Sci.43:328-331.
  • [9] Berini, S.E., et al., 2015. Progressive polyradiculoneuropathy due to intraneural oxalate deposition in type 1 primary hyperoxaluria. Muscle Nerve. 51:449–454.
  • [10] Moorhead, P.J., Cooper, D.J., 1975. Timperley WR. Progressive Peripheral Neuropathy in Patient with Primary Hyperoxaluria. British Med J. 2:312-313.
  • [11] Bönnemann, C.G., 2011. The collagen VI-related myopathies: Ullrich congenital muscular dystrophy and Bethlem myopathy. Handb Clin Neurol.101:81–96.
  • [12] Yonekawa, T., Nishino, I., 2015. Ullrich congenital muscular dystrophy: clinicopathological features, natural history and pathomechanism(s). J Neurol Neurosurg Psych.86:280-287.
  • [13] Martín, P.J., et al., 2013. A Rare Case of Cardiomyopathy by Accumulation of Oxalate in a 53-Year-Old Woman. J Am Coll Card. 62:525.
  • [14] Blackmon, J.A., et al., 2011. Oxalosis Involving the Skin: A Case Report and Literature Review. Arch Dermatol.147:1302-1305.
  • [15] Cochat, P., et al., 1999. Combined liver-kidney transplantation in primary hyperoxaluria type 1. Eur. J. Pediatr., 158 :75-80.
  • [16] Martin-Higueras, C., Luis-Lima, S., Salido, E., 2016. Glycolate oxidase is a safe and efficient target for substrate reduction therapy in a mouse model of Primary Hyperoxaluria Type I. Mol Ther. 24:719-725.
  • [17] Bushby, K.M., Collins, j., Hicks, D., 2014. Collagen type VI myopathies. Adv Exp Med Biol.802:185-199.
  • [18] Demir, E. et al., 2002. Mutations in COL6A3 Cause Severe and Mild Phenotypes of Ullrich Congenital Muscular Dystrophy. Am J Hum Genet.70:1446–1458.
  • [19] Paco, S. et al., 2013. Gene Expression Profiling Identifies Molecular Pathways Associated with Collagen VI Deficiency and Provides Novel Therapeutic Targets. PLoS ONE. 8: e77430.
  • [20] Urciuolo, A., et al., 2013. Collagen VI regulates satellite cell self-renewal and muscle regeneration. Nat Commun.4:1964.
  • [21] Grumati, P., Coletto, L., Bonaldo, P., 2011. Physical exercise stimulates autophagy in normal skeletal muscles but is detrimental for collagen VI-deficient muscles. Autophagy.7:1415-1423.
  • [22] Bernardi, P., Bonaldo, P., 2013. Mitochondrial Dysfunction and Defective Autophagy in the Pathogenesis of Collagen VI Muscular Dystrophies. Cold Spring Harb Perspect Biol.5: 011387.
  • [23] Foley, A.R., et al., 2013. Natural history of pulmonary function in collagen VI-related myopathies. Brain.136:3625–3633.
  • [24] Irwin, W.A., et al., 2003. Mitochondrial dysfunction and apoptosis in myopathic mice with collagen VI deficiency. Nature Genetics.35:367 – 371.
  • [25] Chrisam, M., et al., 2015. Reactivation of autophagy by spermidine ameliorates the myopathic defects of collagen VI-null mice. Autophagy.11:2142-2152.
  • [26] Palma, E., et al., 2009. Genetic ablation of cyclophilin D rescues mitochondrial defects and prevents muscle apoptosis in collagen VI myopathic mice. Hum Mol Gen.18:2024–2031.
  • [27] Alexeev, V., et al., 2014. Human adipose-derived stem cell transplantation as a potential therapy for collagen VI-related congenital muscular dystrophy. Stem Cell Res Therapy.;5:5-21.
  • [28] Angelin, A., et al., 2007. Mitochondrial dysfunction in the pathogenesis of Ullrich congenital muscular dystrophy and prospective therapy with cyclosporins. PNAS. 104:991–996.
  • [29] Carsten, J.C., Bönnemann, G., 2010. Congenital Muscular Dystrophies: Toward Molecular Therapeutic Interventions. Curr Neur Neurosci Rep.10:83–91.
  • [30] Merlini, L. et al., 2008. Cyclosporin A corrects mitochondrial dysfunction and muscle apoptosis in patients with collagen VI myopathies. PNAS.105:5225–5229.
There are 30 citations in total.

Details

Primary Language Turkish
Subjects ​Internal Diseases
Journal Section Review
Authors

İşıl Özer

Publication Date December 14, 2018
Acceptance Date October 15, 2018
Published in Issue Year 2018 Volume: 1 Issue: 3

Cite

EndNote Özer İ (December 1, 2018) Pridoksal Fosfatın Kolajen Tip VI İlişkili Miyopatilerde Potansiyel Tedavi Edici Etkisi. Ege Tıp Bilimleri Dergisi 1 3 111–115.

Creative Commons Lisansı


Bu eser Creative Commons Atıf-GayriTicari 4.0 Uluslararası Lisansı ile lisanslanmıştır.


13425                13428            13426            13433            13427