Review
BibTex RIS Cite

A Technical Review of Desiccant Air Conditioning Systems

Year 2020, Volume: 3 Issue: 1, 5 - 12, 30.07.2020

Abstract

The present review provided an overview of past works on both solid and liquid desiccants. Furthermore, the main flow configurations for desiccant dehumidifiers have been discussed in detail. Another objective is to investigate the mathematical models of the liquid desiccant dehumidifier and present significant types of models. Finally, for the first time, a summary of recent studies regarding the effect of nanoparticles on liquid desiccants have been especially reviewed in detail as well as the applications of computational fluid dynamics (CFD) for modeling the desiccant cooling systems. It can be concluded that the present study has beneficial for the research and technical development process of desiccant air conditioning systems.

References

  • [1] Lin, J., Huang, S. M., Wang, R., & Chua, K. J. (2019). On the in-depth scaling and dimensional analysis of a cross-flow membrane liquid desiccant dehumidifier. Applied Energy, 250, 786-800.
  • [2] Dong, C., Qi, R., Zhang, L., & Lu, L. (2019). Performance enhancement of solar-assisted liquid desiccant dehumidifiers using super-hydrophilic surface. Energy and Buildings, 199, 461-471.
  • [3] Chen, Y., Yang, H., & Luo, Y. (2018). Investigation on solar assisted liquid desiccant dehumidifier and evaporative cooling system for fresh air treatment. Energy, 143, 114-127.
  • [4] Daou, K., Wang, R. Z., & Xia, Z. Z. (2006). Desiccant cooling air conditioning: a review. Renewable and Sustainable Energy Reviews, 10(2), 55-77.
  • [5] Gommed, K., & Grossman, G. (2004). A liquid desiccant system for solar cooling and dehumidification. Journal of Solar Energy Engineering, 126(3), 879-885.
  • [6] Kinsara, A. A., Al-Rabghi, O. M., & Elsayed, M. M. (1998). Parametric study of an energy efficient air conditioning system using liquid desiccant. Applied Thermal Engineering, 18(5), 327-335.
  • [7] Baniyounes, A. M., Ghadi, Y. Y., Rasul, M. G., & Khan, M. M. K. (2013). An overview of solar assisted air conditioning in Queensland's subtropical regions, Australia. Renewable and Sustainable Energy Reviews, 26, 781-804.
  • [8] Kinsara, A. A., Elsayed, M. M., & Al-Rabghi, O. M. (1996). Proposed energy-efficient air-conditioning system using liquid desiccant. Applied Thermal Engineering, 16(10), 791-806.
  • [9] Abdel-Salam, A. H., & Simonson, C. J. (2016). State-of-the-art in liquid desiccant air conditioning equipment and systems. Renewable and Sustainable Energy Reviews, 58, 1152-1183.
  • [10] La, D., Dai, Y. J., Li, Y., Wang, R. Z., & Ge, T. S. (2010). Technical development of rotary desiccant dehumidification and air conditioning: A review. Renewable and Sustainable Energy Reviews, 14(1), 130-147.
  • [11] Wang, H., Cheng, Q., Feng, W., & Xu, W. (2018). Experimental and theoretical research on the electrical conductivity of a liquid desiccant for the liquid desiccant air-conditioning system: LiCl aqueous solution. International Journal of Refrigeration, 91, 189-198.
  • [12] Abdel-Salam, A. H., Ge, G., & Simonson, C. J. (2013). Performance analysis of a membrane liquid desiccant air-conditioning system. Energy and Buildings, 62, 559-569.
  • [13] Kinsara, A. A., Al-Rabghi, O. M., & Elsayed, M. M. (1998). Parametric study of an energy efficient air conditioning system using liquid desiccant. Applied Thermal Engineering, 18(5), 327-335.
  • [14] Sultan, M., El-Sharkawy, I. I., Miyazaki, T., Saha, B. B., & Koyama, S. (2015). An overview of solid desiccant dehumidification and air conditioning systems. Renewable and Sustainable Energy Reviews, 46, 16-29.
  • [15] Srivastava, N. C., & Eames, I. W. (1998). A review of adsorbents and adsorbates in solid–vapour adsorption heat pump systems. Applied Thermal Engineering, 18(9-10), 707-714.
  • [16] Abd Manaf, I., Durrani, F., & Eftekhari, M. (2018). A review of desiccant evaporative cooling systems in hot and humid climates. Advances in Building Energy Research, 1-42.
  • [17] Mei, L., & Dai, Y. J. (2008). A technical review on use of liquid-desiccant dehumidification for air-conditioning application. Renewable and Sustainable Energy Reviews, 12(3), 662-689.
  • [18] Sahlot, M., & Riffat, S. B. (2016). Desiccant cooling systems: a review. International Journal of Low-Carbon Technologies, 11(4), 489-505.
  • [19] Kassem, T. K., Alosaimy, A. S., Hamed, A. M., & Fazian, M. (2013). Solar powered dehumidification systems using desert evaporative coolers. International Journal of Engineering and Advanced Technology (IJEAT), 3, 115-128.
  • [20] Pietruschka, D., Eicker, U., Huber, M., & Schumacher, J. "Experimental performance analysis and modelling of liquid desiccant cooling systems for air conditioning in residential buildings." International Journal of Refrigeration 29.1 (2006): 110-124.
  • [21] Fekadu, Geleta, and Sudhakar Subudhi. "Renewable energy for liquid desiccants air conditioning system: A review." Renewable and Sustainable Energy Reviews 93 (2018): 364-379.
  • [22] Rafique, M. M., Gandhidasan, P., & Bahaidarah, H. M. (2016). Liquid desiccant materials and dehumidifiers–A review. Renewable and Sustainable Energy Reviews, 56, 179-195.
  • [23] Zuber, A., Checoni, R. F., Mathew, R., Santos, J. P. L., Tavares, F. W., & Castier, M. "Thermodynamic properties of 1: 1 salt aqueous solutions with the electrolattice equation of state." Oil & Gas Science and Technology–Revue d’IFP Energies nouvelles 68.2 (2013): 255-270.
  • [24] Ahmed, S. Younus, P. Gandhidasan, and A. A. Al-Farayedhi. "Thermodynamic analysis of liquid desiccants." Solar Energy 62.1 (1998): 11-18.
  • [25] Park, Young, Jin-Soo Kim, and Huen Lee. "Physical properties of the lithium bromide+ 1, 3-propanediol+ water system." International journal of refrigeration 20.5 (1997): 319-325.
  • [26] Ertas, A., E. E. Anderson, and I. Kiris. "Properties of a new liquid desiccant solution—lithium chloride and calcium chloride mixture." Solar Energy 49.3 (1992): 205-212.
  • [27] Liu, X. H., X. Q. Yi, and Yi Jiang. "Mass transfer performance comparison of two commonly used liquid desiccants: LiBr and LiCl aqueous solutions." Energy Conversion and management 52.1 (2011): 180-190.
  • [28] Rahamah, A., Elsayed, M. M., & Al-Najem, N. M. (1998). A numerical solution for cooling and dehumidification of air by a falling desiccant film in parallel flow. Renewable Energy, 13(3), 305-322.
  • [29] Rahmah, A. S., Elsayed, M. M., & Al-Najem, N. M. (2000). A numerical investigation for the heat and mass transfer between parallel flow of air and desiccant falling film in a fin-tube arrangement. HVAC&R Research, 6(4), 307-323.
  • [30] Ali, A., Vafai, K., & Khaled, A. R. (2004). Analysis of heat and mass transfer between air and falling film in a cross flow configuration. International Journal of Heat and Mass Transfer, 47(4), 743-755.
  • [31] Yoon, J. I., Phan, T. T., Moon, C. G., & Bansal, P. (2005). Numerical study on heat and mass transfer characteristic of plate absorber. Applied Thermal Engineering, 25(14-15), 2219-2235.
  • [32] Nada, S. A. (2017). Air cooling-dehumidification/desiccant regeneration processes by a falling liquid desiccant film on finned-tubes for different flow arrangements. International Journal of Thermal Sciences, 113, 10-19.
  • [33] Hassan, M. S., & Hassan, A. A. M. (2009). Performance of a proposed complete wetting surface counter flow channel type liquid desiccant air dehumidifier. Renewable Energy, 34(10), 2107-2116.
  • [34] Shahzad, M. K., Chaudhary, G. Q., Ali, M., Sheikh, N. A., Khalil, M. S., & Rashid, T. U. (2018). Experimental evaluation of a solid desiccant system integrated with cross flow Maisotsenko cycle evaporative cooler. Applied Thermal Engineering, 128, 1476-1487.
  • [35] Wang, X. Q., & Mujumdar, A. S. (2007). Heat transfer characteristics of nanofluids: a review. International journal of thermal sciences, 46(1), 1-19.
  • [36] Yang, L., Du, K., Niu, X. F., Cheng, B., & Jiang, Y. F. (2011). Experimental study on enhancement of ammonia–water falling film absorption by adding nano-particles. International journal of refrigeration, 34(3), 640-647.
  • [37] Zamzamian, A., Oskouie, S. N., Doosthoseini, A., Joneidi, A., & Pazouki, M. (2011). Experimental investigation of forced convective heat transfer coefficient in nanofluids of Al2O3/EG and CuO/EG in a double pipe and plate heat exchangers under turbulent flow. Experimental Thermal and Fluid Science, 35(3), 495-502.
  • [38] Murshed, S. M. S., Leong, K. C., & Yang, C. (2005). Enhanced thermal conductivity of TiO2—water based nanofluids. International Journal of thermal sciences, 44(4), 367-373.
  • [39] Wen, D., & Ding, Y. (2004). Experimental investigation into convective heat transfer of nanofluids at the entrance region under laminar flow conditions. International journal of heat and mass transfer, 47(24), 5181-5188.
  • [40] Kakaç, S., & Pramuanjaroenkij, A. (2009). Review of convective heat transfer enhancement with nanofluids. International Journal of Heat and Mass Transfer, 52(13-14), 3187-3196.
  • [41] Fang, X., Xuan, Y., & Li, Q. (2009). Experimental investigation on enhanced mass transfer in nanofluids. Applied Physics Letters, 95(20), 203108.
  • [42] Feng, X., & Johnson, D. W. (2012). Mass transfer in SiO2 nanofluids: a case against purported nanoparticle convection effects. International Journal of Heat and Mass Transfer, 55(13-14), 3447-3453.
  • [43] Zhu, H., Shanks, B. H., & Heindel, T. J. (2008). Enhancing CO− water mass transfer by functionalized MCM41 nanoparticles. Industrial & Engineering Chemistry Research, 47(20), 7881-7887.
  • [44] Kim, H., Jeong, J., & Kang, Y. T. (2012). Heat and mass transfer enhancement for falling film absorption process by SiO2 binary nanofluids. International Journal of Refrigeration, 35(3), 645-651.
  • [45] Kang, Y. T., Kim, H. J., & Lee, K. I. (2008). Heat and mass transfer enhancement of binary nanofluids for H2O/LiBr falling film absorption process. International Journal of Refrigeration, 31(5), 850-856.
  • [46] Ali, A., & Vafai, K. (2004). An investigation of heat and mass transfer between air and desiccant film in an inclined parallel and counter flow channels. International Journal of Heat and Mass Transfer, 47(8-9), 1745-1760.
  • [47] Ali, A., Vafai, K., & Khaled, A. R. (2003). Comparative study between parallel and counter flow configurations between air and falling film desiccant in the presence of nanoparticle suspensions. International journal of energy research, 27(8), 725-745.
  • [48] Omidvar, L. L., Pahlavanzadeh, H., & Nanvakenari, S. (2016). An Investigation of Heat and Mass Transfer Enhancement of Air Dehumidification with Addition of γ-Al2O3 Nanoparticles to Liquid Desiccant. Iranian Journal of Chemical Engineering, 13(4), 96-113.
  • [49] Cengel, Y. (2014). Heat and mass transfer: fundamentals and applications. McGraw-Hill Higher Education.
  • [50] Luo, Y., Yang, H., Lu, L., & Qi, R. (2014). A review of the mathematical models for predicting the heat and mass transfer process in the liquid desiccant dehumidifier. Renewable and Sustainable Energy Reviews, 31, 587-599.
  • [51] Kumar, R., & Asati, A. K. (2014). Simplified mathematical modelling of dehumidifier and regenerator of liquid desiccant system. International Journal of Current Engineering and Technology, 4, 557-563.
  • [52] Salarian, H., Ghorbani, B., Amidpour, M., & Salehi, G. (2014). Performance study on the dehumidifier of a packed bed liquid desiccant system. Scientia Iranica. Transaction B, Mechanical Engineering, 21(1), 222-228.
  • [53] Stevens, D. I., Braun, J. E., & Klein, S. A. (1989). An effectiveness model of liquid-desiccant system heat/mass exchangers. Solar Energy, 42(6), 449-455.
  • [54] Gandhidasan, P. (2005). Quick performance prediction of liquid desiccant regeneration in a packed bed. Solar Energy, 79(1), 47-55.
  • [55] Liu, X. H., Qu, K. Y., & Jiang, Y. (2006). Empirical correlations to predict the performance of the dehumidifier using liquid desiccant in heat and mass transfer. Renewable Energy, 31(10), 1627-1639.
  • [56] Gandhidasan, P., & Mohandes, M. A. (2011). Artificial neural network analysis of liquid desiccant dehumidification system. Energy, 36(2), 1180-1186.
  • [57] Li, X. W., Zhang, X. S., & Wang, F. (2013). A kinetic mass transfer model of liquid dehumidification for liquid desiccant cooling system. Energy and Buildings, 61, 93-99.
  • [58] Wang, X., Cai, W., Lu, J., Sun, Y., & Ding, X. (2013). A hybrid dehumidifier model for real-time performance monitoring, control and optimization in liquid desiccant dehumidification system. Applied energy, 111, 449-455.
  • [59] Koronaki, I. P., Christodoulaki, R. I., Papaefthimiou, V. D., & Rogdakis, E. D. (2013). Thermodynamic analysis of a counter flow adiabatic dehumidifier with different liquid desiccant materials. Applied Thermal Engineering, 50(1), 361-373.
  • [60] Bassuoni, M. M. (2014). A simple analytical method to estimate all exit parameters of a cross-flow air dehumidifier using liquid desiccant. Journal of advanced research, 5(2), 175-182.
  • [61] Qi, R., Dong, C., & Zhang, L. Z. (2019). Wave-wise falling film in liquid desiccant dehumidification systems: Model development and time-series parameter analysis. International Journal of Heat and Mass Transfer, 132, 96-106.
  • [62] Liu, J., Liu, X., & Zhang, T. (2019). Analytical solution of heat and mass transfer process in internally cooled liquid desiccant dehumidifiers using refrigerant as cooling medium. Energy and Buildings.
  • [63] Luo, Yimo, Hongxing Yang, and Lin Lu. "Liquid desiccant dehumidifier: Development of a new performance predication model based on CFD." International Journal of Heat and Mass Transfer 69 (2014): 408-416.
  • [64] Augier, Frederic, Olivier Masbernat, and Pascal Guiraud. "Slip velocity and drag law in a liquid‐liquid homogeneous dispersed flow." AIChE journal 49.9 (2003): 2300-2316.
  • [65] Fatahian, E., Kordani, N., & Fatahian, H. "The Application of Computational Fluid Dynamics (CFD) Method and Several Rheological Models of Blood Flow: A Review." Gazi University Journal of Science 31.4 (2018): 1213-1227.
  • [66] Fluent, Ansys. "12.0 User’s guide." Ansys Inc 6 (2009).
  • [67] Luo, Yimo, Hongxing Yang, and Lin Lu. "Dynamic and microscopic simulation of the counter-current flow in a liquid desiccant dehumidifier." Applied Energy 136 (2014): 1018-1025.
  • [68] Fatahian, H., Fatahian, E., & Nimvari, M. E. "Improving efficiency of conventional and square cyclones using different configurations of the laminarizer." Powder technology 339 (2018): 232-243.
  • [69] Luo, Y., Chen, Y., Yang, H., & Wang, Y. "Study on an internally-cooled liquid desiccant dehumidifier with CFD model." Applied Energy 194 (2017): 399-409.
  • [70] Fatahian, E., Nichkoohi, A. L., Salarian, H., & Khaleghinia, J. (2019). Comparative study of flow separation control using suction and blowing over an airfoil with/without flap. Sādhanā, 44(11), 220.
  • [71] Zhou, L., Wang, Y., & Huang, Q. "CFD investigation of a new flat plate collector with additional front side transparent insulation for use in cold regions." Renewable Energy 138 (2019): 754-763.
  • [72] Fatahian, E., Nichkoohi, A. L., & Fatahian, H. "Numerical study of the effect of suction at a compressible and high Reynolds number flow to control the flow separation over Naca 2415 airfoil." Progress in Computational Fluid Dynamics, an International Journal 19.3 (2019): 170-179.
  • [73] Fatahian, H., Salarian, H., Nimvari, M. E., & Fatahian, E. "Numerical Study of Suction and Blowing Approaches to Control Flow over a Compressor Cascade in Turbulent Flow Regime." International Journal of Automotive and Mechanical Engineering 15.2 (2018).
  • [74] Lin, J., Huang, S., Wang, R., & Chua, K. J. "On the dimensional analysis of a cross-flow flat-plate membrane liquid desiccant dehumidifier." Energy Procedia 158 (2019): 1467-1472.
  • [75] Tao, Wen, Luo Yimo, and Lu Lin. "A novel 3D simulation model for investigating liquid desiccant dehumidification performance based on CFD technology." Applied Energy 240 (2019): 486-498.
  • [76] Wen, T., Luo, Y., He, W., Gang, W., & Sheng, L. "Development of a novel quasi-3D model to investigate the performance of a falling film dehumidifier with CFD technology." International Journal of Heat and Mass Transfer 132 (2019): 431-442.
Year 2020, Volume: 3 Issue: 1, 5 - 12, 30.07.2020

Abstract

Bu derleme, hem katı hem de sıvı kurutucularla ilgili geçmiş çalışmalara genel bir bakış sağlamıştır. Bundan başka, kurutucu madde nem alma için ana akış yapılandırmaları detaylı olarak tartışılmıştır. Diğer bir amaç, sıvı kurutuculu nem alma cihazının matematiksel modellerini araştırmak ve önemli modelleri sunmaktır. Son olarak, ilk kez, nano partiküllerin sıvı kurutucular üzerindeki etkisine ilişkin son çalışmaların bir özeti ve ayrıca kurutucu soğutma sistemlerinin modellenmesi için hesaplama akışkan dinamiği (CFD) uygulamaları ayrıntılı olarak incelenmiştir. Bu çalışmanın kurutucu iklimlendirme sistemlerinin araştırma ve teknik geliştirme süreci için faydalı olduğu sonucuna varılabilir.

References

  • [1] Lin, J., Huang, S. M., Wang, R., & Chua, K. J. (2019). On the in-depth scaling and dimensional analysis of a cross-flow membrane liquid desiccant dehumidifier. Applied Energy, 250, 786-800.
  • [2] Dong, C., Qi, R., Zhang, L., & Lu, L. (2019). Performance enhancement of solar-assisted liquid desiccant dehumidifiers using super-hydrophilic surface. Energy and Buildings, 199, 461-471.
  • [3] Chen, Y., Yang, H., & Luo, Y. (2018). Investigation on solar assisted liquid desiccant dehumidifier and evaporative cooling system for fresh air treatment. Energy, 143, 114-127.
  • [4] Daou, K., Wang, R. Z., & Xia, Z. Z. (2006). Desiccant cooling air conditioning: a review. Renewable and Sustainable Energy Reviews, 10(2), 55-77.
  • [5] Gommed, K., & Grossman, G. (2004). A liquid desiccant system for solar cooling and dehumidification. Journal of Solar Energy Engineering, 126(3), 879-885.
  • [6] Kinsara, A. A., Al-Rabghi, O. M., & Elsayed, M. M. (1998). Parametric study of an energy efficient air conditioning system using liquid desiccant. Applied Thermal Engineering, 18(5), 327-335.
  • [7] Baniyounes, A. M., Ghadi, Y. Y., Rasul, M. G., & Khan, M. M. K. (2013). An overview of solar assisted air conditioning in Queensland's subtropical regions, Australia. Renewable and Sustainable Energy Reviews, 26, 781-804.
  • [8] Kinsara, A. A., Elsayed, M. M., & Al-Rabghi, O. M. (1996). Proposed energy-efficient air-conditioning system using liquid desiccant. Applied Thermal Engineering, 16(10), 791-806.
  • [9] Abdel-Salam, A. H., & Simonson, C. J. (2016). State-of-the-art in liquid desiccant air conditioning equipment and systems. Renewable and Sustainable Energy Reviews, 58, 1152-1183.
  • [10] La, D., Dai, Y. J., Li, Y., Wang, R. Z., & Ge, T. S. (2010). Technical development of rotary desiccant dehumidification and air conditioning: A review. Renewable and Sustainable Energy Reviews, 14(1), 130-147.
  • [11] Wang, H., Cheng, Q., Feng, W., & Xu, W. (2018). Experimental and theoretical research on the electrical conductivity of a liquid desiccant for the liquid desiccant air-conditioning system: LiCl aqueous solution. International Journal of Refrigeration, 91, 189-198.
  • [12] Abdel-Salam, A. H., Ge, G., & Simonson, C. J. (2013). Performance analysis of a membrane liquid desiccant air-conditioning system. Energy and Buildings, 62, 559-569.
  • [13] Kinsara, A. A., Al-Rabghi, O. M., & Elsayed, M. M. (1998). Parametric study of an energy efficient air conditioning system using liquid desiccant. Applied Thermal Engineering, 18(5), 327-335.
  • [14] Sultan, M., El-Sharkawy, I. I., Miyazaki, T., Saha, B. B., & Koyama, S. (2015). An overview of solid desiccant dehumidification and air conditioning systems. Renewable and Sustainable Energy Reviews, 46, 16-29.
  • [15] Srivastava, N. C., & Eames, I. W. (1998). A review of adsorbents and adsorbates in solid–vapour adsorption heat pump systems. Applied Thermal Engineering, 18(9-10), 707-714.
  • [16] Abd Manaf, I., Durrani, F., & Eftekhari, M. (2018). A review of desiccant evaporative cooling systems in hot and humid climates. Advances in Building Energy Research, 1-42.
  • [17] Mei, L., & Dai, Y. J. (2008). A technical review on use of liquid-desiccant dehumidification for air-conditioning application. Renewable and Sustainable Energy Reviews, 12(3), 662-689.
  • [18] Sahlot, M., & Riffat, S. B. (2016). Desiccant cooling systems: a review. International Journal of Low-Carbon Technologies, 11(4), 489-505.
  • [19] Kassem, T. K., Alosaimy, A. S., Hamed, A. M., & Fazian, M. (2013). Solar powered dehumidification systems using desert evaporative coolers. International Journal of Engineering and Advanced Technology (IJEAT), 3, 115-128.
  • [20] Pietruschka, D., Eicker, U., Huber, M., & Schumacher, J. "Experimental performance analysis and modelling of liquid desiccant cooling systems for air conditioning in residential buildings." International Journal of Refrigeration 29.1 (2006): 110-124.
  • [21] Fekadu, Geleta, and Sudhakar Subudhi. "Renewable energy for liquid desiccants air conditioning system: A review." Renewable and Sustainable Energy Reviews 93 (2018): 364-379.
  • [22] Rafique, M. M., Gandhidasan, P., & Bahaidarah, H. M. (2016). Liquid desiccant materials and dehumidifiers–A review. Renewable and Sustainable Energy Reviews, 56, 179-195.
  • [23] Zuber, A., Checoni, R. F., Mathew, R., Santos, J. P. L., Tavares, F. W., & Castier, M. "Thermodynamic properties of 1: 1 salt aqueous solutions with the electrolattice equation of state." Oil & Gas Science and Technology–Revue d’IFP Energies nouvelles 68.2 (2013): 255-270.
  • [24] Ahmed, S. Younus, P. Gandhidasan, and A. A. Al-Farayedhi. "Thermodynamic analysis of liquid desiccants." Solar Energy 62.1 (1998): 11-18.
  • [25] Park, Young, Jin-Soo Kim, and Huen Lee. "Physical properties of the lithium bromide+ 1, 3-propanediol+ water system." International journal of refrigeration 20.5 (1997): 319-325.
  • [26] Ertas, A., E. E. Anderson, and I. Kiris. "Properties of a new liquid desiccant solution—lithium chloride and calcium chloride mixture." Solar Energy 49.3 (1992): 205-212.
  • [27] Liu, X. H., X. Q. Yi, and Yi Jiang. "Mass transfer performance comparison of two commonly used liquid desiccants: LiBr and LiCl aqueous solutions." Energy Conversion and management 52.1 (2011): 180-190.
  • [28] Rahamah, A., Elsayed, M. M., & Al-Najem, N. M. (1998). A numerical solution for cooling and dehumidification of air by a falling desiccant film in parallel flow. Renewable Energy, 13(3), 305-322.
  • [29] Rahmah, A. S., Elsayed, M. M., & Al-Najem, N. M. (2000). A numerical investigation for the heat and mass transfer between parallel flow of air and desiccant falling film in a fin-tube arrangement. HVAC&R Research, 6(4), 307-323.
  • [30] Ali, A., Vafai, K., & Khaled, A. R. (2004). Analysis of heat and mass transfer between air and falling film in a cross flow configuration. International Journal of Heat and Mass Transfer, 47(4), 743-755.
  • [31] Yoon, J. I., Phan, T. T., Moon, C. G., & Bansal, P. (2005). Numerical study on heat and mass transfer characteristic of plate absorber. Applied Thermal Engineering, 25(14-15), 2219-2235.
  • [32] Nada, S. A. (2017). Air cooling-dehumidification/desiccant regeneration processes by a falling liquid desiccant film on finned-tubes for different flow arrangements. International Journal of Thermal Sciences, 113, 10-19.
  • [33] Hassan, M. S., & Hassan, A. A. M. (2009). Performance of a proposed complete wetting surface counter flow channel type liquid desiccant air dehumidifier. Renewable Energy, 34(10), 2107-2116.
  • [34] Shahzad, M. K., Chaudhary, G. Q., Ali, M., Sheikh, N. A., Khalil, M. S., & Rashid, T. U. (2018). Experimental evaluation of a solid desiccant system integrated with cross flow Maisotsenko cycle evaporative cooler. Applied Thermal Engineering, 128, 1476-1487.
  • [35] Wang, X. Q., & Mujumdar, A. S. (2007). Heat transfer characteristics of nanofluids: a review. International journal of thermal sciences, 46(1), 1-19.
  • [36] Yang, L., Du, K., Niu, X. F., Cheng, B., & Jiang, Y. F. (2011). Experimental study on enhancement of ammonia–water falling film absorption by adding nano-particles. International journal of refrigeration, 34(3), 640-647.
  • [37] Zamzamian, A., Oskouie, S. N., Doosthoseini, A., Joneidi, A., & Pazouki, M. (2011). Experimental investigation of forced convective heat transfer coefficient in nanofluids of Al2O3/EG and CuO/EG in a double pipe and plate heat exchangers under turbulent flow. Experimental Thermal and Fluid Science, 35(3), 495-502.
  • [38] Murshed, S. M. S., Leong, K. C., & Yang, C. (2005). Enhanced thermal conductivity of TiO2—water based nanofluids. International Journal of thermal sciences, 44(4), 367-373.
  • [39] Wen, D., & Ding, Y. (2004). Experimental investigation into convective heat transfer of nanofluids at the entrance region under laminar flow conditions. International journal of heat and mass transfer, 47(24), 5181-5188.
  • [40] Kakaç, S., & Pramuanjaroenkij, A. (2009). Review of convective heat transfer enhancement with nanofluids. International Journal of Heat and Mass Transfer, 52(13-14), 3187-3196.
  • [41] Fang, X., Xuan, Y., & Li, Q. (2009). Experimental investigation on enhanced mass transfer in nanofluids. Applied Physics Letters, 95(20), 203108.
  • [42] Feng, X., & Johnson, D. W. (2012). Mass transfer in SiO2 nanofluids: a case against purported nanoparticle convection effects. International Journal of Heat and Mass Transfer, 55(13-14), 3447-3453.
  • [43] Zhu, H., Shanks, B. H., & Heindel, T. J. (2008). Enhancing CO− water mass transfer by functionalized MCM41 nanoparticles. Industrial & Engineering Chemistry Research, 47(20), 7881-7887.
  • [44] Kim, H., Jeong, J., & Kang, Y. T. (2012). Heat and mass transfer enhancement for falling film absorption process by SiO2 binary nanofluids. International Journal of Refrigeration, 35(3), 645-651.
  • [45] Kang, Y. T., Kim, H. J., & Lee, K. I. (2008). Heat and mass transfer enhancement of binary nanofluids for H2O/LiBr falling film absorption process. International Journal of Refrigeration, 31(5), 850-856.
  • [46] Ali, A., & Vafai, K. (2004). An investigation of heat and mass transfer between air and desiccant film in an inclined parallel and counter flow channels. International Journal of Heat and Mass Transfer, 47(8-9), 1745-1760.
  • [47] Ali, A., Vafai, K., & Khaled, A. R. (2003). Comparative study between parallel and counter flow configurations between air and falling film desiccant in the presence of nanoparticle suspensions. International journal of energy research, 27(8), 725-745.
  • [48] Omidvar, L. L., Pahlavanzadeh, H., & Nanvakenari, S. (2016). An Investigation of Heat and Mass Transfer Enhancement of Air Dehumidification with Addition of γ-Al2O3 Nanoparticles to Liquid Desiccant. Iranian Journal of Chemical Engineering, 13(4), 96-113.
  • [49] Cengel, Y. (2014). Heat and mass transfer: fundamentals and applications. McGraw-Hill Higher Education.
  • [50] Luo, Y., Yang, H., Lu, L., & Qi, R. (2014). A review of the mathematical models for predicting the heat and mass transfer process in the liquid desiccant dehumidifier. Renewable and Sustainable Energy Reviews, 31, 587-599.
  • [51] Kumar, R., & Asati, A. K. (2014). Simplified mathematical modelling of dehumidifier and regenerator of liquid desiccant system. International Journal of Current Engineering and Technology, 4, 557-563.
  • [52] Salarian, H., Ghorbani, B., Amidpour, M., & Salehi, G. (2014). Performance study on the dehumidifier of a packed bed liquid desiccant system. Scientia Iranica. Transaction B, Mechanical Engineering, 21(1), 222-228.
  • [53] Stevens, D. I., Braun, J. E., & Klein, S. A. (1989). An effectiveness model of liquid-desiccant system heat/mass exchangers. Solar Energy, 42(6), 449-455.
  • [54] Gandhidasan, P. (2005). Quick performance prediction of liquid desiccant regeneration in a packed bed. Solar Energy, 79(1), 47-55.
  • [55] Liu, X. H., Qu, K. Y., & Jiang, Y. (2006). Empirical correlations to predict the performance of the dehumidifier using liquid desiccant in heat and mass transfer. Renewable Energy, 31(10), 1627-1639.
  • [56] Gandhidasan, P., & Mohandes, M. A. (2011). Artificial neural network analysis of liquid desiccant dehumidification system. Energy, 36(2), 1180-1186.
  • [57] Li, X. W., Zhang, X. S., & Wang, F. (2013). A kinetic mass transfer model of liquid dehumidification for liquid desiccant cooling system. Energy and Buildings, 61, 93-99.
  • [58] Wang, X., Cai, W., Lu, J., Sun, Y., & Ding, X. (2013). A hybrid dehumidifier model for real-time performance monitoring, control and optimization in liquid desiccant dehumidification system. Applied energy, 111, 449-455.
  • [59] Koronaki, I. P., Christodoulaki, R. I., Papaefthimiou, V. D., & Rogdakis, E. D. (2013). Thermodynamic analysis of a counter flow adiabatic dehumidifier with different liquid desiccant materials. Applied Thermal Engineering, 50(1), 361-373.
  • [60] Bassuoni, M. M. (2014). A simple analytical method to estimate all exit parameters of a cross-flow air dehumidifier using liquid desiccant. Journal of advanced research, 5(2), 175-182.
  • [61] Qi, R., Dong, C., & Zhang, L. Z. (2019). Wave-wise falling film in liquid desiccant dehumidification systems: Model development and time-series parameter analysis. International Journal of Heat and Mass Transfer, 132, 96-106.
  • [62] Liu, J., Liu, X., & Zhang, T. (2019). Analytical solution of heat and mass transfer process in internally cooled liquid desiccant dehumidifiers using refrigerant as cooling medium. Energy and Buildings.
  • [63] Luo, Yimo, Hongxing Yang, and Lin Lu. "Liquid desiccant dehumidifier: Development of a new performance predication model based on CFD." International Journal of Heat and Mass Transfer 69 (2014): 408-416.
  • [64] Augier, Frederic, Olivier Masbernat, and Pascal Guiraud. "Slip velocity and drag law in a liquid‐liquid homogeneous dispersed flow." AIChE journal 49.9 (2003): 2300-2316.
  • [65] Fatahian, E., Kordani, N., & Fatahian, H. "The Application of Computational Fluid Dynamics (CFD) Method and Several Rheological Models of Blood Flow: A Review." Gazi University Journal of Science 31.4 (2018): 1213-1227.
  • [66] Fluent, Ansys. "12.0 User’s guide." Ansys Inc 6 (2009).
  • [67] Luo, Yimo, Hongxing Yang, and Lin Lu. "Dynamic and microscopic simulation of the counter-current flow in a liquid desiccant dehumidifier." Applied Energy 136 (2014): 1018-1025.
  • [68] Fatahian, H., Fatahian, E., & Nimvari, M. E. "Improving efficiency of conventional and square cyclones using different configurations of the laminarizer." Powder technology 339 (2018): 232-243.
  • [69] Luo, Y., Chen, Y., Yang, H., & Wang, Y. "Study on an internally-cooled liquid desiccant dehumidifier with CFD model." Applied Energy 194 (2017): 399-409.
  • [70] Fatahian, E., Nichkoohi, A. L., Salarian, H., & Khaleghinia, J. (2019). Comparative study of flow separation control using suction and blowing over an airfoil with/without flap. Sādhanā, 44(11), 220.
  • [71] Zhou, L., Wang, Y., & Huang, Q. "CFD investigation of a new flat plate collector with additional front side transparent insulation for use in cold regions." Renewable Energy 138 (2019): 754-763.
  • [72] Fatahian, E., Nichkoohi, A. L., & Fatahian, H. "Numerical study of the effect of suction at a compressible and high Reynolds number flow to control the flow separation over Naca 2415 airfoil." Progress in Computational Fluid Dynamics, an International Journal 19.3 (2019): 170-179.
  • [73] Fatahian, H., Salarian, H., Nimvari, M. E., & Fatahian, E. "Numerical Study of Suction and Blowing Approaches to Control Flow over a Compressor Cascade in Turbulent Flow Regime." International Journal of Automotive and Mechanical Engineering 15.2 (2018).
  • [74] Lin, J., Huang, S., Wang, R., & Chua, K. J. "On the dimensional analysis of a cross-flow flat-plate membrane liquid desiccant dehumidifier." Energy Procedia 158 (2019): 1467-1472.
  • [75] Tao, Wen, Luo Yimo, and Lu Lin. "A novel 3D simulation model for investigating liquid desiccant dehumidification performance based on CFD technology." Applied Energy 240 (2019): 486-498.
  • [76] Wen, T., Luo, Y., He, W., Gang, W., & Sheng, L. "Development of a novel quasi-3D model to investigate the performance of a falling film dehumidifier with CFD technology." International Journal of Heat and Mass Transfer 132 (2019): 431-442.
There are 76 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Reviews
Authors

Hesamoddin Salarian 0000-0001-7975-2077

Esmaeel Fatahian 0000-0002-0845-4141

Hossein Fatahian 0000-0002-0235-8378

Publication Date July 30, 2020
Submission Date November 16, 2019
Published in Issue Year 2020 Volume: 3 Issue: 1