Research Article
BibTex RIS Cite

AC Power Formula for Unsaturated TiO2 Memristors with Linear Dopant Drift, Small Signal AC Power Formula for All Memristors, and Some Applications for These Formulas

Year 2018, Volume: 1 Issue: 2, 51 - 58, 30.12.2018

Abstract

In 1971, Chua has claimed that there should have been one more fundamental circuit element called memristor. Memristor is nonlinear charge-dependent resistor. It dissipates power. No ideal memristor has been found yet. In 2008, a TiO2 thin-film memristive system which behaves as a memristor for some part of its operation has been found by a HP research team. The new circuit component can allow new types of analog and digital applications which are not possible with other fundamental circuit elements. This has resulted an emerging interest in memristor and memristive systems. In this paper, the average power formula of Ti02 memristor with linear dopant speed under AC excitation is derived. It is shown that a similar formula is applicable to all ideal memristors excited with a small signal AC source. The formulas derived here or similar formulas can be used to size the programmable memristor and memory circuits having AC waveforms.

References

  • [1] L. O. Chua, ”Memristor - The Missing Circuit Element,” IEEE Trans.Circuit Theory, vol. 18, pp. 507-519, 1971.
  • [2] L. O. Chua and S. M. Kang, ”Memristive devices and systems,” Proc.IEEE, vol. 64, pp. 209-223, 1976.
  • [3] D. B. Strukov, G. S. Snider, D. R. Stewart, and R. S. Williams, ”The missing memristor found,” Nature (London), vol. 453, pp. 80-83, 2008.
  • [4] Kavehei, O., Iqabal, A., Kimi, Y.S., Eshraghian, K., Al-Sarawi, S.F., “The Fourth Element: Characteristics, Modeling and Electromagnetic Theory of the Memristor,” arXiv:1002.2310v1, 2010.
  • [5] Manem, H., Rose, G.S., He, X., Wang, W., “Design Considerations for Variation Tolerant Multilevel CMOS/Nano Memristor Memory,” GLSVLSI '10 ,Proceedings of the 20th symposium on VLSI, 2010.
  • [6] Huang, G.M., Yenpo Ho, Peng Li, “Memristor system properties and its design applications to circuits such as nonvolatile memristor memories,” Communications, Circuits and Systems (ICCCAS), 2010 International Conference on, vol., no., pp.805-810, 28-30 July 2010.
  • [7] Ho, Y., Huang, G. M., Li, P., “Dynamical Properties and Design Analysis for Nonvolatile Memristor Memories”, Circuits and Systems I: Regular Papers, IEEE Transactions on, vol. PP, no.99, pp.1, 0
  • [8] Dimin Niuy, Yiran Chenz, Yuan Xie, “Low-power Dual-element Memristor Based Memory Design”, Proceedings of the 16th ACM/IEEE International Symposium on Low Power Electronics and Design, pp. 25-30, 2010.
  • [9] Vontobel, P., Robinett, W., Straznicky, J., Kuekes, P. J., Williams, R. S., “Writing to and Reading from a Nano-Scale Crossbar Memory Based on Memristors”, Nanotechnology 20, 425204 (2009).
  • [10] Kwan-Hee Jo, Chul-Moon Jung, Kyeong-Sik Min, Sung-Mo Kang, Self-adaptive write circuit for low-power and variation-tolerant memristors. Nanotechnology, IEEE Transactions on, vol.9, no.6, pp.675-678, Nov. 2010
  • [11] Wey, T.A., Jemison, W.D., “An automatic gain control circuit with TiO2 memristor variable gain amplifier”, NEWCAS Conference (NEWCAS), 2010 8th IEEE International, vol., no., pp.49-52, 20-23,June 2010.
  • [12] Pershin, Y.V., Di Ventra, M., Practical Approach to Programmable Analog Circuits With Memristors. IEEE Transactions on Circuits and Systems I: Regular Papers, vol.57, no.8, pp.1857-1864, Aug. 2010.
  • [13] Sangho Shin, Kyungmin Kim, Sung-Mo Kang, Memristor-Based Fine Resolution Programmable Resistance and Its Applications. Communications, Circuits and Systems, 2009. ICCCAS 2009. International Conference on, vol., no., pp.948-951, 23-25 July 2009
  • [14] Shin, S., Kim, K., Kang, S.M., “Memristor applications for programmable analog ICs,” Nanotechnology, IEEE Transactions on, vol.10, no.2, pp.266-274, March 2011.
  • [15] Reşat MUTLU, “Taylor Serisi ve Kutupsal Fonksiyonlar Kullanarak Memristorün (Hafızalı Direncin) Histeresis Eğrisinin Açıklanması”, 3. Ileri Muhendislik Teknolojileri Sempozyumu, 29-30 Mayis 2010, Cankaya Universitesi, Ankara, Turkey.
  • [16] Guo, X., Ipek, E., Soyata, T., “Resistive Computation: Avoiding the Power Wall with Low-Leakage, STT-MRAM Based Computing,” Proceedings of the 37th International Symposium on Computer Architecture (ISCA), Saint-Malo, France, June 2010.
  • [17] Gazabare, S., Pieper, R.J., Wondmagegn, W., Satyala, N., “Observations on model based predictions for memristor power dissipation,” Southeastcon, 2011 Proceedings of IEEE, vol., no., pp.450-454, 17-20 March 2011.

Doymamış Lineer Sürüklenme Hızlı TiO2 Memristörler İçin AC Güç Formülü, Tüm Memristörler İçin Küçük Sinyal AC Güç Formülü, ve Bu Formüllerin Bazı Uygulamaları

Year 2018, Volume: 1 Issue: 2, 51 - 58, 30.12.2018

Abstract

1971 yılında, Dr. Chua, memristör
adı verilen, bir tane daha temel devre elemanı olması gerektiğini iddia
etti.Memristör yüke bağımlı nonlinear bir dirençtir. Memristör güç tüketir.
Henüz ideal bir memristör bulunmamıştır. 2008’de, bir HP araştırma takımı
tarafından çalışma bölgesininin bir kısmında memristörmüş gibi davranan TiO2
ince-film bir memristif system bulunmuştur. Bu yeni devre elemanı diğer temel
devre elemanları ile yapımı mümkün olmayan yeni tip analog ve sayısal
uygulamalara izin verebilir. Bu ihtimal memristör ve memristif sistemler üzerine
bir merak uyanmasını sağlamıştır. Bu makalede, AC gerilim altında, lineer
sürüklenme hızlı TiO2 memristörün ortalama güç formülü
türetilmiştir. Benzeri formülün küçük sinyal AC kaynağından beslenen tüm ideal
memristörlere uygulanabilirliği gösterilmiştir. Burada türetilen formüller ya
da benzeri formüller AC gerilime sahip programlanabilir memristör ve hafıza
devrelerinin boyutlandırılmasında kullanılabilir.

References

  • [1] L. O. Chua, ”Memristor - The Missing Circuit Element,” IEEE Trans.Circuit Theory, vol. 18, pp. 507-519, 1971.
  • [2] L. O. Chua and S. M. Kang, ”Memristive devices and systems,” Proc.IEEE, vol. 64, pp. 209-223, 1976.
  • [3] D. B. Strukov, G. S. Snider, D. R. Stewart, and R. S. Williams, ”The missing memristor found,” Nature (London), vol. 453, pp. 80-83, 2008.
  • [4] Kavehei, O., Iqabal, A., Kimi, Y.S., Eshraghian, K., Al-Sarawi, S.F., “The Fourth Element: Characteristics, Modeling and Electromagnetic Theory of the Memristor,” arXiv:1002.2310v1, 2010.
  • [5] Manem, H., Rose, G.S., He, X., Wang, W., “Design Considerations for Variation Tolerant Multilevel CMOS/Nano Memristor Memory,” GLSVLSI '10 ,Proceedings of the 20th symposium on VLSI, 2010.
  • [6] Huang, G.M., Yenpo Ho, Peng Li, “Memristor system properties and its design applications to circuits such as nonvolatile memristor memories,” Communications, Circuits and Systems (ICCCAS), 2010 International Conference on, vol., no., pp.805-810, 28-30 July 2010.
  • [7] Ho, Y., Huang, G. M., Li, P., “Dynamical Properties and Design Analysis for Nonvolatile Memristor Memories”, Circuits and Systems I: Regular Papers, IEEE Transactions on, vol. PP, no.99, pp.1, 0
  • [8] Dimin Niuy, Yiran Chenz, Yuan Xie, “Low-power Dual-element Memristor Based Memory Design”, Proceedings of the 16th ACM/IEEE International Symposium on Low Power Electronics and Design, pp. 25-30, 2010.
  • [9] Vontobel, P., Robinett, W., Straznicky, J., Kuekes, P. J., Williams, R. S., “Writing to and Reading from a Nano-Scale Crossbar Memory Based on Memristors”, Nanotechnology 20, 425204 (2009).
  • [10] Kwan-Hee Jo, Chul-Moon Jung, Kyeong-Sik Min, Sung-Mo Kang, Self-adaptive write circuit for low-power and variation-tolerant memristors. Nanotechnology, IEEE Transactions on, vol.9, no.6, pp.675-678, Nov. 2010
  • [11] Wey, T.A., Jemison, W.D., “An automatic gain control circuit with TiO2 memristor variable gain amplifier”, NEWCAS Conference (NEWCAS), 2010 8th IEEE International, vol., no., pp.49-52, 20-23,June 2010.
  • [12] Pershin, Y.V., Di Ventra, M., Practical Approach to Programmable Analog Circuits With Memristors. IEEE Transactions on Circuits and Systems I: Regular Papers, vol.57, no.8, pp.1857-1864, Aug. 2010.
  • [13] Sangho Shin, Kyungmin Kim, Sung-Mo Kang, Memristor-Based Fine Resolution Programmable Resistance and Its Applications. Communications, Circuits and Systems, 2009. ICCCAS 2009. International Conference on, vol., no., pp.948-951, 23-25 July 2009
  • [14] Shin, S., Kim, K., Kang, S.M., “Memristor applications for programmable analog ICs,” Nanotechnology, IEEE Transactions on, vol.10, no.2, pp.266-274, March 2011.
  • [15] Reşat MUTLU, “Taylor Serisi ve Kutupsal Fonksiyonlar Kullanarak Memristorün (Hafızalı Direncin) Histeresis Eğrisinin Açıklanması”, 3. Ileri Muhendislik Teknolojileri Sempozyumu, 29-30 Mayis 2010, Cankaya Universitesi, Ankara, Turkey.
  • [16] Guo, X., Ipek, E., Soyata, T., “Resistive Computation: Avoiding the Power Wall with Low-Leakage, STT-MRAM Based Computing,” Proceedings of the 37th International Symposium on Computer Architecture (ISCA), Saint-Malo, France, June 2010.
  • [17] Gazabare, S., Pieper, R.J., Wondmagegn, W., Satyala, N., “Observations on model based predictions for memristor power dissipation,” Southeastcon, 2011 Proceedings of IEEE, vol., no., pp.450-454, 17-20 March 2011.
There are 17 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Research Articles
Authors

Reşat Mutlu 0000-0003-0030-7136

Publication Date December 30, 2018
Submission Date July 13, 2018
Published in Issue Year 2018 Volume: 1 Issue: 2