Research Article
BibTex RIS Cite
Year 2021, Volume: 5 Issue: 2, 184 - 192, 22.12.2021

Abstract

References

  • Ammerman C. B. & Henry P. R. 1991. Citrus and vegetable products for ruminant animals, Proceedings, Alternative Feeds for Dairy and Beef Cattle, National Invitational Symposium, St. Louis, MO 103–110.
  • Association of Official Analytical Chemists (A.O.A.C). 1995. Official Methods of Analysis, Washington. DC 15.
  • Atta M.B. & El- Shenawi G.M. 2012. Extraction of natural antioxidant from flavedo layer of Bitter orange (Citrus aurantium) peel, CBAA, International Biotechnology Applications in Agriculture. Benhar University, Moshtohor and Hurghada, Egypt 2, 51-59.
  • Bejar A.K., Ghanem N., Mihoubi D., Kechaou N. & Boudhrioua Mihoubi N. 2011. Effect of Infrared Drying on Drying Kinetics, Color, Total Phenols and Water and Oil Holding Capacities of Orange (Citrus sinensis) Peel and Leaves, International Journal of Food Engineering, 7(5).
  • Beyzi S., Ulger I., Kaliber M. & Konca Y. 2018. Determination of chemical, nutritional and fermentation properties of citrus pulp silages, Turkish Journal of Agriculture Food Science and Technology 6, 1833.
  • Castrica M., Rebucci, R., Giromini, C., Tretola, M., Cattaneo D. & Baldi A. 2019. Totalphenolic content and antioxidant capacity of agri-food waste and by-products, Italian Journal of Animal Science 18(1), 336–341.
  • Davies F.S. & Albrigo L.G. 1994. Environmental constraints on growth, development and physiology of citrus, In Citrus, 1 ed. (CAB International), 52–82.
  • El-aal H. A. & Halaweish F. T. 2010. Food preservative activity of phenolic compounds in orange peel extracts (Citrus sinensis L.), Lucrari Stiintifice, 53, 233–240.
  • El-ghfar, M. H. A. A., Ibrahim, H. M., Hassan, I. M., Abdel Fattah A. A. & Mahmoud M. H.2016. “Peels of Lemon and Orange as Value-Added Ingredients: Chemical and Antioxidant Properties”, International Journal of Current Microbiology and Applied Sciences 5(12), 777–794.
  • Ersus S. & Cam M. 2007. Determination of Organic Acids, Total Phenolic Content, and Antioxidant Capacity of Sour Citrus Aurantium Fruits, Chemistry of Natural Compounds, 43(5).
  • Food and Agriculture Organization (FAO), 2016. Citrus fruit fresh and processed, Statistical Bulletin, 2016
  • Figuerola F., Hurtado, M. L., Estevez, A. M., Chiffelle I. & Asenjo F. 2005. Fiber concentrates from apple pomace and citrus peel as potential fiber sources for food enrichment, Food Chemistry 91(3), 395–401.
  • Ghanem N., Mihoubi, D., Kechaou N. & Mihoubi N. B. 2012. Microwave dehydration of three citrus peel cultivars: Effect on water and oil retention capacities, color, shrinkage, and total phenols content, Crops and Products 40, 167–177.
  • Gorinstein S., Martı́n-Belloso, O., Park, Y.-S., Haruenkit, R., Lojek, A., Ĉı́ž, M., Caspi, A., Libman I. & Trakhtenberg S. 2001. “Comparison of some biochemical characteristics of different citrus fruits”, Food Chemistry 74(3), 309–315.
  • Guimarães R., Barros, L., Barreira, J. C., Sousa, M. J., Carvalho A. M. & Ferreira I. C. 2010. Targeting excessive free radicals with peels and juices of citrus fruits: Grapefruit, lemon, lime and orange, Food and Chemical Toxicology, 48(1), 99–106.
  • Hegazy A. E. & Ibrahim M. I. 2012. Antioxidant activities of orange peel extracts. World Applied Sciences Journal, 18(5), 684–688.
  • Hussain S.B., Anjum M.A., Hussain S., Ejaz S. & Kamran H.M. 2017. Agro-climatic conditions affect fruit quality of mandarin (Citrus reticulata Blanco) cultivars. International Journal of Tropical and Subtropical Horticulture.
  • Lashkari S. & Taghizadeh A. 2013. Nutrient digestibility and evaluation of protein and carbohydrate fractionation of citrus by-products, Journal of Animal Physiology and Animal Nutrition 97(4), 701–709.
  • Magda R.A., Awad A.M. & Selim K.A. 2008. Evaluation of mandarin and orange peels as natural sources of antioxidant in biscuits, Journal of Food Science and Technology 75–82.
  • Mamma D. & Christakopoulos P. 2014. Biotransformation of citrus by-products into value added products, Waste and Biomass Valorization 5(4), 529–549.
  • Manach C., Scalbert A., Morand C., Remesy C. & Jimenez L. 2004. Polyphenols: food sources and bioavailability. The American Journal of Clinical Nutrition, 79:727-747.
  • Marin F. R., Soler-Rivas C., Benavente-García O., Castillo J. & Pérez-Alvarez J. A. 2007. By-products from different citrus processes as a source of customized functional fibers, Food Chemistry 100(2), 736–741.
  • M’hiri N., Ioannou I., Ghoul M. & Boudhrioua N. M. 2015. Proximate chemicalcomposition of orange peel and variation of phenols and antioxidant activity during convective air drying, Journal of New Sciences, AT.
  • Nagarajaiah S. B. & Prakash J. 2016. “Chemical composition and bioactivity of Pomace from Selected Fruits”, International Journal of Fruit Science 16(4), 423–443.
  • Olowu O.O & Yaman Fırıncıoğlu S. 2019. Feed Evaluation Methods: Performance, Economy and Environment, Eurasian Journal of Agricultural Research 3 (2), 48-57.
  • Özkan Ç. Ö., Kaya E., Ülger İ., Güven İ. & Kamalak A. 2017. Effect of species on nutritive value and methane production of citrus pulps for ruminants, Hayvansal Üretim 58(1), 8–12.
  • Palangi V., Taghizadeh A. & Sadeghzadeh M. K. 2013. Determine of nutritive value of dried citrus pulp various using in situ and gas production techniques, Journal of Biodiversity and Environmental sciences 3(6), 8-16.
  • Rafiq S., Kaul R., Sofi S. A., Bashir N., Nazir F. & Ahmad Nayik G. 2018. Citrus peel as a source of functional ingredient: A review, Journal of the Saudi Society of Agricultural Sciences 17(4), 351–358.
  • Rehman U. S., Abbasi S.K., Quayyum A., Jahangir M., Sohail A., Nisa S., Tareen M.N., Tareen M.J. & Sopade P. 2020. Comparative analysis of citrus fruits for nutraceutical properties. Food science and Technology, Campinas, 40 (Suppl. 1): 153-157. Doi: https://doi.org/10.1590/fst.07519 Satari B. & Karimi K. 2018. Citrus processing wastes: Environmental impacts, recent advances, and future perspectives in total valorization, Resources, Conservation and Recycling 129, 153–167.
  • Shariff A. H., Wahab P. Z., Jahurul A.H., Romes N. B., Zakaria M., Roslan J., Wahab R.A. & Huyop F. 2021. Nutrient composition, total phenolic content, and antioxidant activity of tropical Kundasang-grown cucumber at two growth stages, Chilean Journal of Agricultural Research. 81(2).
  • Singleton V. L., Orthofer R. & Lamuela-Raventos R. M. 1999. Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteu Reagent. Methods in Enzymology, 299, 152-178.
  • Singh B., Singh J.P., Kaur A. & Singh N. 2020. Phenolic composition, antioxidant potential and health benefits of citrus Peel, Food Research International 132.
  • Sir Elkhatim K.A., Elagib R.A.A. & Hassan A.B. 2018. Content of phenolic compounds and vitamin C and antioxidant activity in wasted parts of Sudanese citrus fruits. Food Science and Nutrition, 6:1214–1219. https://doi.org/10.1002/fsn3.660
  • Tayengwa T. & Mapiye C. 2018. Citrus and winery wastes: Promising dietarysupplements for sustainable ruminant animal nutrition, health, production, and meat quality, Sustainability 10(10), 3718, 2018.
  • The jamovi project. 2021. jamovi.(Version1.8)[Computer Software].Retrieved from https://www.jamovi.org
  • Uzun A. & Yesiloglu T. 2012. Genetic Diversity in Citrus, Genetic Diversity in Plants. Published byInTech . ISBN : 978-953-51-0185-7
  • Valencia-Avilés E., García-Pérez M. E., Garnica-Romo M. G., Figueroa-Cárdenas J.D., Meléndez- Herrera E, Salgado-Garciglia R. & Martínez-Flores H. E. 2018.Antioxidant Properties of Polyphenolic Extracts from Quercus Laurina, Quercus Crassifolia, and Quercus Scytophylla Bark, Antioxidants 7(7),81. https://doi.org/10.3390/antiox7070081
  • Van Soest P.J, Robertson J.D. & Lewis B.A. 1991. Methods for dietary fiber, and neutral detergent fiber and non-starch polysaccharides in relation to animals’ nutrition, Journal of Dairy Science 74, 3583-3597.
  • Vlaicu Petru Alexandru., Untea A. E., Panaite T. D. & Turcu R. P. 2020. Effect of dietary orange and grapefruit peel on growth performance, health status, meat quality and intestinal microflora of broiler chickens, Italian Journal of Animal Science, 19(1), 1394–1405.
  • Volanis M. & Zoiopoulos P. 2003. Effects in utilizing locally available agro-industrial by-products and crop surpluses in dairy sheep feeding, EAAP book of Abstracts, Rome, Italy 9, 345.
  • Waterhouse A. L. 2001. Determination of total phenolics. In R. E. Wrolstad (Ed.), Current protocols in food analytical chemistry. New York, NY: John Wiley and Sons.
  • Yesiloglu T., Emeksiz F., Tuzcu O. & Alemdar T. 2007. Safe and high quality supply chains and networks for the citrus industry between Mediterranean partner countries. National citrus sector analysis: Turkey. EuroMedCitrusNet. P39.
  • Zekri M. 2011. Factors affecting citrus production and quality. Citrus Industry 92, 6–9.
  • Zema D.A., Calabro P.S., Folina A., Tamburino V., Zappia G. & Zimbone S.M. 2018.Valorisation of citrus processing waste: A review, Journal of Waste management 80, 252-273

Comparative Analysis of Phenolic Content and Chemical Composition of Agro-industrial By-products of Citrus Species

Year 2021, Volume: 5 Issue: 2, 184 - 192, 22.12.2021

Abstract

Comparative analysis of phenolic content and nutritive value for agro-industrial by-products (peel and pomace) of Citrus aurantiım (Bitter orange), Citrus paradisi (Grapefruit), Citrus reticulata (Mandarin), Citrus limon (Lemon), and Citrus sinensis (Sweet orange) was done. All samples for phenolic content were extracted with 70% ethanol and absorbance reading taken at 765nm and nutritive value was also assessed by chemical analysis. The phenolic content of the five citrus peels significantly differed at P<0.01 from pomaces. Phenolic content from highest to lowest for peels was grapefruit > mandarin > lemon > bitter orange > orange while for pomaces, bitter orange > grapefruit > mandarin > lemon >orange. The principal component analysis showed that the phenolic content of citrus species had no correlation with the nutritive value hence they are non-dependent parameters. In addition, the dry matter of the citrus species was the most important component of the nutritive value. This study showed the high variation of the quality parameters (phenolics content and nutritive value) of citrus species among varieties and countries. Meta-analysis of quality parameters of citrus species is recommended to underpin the broad effects of fruit sourcing, maturation, genetics, sample preparation, extraction solvents and laboratory techniques on the agro-industrial by-products.

References

  • Ammerman C. B. & Henry P. R. 1991. Citrus and vegetable products for ruminant animals, Proceedings, Alternative Feeds for Dairy and Beef Cattle, National Invitational Symposium, St. Louis, MO 103–110.
  • Association of Official Analytical Chemists (A.O.A.C). 1995. Official Methods of Analysis, Washington. DC 15.
  • Atta M.B. & El- Shenawi G.M. 2012. Extraction of natural antioxidant from flavedo layer of Bitter orange (Citrus aurantium) peel, CBAA, International Biotechnology Applications in Agriculture. Benhar University, Moshtohor and Hurghada, Egypt 2, 51-59.
  • Bejar A.K., Ghanem N., Mihoubi D., Kechaou N. & Boudhrioua Mihoubi N. 2011. Effect of Infrared Drying on Drying Kinetics, Color, Total Phenols and Water and Oil Holding Capacities of Orange (Citrus sinensis) Peel and Leaves, International Journal of Food Engineering, 7(5).
  • Beyzi S., Ulger I., Kaliber M. & Konca Y. 2018. Determination of chemical, nutritional and fermentation properties of citrus pulp silages, Turkish Journal of Agriculture Food Science and Technology 6, 1833.
  • Castrica M., Rebucci, R., Giromini, C., Tretola, M., Cattaneo D. & Baldi A. 2019. Totalphenolic content and antioxidant capacity of agri-food waste and by-products, Italian Journal of Animal Science 18(1), 336–341.
  • Davies F.S. & Albrigo L.G. 1994. Environmental constraints on growth, development and physiology of citrus, In Citrus, 1 ed. (CAB International), 52–82.
  • El-aal H. A. & Halaweish F. T. 2010. Food preservative activity of phenolic compounds in orange peel extracts (Citrus sinensis L.), Lucrari Stiintifice, 53, 233–240.
  • El-ghfar, M. H. A. A., Ibrahim, H. M., Hassan, I. M., Abdel Fattah A. A. & Mahmoud M. H.2016. “Peels of Lemon and Orange as Value-Added Ingredients: Chemical and Antioxidant Properties”, International Journal of Current Microbiology and Applied Sciences 5(12), 777–794.
  • Ersus S. & Cam M. 2007. Determination of Organic Acids, Total Phenolic Content, and Antioxidant Capacity of Sour Citrus Aurantium Fruits, Chemistry of Natural Compounds, 43(5).
  • Food and Agriculture Organization (FAO), 2016. Citrus fruit fresh and processed, Statistical Bulletin, 2016
  • Figuerola F., Hurtado, M. L., Estevez, A. M., Chiffelle I. & Asenjo F. 2005. Fiber concentrates from apple pomace and citrus peel as potential fiber sources for food enrichment, Food Chemistry 91(3), 395–401.
  • Ghanem N., Mihoubi, D., Kechaou N. & Mihoubi N. B. 2012. Microwave dehydration of three citrus peel cultivars: Effect on water and oil retention capacities, color, shrinkage, and total phenols content, Crops and Products 40, 167–177.
  • Gorinstein S., Martı́n-Belloso, O., Park, Y.-S., Haruenkit, R., Lojek, A., Ĉı́ž, M., Caspi, A., Libman I. & Trakhtenberg S. 2001. “Comparison of some biochemical characteristics of different citrus fruits”, Food Chemistry 74(3), 309–315.
  • Guimarães R., Barros, L., Barreira, J. C., Sousa, M. J., Carvalho A. M. & Ferreira I. C. 2010. Targeting excessive free radicals with peels and juices of citrus fruits: Grapefruit, lemon, lime and orange, Food and Chemical Toxicology, 48(1), 99–106.
  • Hegazy A. E. & Ibrahim M. I. 2012. Antioxidant activities of orange peel extracts. World Applied Sciences Journal, 18(5), 684–688.
  • Hussain S.B., Anjum M.A., Hussain S., Ejaz S. & Kamran H.M. 2017. Agro-climatic conditions affect fruit quality of mandarin (Citrus reticulata Blanco) cultivars. International Journal of Tropical and Subtropical Horticulture.
  • Lashkari S. & Taghizadeh A. 2013. Nutrient digestibility and evaluation of protein and carbohydrate fractionation of citrus by-products, Journal of Animal Physiology and Animal Nutrition 97(4), 701–709.
  • Magda R.A., Awad A.M. & Selim K.A. 2008. Evaluation of mandarin and orange peels as natural sources of antioxidant in biscuits, Journal of Food Science and Technology 75–82.
  • Mamma D. & Christakopoulos P. 2014. Biotransformation of citrus by-products into value added products, Waste and Biomass Valorization 5(4), 529–549.
  • Manach C., Scalbert A., Morand C., Remesy C. & Jimenez L. 2004. Polyphenols: food sources and bioavailability. The American Journal of Clinical Nutrition, 79:727-747.
  • Marin F. R., Soler-Rivas C., Benavente-García O., Castillo J. & Pérez-Alvarez J. A. 2007. By-products from different citrus processes as a source of customized functional fibers, Food Chemistry 100(2), 736–741.
  • M’hiri N., Ioannou I., Ghoul M. & Boudhrioua N. M. 2015. Proximate chemicalcomposition of orange peel and variation of phenols and antioxidant activity during convective air drying, Journal of New Sciences, AT.
  • Nagarajaiah S. B. & Prakash J. 2016. “Chemical composition and bioactivity of Pomace from Selected Fruits”, International Journal of Fruit Science 16(4), 423–443.
  • Olowu O.O & Yaman Fırıncıoğlu S. 2019. Feed Evaluation Methods: Performance, Economy and Environment, Eurasian Journal of Agricultural Research 3 (2), 48-57.
  • Özkan Ç. Ö., Kaya E., Ülger İ., Güven İ. & Kamalak A. 2017. Effect of species on nutritive value and methane production of citrus pulps for ruminants, Hayvansal Üretim 58(1), 8–12.
  • Palangi V., Taghizadeh A. & Sadeghzadeh M. K. 2013. Determine of nutritive value of dried citrus pulp various using in situ and gas production techniques, Journal of Biodiversity and Environmental sciences 3(6), 8-16.
  • Rafiq S., Kaul R., Sofi S. A., Bashir N., Nazir F. & Ahmad Nayik G. 2018. Citrus peel as a source of functional ingredient: A review, Journal of the Saudi Society of Agricultural Sciences 17(4), 351–358.
  • Rehman U. S., Abbasi S.K., Quayyum A., Jahangir M., Sohail A., Nisa S., Tareen M.N., Tareen M.J. & Sopade P. 2020. Comparative analysis of citrus fruits for nutraceutical properties. Food science and Technology, Campinas, 40 (Suppl. 1): 153-157. Doi: https://doi.org/10.1590/fst.07519 Satari B. & Karimi K. 2018. Citrus processing wastes: Environmental impacts, recent advances, and future perspectives in total valorization, Resources, Conservation and Recycling 129, 153–167.
  • Shariff A. H., Wahab P. Z., Jahurul A.H., Romes N. B., Zakaria M., Roslan J., Wahab R.A. & Huyop F. 2021. Nutrient composition, total phenolic content, and antioxidant activity of tropical Kundasang-grown cucumber at two growth stages, Chilean Journal of Agricultural Research. 81(2).
  • Singleton V. L., Orthofer R. & Lamuela-Raventos R. M. 1999. Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteu Reagent. Methods in Enzymology, 299, 152-178.
  • Singh B., Singh J.P., Kaur A. & Singh N. 2020. Phenolic composition, antioxidant potential and health benefits of citrus Peel, Food Research International 132.
  • Sir Elkhatim K.A., Elagib R.A.A. & Hassan A.B. 2018. Content of phenolic compounds and vitamin C and antioxidant activity in wasted parts of Sudanese citrus fruits. Food Science and Nutrition, 6:1214–1219. https://doi.org/10.1002/fsn3.660
  • Tayengwa T. & Mapiye C. 2018. Citrus and winery wastes: Promising dietarysupplements for sustainable ruminant animal nutrition, health, production, and meat quality, Sustainability 10(10), 3718, 2018.
  • The jamovi project. 2021. jamovi.(Version1.8)[Computer Software].Retrieved from https://www.jamovi.org
  • Uzun A. & Yesiloglu T. 2012. Genetic Diversity in Citrus, Genetic Diversity in Plants. Published byInTech . ISBN : 978-953-51-0185-7
  • Valencia-Avilés E., García-Pérez M. E., Garnica-Romo M. G., Figueroa-Cárdenas J.D., Meléndez- Herrera E, Salgado-Garciglia R. & Martínez-Flores H. E. 2018.Antioxidant Properties of Polyphenolic Extracts from Quercus Laurina, Quercus Crassifolia, and Quercus Scytophylla Bark, Antioxidants 7(7),81. https://doi.org/10.3390/antiox7070081
  • Van Soest P.J, Robertson J.D. & Lewis B.A. 1991. Methods for dietary fiber, and neutral detergent fiber and non-starch polysaccharides in relation to animals’ nutrition, Journal of Dairy Science 74, 3583-3597.
  • Vlaicu Petru Alexandru., Untea A. E., Panaite T. D. & Turcu R. P. 2020. Effect of dietary orange and grapefruit peel on growth performance, health status, meat quality and intestinal microflora of broiler chickens, Italian Journal of Animal Science, 19(1), 1394–1405.
  • Volanis M. & Zoiopoulos P. 2003. Effects in utilizing locally available agro-industrial by-products and crop surpluses in dairy sheep feeding, EAAP book of Abstracts, Rome, Italy 9, 345.
  • Waterhouse A. L. 2001. Determination of total phenolics. In R. E. Wrolstad (Ed.), Current protocols in food analytical chemistry. New York, NY: John Wiley and Sons.
  • Yesiloglu T., Emeksiz F., Tuzcu O. & Alemdar T. 2007. Safe and high quality supply chains and networks for the citrus industry between Mediterranean partner countries. National citrus sector analysis: Turkey. EuroMedCitrusNet. P39.
  • Zekri M. 2011. Factors affecting citrus production and quality. Citrus Industry 92, 6–9.
  • Zema D.A., Calabro P.S., Folina A., Tamburino V., Zappia G. & Zimbone S.M. 2018.Valorisation of citrus processing waste: A review, Journal of Waste management 80, 252-273
There are 44 citations in total.

Details

Primary Language English
Subjects Agricultural Engineering
Journal Section Articles
Authors

Oyinkansola Olubunmi Olowu This is me 0000-0003-3005-1135

Sema Yaman Fırıncıoğlu 0000-0001-9575-9981

Publication Date December 22, 2021
Published in Issue Year 2021 Volume: 5 Issue: 2

Cite

APA Olowu, O. O., & Yaman Fırıncıoğlu, S. (2021). Comparative Analysis of Phenolic Content and Chemical Composition of Agro-industrial By-products of Citrus Species. Eurasian Journal of Agricultural Research, 5(2), 184-192.
AMA Olowu OO, Yaman Fırıncıoğlu S. Comparative Analysis of Phenolic Content and Chemical Composition of Agro-industrial By-products of Citrus Species. EJAR. December 2021;5(2):184-192.
Chicago Olowu, Oyinkansola Olubunmi, and Sema Yaman Fırıncıoğlu. “Comparative Analysis of Phenolic Content and Chemical Composition of Agro-Industrial By-Products of Citrus Species”. Eurasian Journal of Agricultural Research 5, no. 2 (December 2021): 184-92.
EndNote Olowu OO, Yaman Fırıncıoğlu S (December 1, 2021) Comparative Analysis of Phenolic Content and Chemical Composition of Agro-industrial By-products of Citrus Species. Eurasian Journal of Agricultural Research 5 2 184–192.
IEEE O. O. Olowu and S. Yaman Fırıncıoğlu, “Comparative Analysis of Phenolic Content and Chemical Composition of Agro-industrial By-products of Citrus Species”, EJAR, vol. 5, no. 2, pp. 184–192, 2021.
ISNAD Olowu, Oyinkansola Olubunmi - Yaman Fırıncıoğlu, Sema. “Comparative Analysis of Phenolic Content and Chemical Composition of Agro-Industrial By-Products of Citrus Species”. Eurasian Journal of Agricultural Research 5/2 (December 2021), 184-192.
JAMA Olowu OO, Yaman Fırıncıoğlu S. Comparative Analysis of Phenolic Content and Chemical Composition of Agro-industrial By-products of Citrus Species. EJAR. 2021;5:184–192.
MLA Olowu, Oyinkansola Olubunmi and Sema Yaman Fırıncıoğlu. “Comparative Analysis of Phenolic Content and Chemical Composition of Agro-Industrial By-Products of Citrus Species”. Eurasian Journal of Agricultural Research, vol. 5, no. 2, 2021, pp. 184-92.
Vancouver Olowu OO, Yaman Fırıncıoğlu S. Comparative Analysis of Phenolic Content and Chemical Composition of Agro-industrial By-products of Citrus Species. EJAR. 2021;5(2):184-92.
Eurasian Journal of Agricultural Research (EJAR)   ISSN: 2636-8226   Web: https://dergipark.org.tr/en/pub/ejar   e-mail: agriculturalresearchjournal@gmail.com