Research Article
BibTex RIS Cite

Synthesis of waste pineapple peel cellulose based hydrogels and aerogels

Year 2024, Volume: 7 Issue: 2, 165 - 170, 31.12.2024
https://doi.org/10.46239/ejbcs.1576204

Abstract

Aerogels were one of the groups of nanoporous materials with superior physicochemical properties. Their unique physical, chemical, and mechanical properties make aerogels as promising candidates for different applications including drug delivery, tissue engineering, medical implantable devices, biotechnology and wastewater treatments. The organic (silica) and inorganic (biopolymers) compounds can be used to synthesize aerogels. Cellulose found the most abundant in world was one of these biopolymers. Cellulose has properties such as biocompatibility, recyclability, excellent mechanical strength, adjustable optical appearance, thermostabilizing, non-toxicity make to prefer in aerogel studies. In this study, pineapple peel waste cellulose was used to synthesize aerogel. To obtain cellulose hydrogels cellulose and carboxymethyl cellulose (monomers) were mixed with epichlorohydrin (cross-linker). Alcogels (by solvent exchange) and aerogels (by freeze-thaw) was synthesized from obtained hydrogels. The characterization studies water adsorption capacity and transparency tests were performed waste based hydrogel and aerogels.

References

  • Abdul Khalil HPS, Adnan AS, Yahya EB, Olaiya NG, Safrida S, Hossain S, Balakrishnan V, Gopakumar DA, Abdullah CK, Oyekanmi AA, Pasquini D. 2020. A Review on plant cellulose nanofibre-based aerogels for biomedical applications. Polymers. 12: 1759. doi:10.3390/polym12081759
  • Al Abdallah H, Joy HJH, Abu‑Jdayi B. 2024. Cellulose and nanocellulose aerogels, their preparation methods, and potential applications: a review. Cellulose. 31: 2001–2029. doi:10.1007/s10570-024-05743-w
  • Asim N, Badiei M, Alghoul MA, Mohammad M, Fudholi A, Akhtaruzzaman Md, Amin N Sopian K. 2019. Biomass and Industrial Wastes as Resource Materials for AerogelPreparation: Opportunities, Challenges, and Research Directions. Ind Eng Chem Res. 58: 17621−17645.doi: 10.1021/acs.iecr.9b02661
  • Azimi B, Sepahvand S, Ismaeilimoghadam S, Kargarzadeh H, Ashori A, Jonoobi M, Danti S. 2024. Application of cellulose‑based materials as water purification filters; A state‑of‑the‑art review. J Environ Polym Degrad. 32: 345–366. doi:10.1007/s10924-023-02989-6
  • Budtova T. 2019. Cellulose II aerogels: a review. Cellulose. 26:81–121.doi: 10.1007/s10570-018-2189-1
  • Chang C, Duan B, Cai J, Zhang L. 2010a. Superabsorbent hydrogels based on cellulose for smart swelling and controllable delivery. Euro Polym J. 46: 92–100. doi:10.1016/j.eurpolymj.2009.04.033
  • Chang C, Zhang L, Zhou J, Zhang L, Kennedy JF. 2010b. Structure and properties of hydrogels prepared from cellulose in NaOH/urea aqueous solutions. Carbohyd Polym. 82 : 122–127. doi:10.1016/j.carbpol.2010.04.033
  • Chang C, Zhang L.2011. Cellulose-based hydrogels: Present status and application prospects. Carbohyd Polym. 84: 40–53 doi:10.1016/j.carbpol.2010.12.023
  • Chen L, Jiang X, Qu N, Lu H, Xu J, Zhang Y, Li G. 2022. Selective adsorption and efficient degradation of oil pollution by microorgranisms immobilized natural biomass aerogels with aligned channels. Mater Today Sustain. 19: 100208. Doi: 10.1016/j.mtsust.2022.100208
  • Dai H, Huang H. 2016. Modified pineapple peel cellulose hydrogels embedded with sepia ink for effective removal of methylene blue Carbohyd Polym. 148: 1–10. Doi:10.1016/j.carbpol.2016.04.040
  • Do NHA, Luu TP, Thai QB, Le DKN, Chau DQ, Nguyen ST, Le PK, Phan-Thien N, Hai M. Duong HM. 2020. Heat and sound insulation applications of pineapple aerogels from pineapple waste, Mater Chem Phys. 242: 122267. Doi: 10.1016/j.matchemphys.2019.122267
  • Gan S, Zakaria S, Chia CH, Chen RS, EllisAV, Kaco H. 2017. Highly porous regenerated cellulose hydrogel and aerogel prepared from hydrothermal synthesized cellulose carbamate. PLoS ONE. 12: e0173743. doi:10.1371/journal.pone.0173743
  • Ganesamoorthy R, Vadivel VK, Kumar R, Kushwaha OS, Mamane H. 2021. Aerogels for water treatment: A review. J Clean Prod 329: 129713. doi: 10.1016/j.jclepro.2021.129713
  • Ganesan K, Budtova T, Ratke L, Gurikov P, Baudron V, Preibisch I, Niemeyer P, Smirnova I, Milow B. 2018. Review on the production of polysaccharide aerogel particles. Materials. 11: 2144; doi:10.3390/ma11112144
  • Groult S, Buwalda S, Budtova T. 2022. Tuning bio-aerogel properties for controlling drug delivery. Part 2: Cellulose-pectin composite aerogels. Biomater Adv. 135, 212732. doi:10.1016/j.bioadv.2022.212732
  • Gu J, Fu R, Kang S, Yang X, Song Q, Miao C, Ma M, Wang Y, Sa H. 2022. Robust composite aerogel beads with pomegranate-like structure for water-based thermal insulation coating,. Constr Build Mater. 341: 127722. doi: 10.1016/j.conbuildmat.2022.127722
  • Guastaferro M, Reverchon E, Baldino L. 2021.Polysaccharide-based aerogel production for biomedical applications: A comparative review. Materials. 14: 1631. doi:10.3390/ma14071631
  • He ZJ, Chen K, Liu ZH, Li BZ, Yuan YJ. 2023. Valorizing renewable cellulose from lignocellulosic biomass towardfunctional products J Clean Prod. 414: 137708. doi: 10.1016/j.jclepro.2023.137708
  • Ihsanullah I, Sajid M, Khan S, Bilal M.2022. Aerogel-based adsorbents as emerging materials for the removal of heavy metals from water: Progress, challenges, and prospects.. Sep Purif Technol. 291: 120923, doi:10.1016/j.seppur.2022.120923
  • Jianan C, Shaoqiong Y, Jinyue R. 1996. A Study on the Preparation, Structure, and Properties of Microcrystalline Cellulose. J Macromol Sci Chem A. 33:1851-1862. doi:10.1080/10601329608011011
  • Joshi P, Sharma OP, Ganguly SK, Srivastava M, Khatri OM. 2022. Fruit waste-derived cellulose and graphene-based aerogels: Plausibleadsorption pathways for fast and efficient removal of organic dyes. J Colloid Interfac Sci. 608: 2870–2883. Doi:10.1016/j.jcis.2021.11.016
  • Li X, Wan C, Tao T, Chai H, Huang Q, Chai Y, Wu Y. 2024. An overview of the development status and applications of cellulose‑based functional materials.Cellulose. 31:61–99 . doi: 10.1007/s10570-023-05616-8
  • Liu L, Wang T, Li M, Gao Y, Zhang L. 2024.Carboxylated cellulose-based composite aerogel with double filling structure for sustained drug release. Ind Crop Prod. 210: 118126. doi: 10.1016/j.indcrop.2024.118126
  • Liyanage S, Acharya S, Parajuli P, Shamshina JL, Abidi N. 2021. Production and surface modification of cellulose bioproducts. Polym. 13: 3433. doi:10.3390/polym13193433
  • Long LY, Weng YX, Yu-Zhong Wang YZ. 2018. Cellulose Aerogels: Synthesis, applications, and prospects. Polym. 10: 623 doi:10.3390/polym10060623
  • Mazrouei-Sebdani, Z., Begum, H., Schoenwald, S., Horoshenkov, K. V., Malfait, W. J. 2021. A review on silica aerogel-based materials for acoustic applications. J Non-Cryst Solids. 562: 120770. Doi: 10.1016/j.jnoncrysol.2021.120770
  • McNeil SJ, Gupta H. 2022. Emerging applications of aerogels in textiles. Polym Test. 106: 107426. Doi: 10.1016/j.polymertesting.2021.107426
  • Meti P, Mahadik DB, Lee KY, Wang Q, Kanamori K, Gong YD, Park HH. 2022. Overview of organic–inorganic hybrid silica aerogels: Progress and perspectives. Mater Des. 222: 111091. doi: 10.1016/j.matdes.2022.111091
  • Mujtaba M, Negi A, King AWT, Zare M,and J. Kuncova-Kallio J. 2023. Surface modifications of nanocellulose for drug delivery applications; a critical review. Curr Opin Biomed Eng. 28: 100475. doi 10.1016/j.cobme.2023.100475
  • Nath PC, Ojha A, Debnath S, Neetu K, Mitra SBP, Sharma M, Sridhar K, Nayak PK. 2023. Recent advances in valorization of pineapple (Ananas comosus) processing waste and by-products: A step towards circular bioeconomy. Trends Food Sci Tech. 136: 100–111. doi: 10.1016/j.tifs.2023.04.008
  • Nguyen PXT, Ho KH, Do NHN, Nguyen CTX, Nguyen HM, Tran KA, Le KA, Le PK. 2022. A comparative study on modification of aerogel-based biosorbents from coconut fibers for treatment of dye- and oil-contaminated water. Mater Today Sustain.19:100175. doi.: 10.1016/j.mtsust.2022.100175
  • Paksung N, Pfersich J, Arauzo PJ, Jung D, Kruse A. 2020. Structural effects of cellulose on hydrolysis and carbonization behavior during hydrothermal treatment. ACS Omega. 5: 12210-12223
  • Partow AJ, Meng S, Wong AJ, Savin DA, Tong Z. 2022. Recyclable & highly porous organo-aerogel adsorbents from biowaste for organic contaminants' removal. Sci Total Environ 827: 154051. doi: 10.1016/j.scitotenv.2022.154051
  • Paulauskiene T, Teresiute A, Uebe J, Tadzijevas A. 2022. Sustainable cross-linkers for the synthesis of cellulose-based aerogels: Research and Application, J Mar Sci Eng. 10:491. doi:10.3390/jmse10040491
  • Sanchez LM, Hopkins AK, Espinosa E, Larrañet, E, Malinova D, McShane AN, Domínguez-Robles J, Rodríguez A. 2023. Antioxidant cellulose nanofibers/lignin-based aerogels: a potential material for biomedical applications. Chem Biol Technol Agric. 10: 72. doi: 10.1186/s40538-023-00438-z
  • Simon-Herrero C, Caminero-Huertas S, Romero A, Valverde JL, Sanchez-Silva L. 2016. Effects of freeze-drying conditions on aerogel properties. J Mater Sci 51: 8977–8985. doi:10.1007/s10853-016-0148-5
  • Sozcu S, Venkataraman M, Wiener J, Tomkova B, Militk J, Mahmood A. 2024. Incorporation of cellulose based aerogels into textile structures. Mater. 17, 27. doi:10.3390/ma17010027
  • Sun M, Li C, JFeng J, Sun H, Sun M, Feng Y, Ji X, Han S, Feng J. 2022. Development of aerogels in solid-phase extraction and microextraction. TrAC. 146 : 116497. doi: 10.1016/j.trac.2021.116497
  • Tafreshi OA, Mosanenzadeh SG, Karamikamkar , Saadatnia Z, Park CB, Naguib HE. 2022. A review on multifunctional aerogel fibers: processing, fabrication, functionalization, and applications. Mater Today Chem. 23: 100736, doi: 10.1016/j.mtchem.2021.100736
  • Wang X, Zhang Y Jiang H, Song Y, Zhou Z, Zhao H. 2016.Fabrication and characterization of nano-cellulose aerogels via supercritical CO2 drying technology, Mater Lett. 183: 179-182. doi: 10.1016/j.matlet.2016.07.081
  • Wei G, Zhang J, Usuelli M, Zhang X, Liu B, Mezzenga R. 2022. Biomass vs inorganic and plastic-based aerogels: Structural design, functional tailoring, resource-efficient applications and sustainability analysis. Prog Mater Sci. 125: 100915. Doi: 10.1016/j.pmatsci.2021.100915
  • Zhang J, Zhang H, Yan T, Fang Y, Huang Y, Tang J, He M. 2022. Low shrinkage, mechanically strong polymethylacrylimide aerogels with open-cell structure prepared by freeze-drying. Polymer. 245: 124705. doi:10.1016/j.polymer.2022.124705
Year 2024, Volume: 7 Issue: 2, 165 - 170, 31.12.2024
https://doi.org/10.46239/ejbcs.1576204

Abstract

References

  • Abdul Khalil HPS, Adnan AS, Yahya EB, Olaiya NG, Safrida S, Hossain S, Balakrishnan V, Gopakumar DA, Abdullah CK, Oyekanmi AA, Pasquini D. 2020. A Review on plant cellulose nanofibre-based aerogels for biomedical applications. Polymers. 12: 1759. doi:10.3390/polym12081759
  • Al Abdallah H, Joy HJH, Abu‑Jdayi B. 2024. Cellulose and nanocellulose aerogels, their preparation methods, and potential applications: a review. Cellulose. 31: 2001–2029. doi:10.1007/s10570-024-05743-w
  • Asim N, Badiei M, Alghoul MA, Mohammad M, Fudholi A, Akhtaruzzaman Md, Amin N Sopian K. 2019. Biomass and Industrial Wastes as Resource Materials for AerogelPreparation: Opportunities, Challenges, and Research Directions. Ind Eng Chem Res. 58: 17621−17645.doi: 10.1021/acs.iecr.9b02661
  • Azimi B, Sepahvand S, Ismaeilimoghadam S, Kargarzadeh H, Ashori A, Jonoobi M, Danti S. 2024. Application of cellulose‑based materials as water purification filters; A state‑of‑the‑art review. J Environ Polym Degrad. 32: 345–366. doi:10.1007/s10924-023-02989-6
  • Budtova T. 2019. Cellulose II aerogels: a review. Cellulose. 26:81–121.doi: 10.1007/s10570-018-2189-1
  • Chang C, Duan B, Cai J, Zhang L. 2010a. Superabsorbent hydrogels based on cellulose for smart swelling and controllable delivery. Euro Polym J. 46: 92–100. doi:10.1016/j.eurpolymj.2009.04.033
  • Chang C, Zhang L, Zhou J, Zhang L, Kennedy JF. 2010b. Structure and properties of hydrogels prepared from cellulose in NaOH/urea aqueous solutions. Carbohyd Polym. 82 : 122–127. doi:10.1016/j.carbpol.2010.04.033
  • Chang C, Zhang L.2011. Cellulose-based hydrogels: Present status and application prospects. Carbohyd Polym. 84: 40–53 doi:10.1016/j.carbpol.2010.12.023
  • Chen L, Jiang X, Qu N, Lu H, Xu J, Zhang Y, Li G. 2022. Selective adsorption and efficient degradation of oil pollution by microorgranisms immobilized natural biomass aerogels with aligned channels. Mater Today Sustain. 19: 100208. Doi: 10.1016/j.mtsust.2022.100208
  • Dai H, Huang H. 2016. Modified pineapple peel cellulose hydrogels embedded with sepia ink for effective removal of methylene blue Carbohyd Polym. 148: 1–10. Doi:10.1016/j.carbpol.2016.04.040
  • Do NHA, Luu TP, Thai QB, Le DKN, Chau DQ, Nguyen ST, Le PK, Phan-Thien N, Hai M. Duong HM. 2020. Heat and sound insulation applications of pineapple aerogels from pineapple waste, Mater Chem Phys. 242: 122267. Doi: 10.1016/j.matchemphys.2019.122267
  • Gan S, Zakaria S, Chia CH, Chen RS, EllisAV, Kaco H. 2017. Highly porous regenerated cellulose hydrogel and aerogel prepared from hydrothermal synthesized cellulose carbamate. PLoS ONE. 12: e0173743. doi:10.1371/journal.pone.0173743
  • Ganesamoorthy R, Vadivel VK, Kumar R, Kushwaha OS, Mamane H. 2021. Aerogels for water treatment: A review. J Clean Prod 329: 129713. doi: 10.1016/j.jclepro.2021.129713
  • Ganesan K, Budtova T, Ratke L, Gurikov P, Baudron V, Preibisch I, Niemeyer P, Smirnova I, Milow B. 2018. Review on the production of polysaccharide aerogel particles. Materials. 11: 2144; doi:10.3390/ma11112144
  • Groult S, Buwalda S, Budtova T. 2022. Tuning bio-aerogel properties for controlling drug delivery. Part 2: Cellulose-pectin composite aerogels. Biomater Adv. 135, 212732. doi:10.1016/j.bioadv.2022.212732
  • Gu J, Fu R, Kang S, Yang X, Song Q, Miao C, Ma M, Wang Y, Sa H. 2022. Robust composite aerogel beads with pomegranate-like structure for water-based thermal insulation coating,. Constr Build Mater. 341: 127722. doi: 10.1016/j.conbuildmat.2022.127722
  • Guastaferro M, Reverchon E, Baldino L. 2021.Polysaccharide-based aerogel production for biomedical applications: A comparative review. Materials. 14: 1631. doi:10.3390/ma14071631
  • He ZJ, Chen K, Liu ZH, Li BZ, Yuan YJ. 2023. Valorizing renewable cellulose from lignocellulosic biomass towardfunctional products J Clean Prod. 414: 137708. doi: 10.1016/j.jclepro.2023.137708
  • Ihsanullah I, Sajid M, Khan S, Bilal M.2022. Aerogel-based adsorbents as emerging materials for the removal of heavy metals from water: Progress, challenges, and prospects.. Sep Purif Technol. 291: 120923, doi:10.1016/j.seppur.2022.120923
  • Jianan C, Shaoqiong Y, Jinyue R. 1996. A Study on the Preparation, Structure, and Properties of Microcrystalline Cellulose. J Macromol Sci Chem A. 33:1851-1862. doi:10.1080/10601329608011011
  • Joshi P, Sharma OP, Ganguly SK, Srivastava M, Khatri OM. 2022. Fruit waste-derived cellulose and graphene-based aerogels: Plausibleadsorption pathways for fast and efficient removal of organic dyes. J Colloid Interfac Sci. 608: 2870–2883. Doi:10.1016/j.jcis.2021.11.016
  • Li X, Wan C, Tao T, Chai H, Huang Q, Chai Y, Wu Y. 2024. An overview of the development status and applications of cellulose‑based functional materials.Cellulose. 31:61–99 . doi: 10.1007/s10570-023-05616-8
  • Liu L, Wang T, Li M, Gao Y, Zhang L. 2024.Carboxylated cellulose-based composite aerogel with double filling structure for sustained drug release. Ind Crop Prod. 210: 118126. doi: 10.1016/j.indcrop.2024.118126
  • Liyanage S, Acharya S, Parajuli P, Shamshina JL, Abidi N. 2021. Production and surface modification of cellulose bioproducts. Polym. 13: 3433. doi:10.3390/polym13193433
  • Long LY, Weng YX, Yu-Zhong Wang YZ. 2018. Cellulose Aerogels: Synthesis, applications, and prospects. Polym. 10: 623 doi:10.3390/polym10060623
  • Mazrouei-Sebdani, Z., Begum, H., Schoenwald, S., Horoshenkov, K. V., Malfait, W. J. 2021. A review on silica aerogel-based materials for acoustic applications. J Non-Cryst Solids. 562: 120770. Doi: 10.1016/j.jnoncrysol.2021.120770
  • McNeil SJ, Gupta H. 2022. Emerging applications of aerogels in textiles. Polym Test. 106: 107426. Doi: 10.1016/j.polymertesting.2021.107426
  • Meti P, Mahadik DB, Lee KY, Wang Q, Kanamori K, Gong YD, Park HH. 2022. Overview of organic–inorganic hybrid silica aerogels: Progress and perspectives. Mater Des. 222: 111091. doi: 10.1016/j.matdes.2022.111091
  • Mujtaba M, Negi A, King AWT, Zare M,and J. Kuncova-Kallio J. 2023. Surface modifications of nanocellulose for drug delivery applications; a critical review. Curr Opin Biomed Eng. 28: 100475. doi 10.1016/j.cobme.2023.100475
  • Nath PC, Ojha A, Debnath S, Neetu K, Mitra SBP, Sharma M, Sridhar K, Nayak PK. 2023. Recent advances in valorization of pineapple (Ananas comosus) processing waste and by-products: A step towards circular bioeconomy. Trends Food Sci Tech. 136: 100–111. doi: 10.1016/j.tifs.2023.04.008
  • Nguyen PXT, Ho KH, Do NHN, Nguyen CTX, Nguyen HM, Tran KA, Le KA, Le PK. 2022. A comparative study on modification of aerogel-based biosorbents from coconut fibers for treatment of dye- and oil-contaminated water. Mater Today Sustain.19:100175. doi.: 10.1016/j.mtsust.2022.100175
  • Paksung N, Pfersich J, Arauzo PJ, Jung D, Kruse A. 2020. Structural effects of cellulose on hydrolysis and carbonization behavior during hydrothermal treatment. ACS Omega. 5: 12210-12223
  • Partow AJ, Meng S, Wong AJ, Savin DA, Tong Z. 2022. Recyclable & highly porous organo-aerogel adsorbents from biowaste for organic contaminants' removal. Sci Total Environ 827: 154051. doi: 10.1016/j.scitotenv.2022.154051
  • Paulauskiene T, Teresiute A, Uebe J, Tadzijevas A. 2022. Sustainable cross-linkers for the synthesis of cellulose-based aerogels: Research and Application, J Mar Sci Eng. 10:491. doi:10.3390/jmse10040491
  • Sanchez LM, Hopkins AK, Espinosa E, Larrañet, E, Malinova D, McShane AN, Domínguez-Robles J, Rodríguez A. 2023. Antioxidant cellulose nanofibers/lignin-based aerogels: a potential material for biomedical applications. Chem Biol Technol Agric. 10: 72. doi: 10.1186/s40538-023-00438-z
  • Simon-Herrero C, Caminero-Huertas S, Romero A, Valverde JL, Sanchez-Silva L. 2016. Effects of freeze-drying conditions on aerogel properties. J Mater Sci 51: 8977–8985. doi:10.1007/s10853-016-0148-5
  • Sozcu S, Venkataraman M, Wiener J, Tomkova B, Militk J, Mahmood A. 2024. Incorporation of cellulose based aerogels into textile structures. Mater. 17, 27. doi:10.3390/ma17010027
  • Sun M, Li C, JFeng J, Sun H, Sun M, Feng Y, Ji X, Han S, Feng J. 2022. Development of aerogels in solid-phase extraction and microextraction. TrAC. 146 : 116497. doi: 10.1016/j.trac.2021.116497
  • Tafreshi OA, Mosanenzadeh SG, Karamikamkar , Saadatnia Z, Park CB, Naguib HE. 2022. A review on multifunctional aerogel fibers: processing, fabrication, functionalization, and applications. Mater Today Chem. 23: 100736, doi: 10.1016/j.mtchem.2021.100736
  • Wang X, Zhang Y Jiang H, Song Y, Zhou Z, Zhao H. 2016.Fabrication and characterization of nano-cellulose aerogels via supercritical CO2 drying technology, Mater Lett. 183: 179-182. doi: 10.1016/j.matlet.2016.07.081
  • Wei G, Zhang J, Usuelli M, Zhang X, Liu B, Mezzenga R. 2022. Biomass vs inorganic and plastic-based aerogels: Structural design, functional tailoring, resource-efficient applications and sustainability analysis. Prog Mater Sci. 125: 100915. Doi: 10.1016/j.pmatsci.2021.100915
  • Zhang J, Zhang H, Yan T, Fang Y, Huang Y, Tang J, He M. 2022. Low shrinkage, mechanically strong polymethylacrylimide aerogels with open-cell structure prepared by freeze-drying. Polymer. 245: 124705. doi:10.1016/j.polymer.2022.124705
There are 42 citations in total.

Details

Primary Language English
Subjects Macromolecular Materials, Organic Green Chemistry, Materials Science and Technologies
Journal Section Research Articles
Authors

Oğuzhan Şimşek 0000-0003-2756-8440

Burcu Okutucu 0000-0002-0907-4175

Early Pub Date December 27, 2024
Publication Date December 31, 2024
Submission Date November 4, 2024
Acceptance Date December 21, 2024
Published in Issue Year 2024 Volume: 7 Issue: 2

Cite

APA Şimşek, O., & Okutucu, B. (2024). Synthesis of waste pineapple peel cellulose based hydrogels and aerogels. Eurasian Journal of Biological and Chemical Sciences, 7(2), 165-170. https://doi.org/10.46239/ejbcs.1576204
AMA Şimşek O, Okutucu B. Synthesis of waste pineapple peel cellulose based hydrogels and aerogels. Eurasian J. Bio. Chem. Sci. December 2024;7(2):165-170. doi:10.46239/ejbcs.1576204
Chicago Şimşek, Oğuzhan, and Burcu Okutucu. “Synthesis of Waste Pineapple Peel Cellulose Based Hydrogels and Aerogels”. Eurasian Journal of Biological and Chemical Sciences 7, no. 2 (December 2024): 165-70. https://doi.org/10.46239/ejbcs.1576204.
EndNote Şimşek O, Okutucu B (December 1, 2024) Synthesis of waste pineapple peel cellulose based hydrogels and aerogels. Eurasian Journal of Biological and Chemical Sciences 7 2 165–170.
IEEE O. Şimşek and B. Okutucu, “Synthesis of waste pineapple peel cellulose based hydrogels and aerogels”, Eurasian J. Bio. Chem. Sci., vol. 7, no. 2, pp. 165–170, 2024, doi: 10.46239/ejbcs.1576204.
ISNAD Şimşek, Oğuzhan - Okutucu, Burcu. “Synthesis of Waste Pineapple Peel Cellulose Based Hydrogels and Aerogels”. Eurasian Journal of Biological and Chemical Sciences 7/2 (December 2024), 165-170. https://doi.org/10.46239/ejbcs.1576204.
JAMA Şimşek O, Okutucu B. Synthesis of waste pineapple peel cellulose based hydrogels and aerogels. Eurasian J. Bio. Chem. Sci. 2024;7:165–170.
MLA Şimşek, Oğuzhan and Burcu Okutucu. “Synthesis of Waste Pineapple Peel Cellulose Based Hydrogels and Aerogels”. Eurasian Journal of Biological and Chemical Sciences, vol. 7, no. 2, 2024, pp. 165-70, doi:10.46239/ejbcs.1576204.
Vancouver Şimşek O, Okutucu B. Synthesis of waste pineapple peel cellulose based hydrogels and aerogels. Eurasian J. Bio. Chem. Sci. 2024;7(2):165-70.