Research Article
BibTex RIS Cite

Physical and Mechanical Properties of Alkali Activated Mortars Produced Using Different Types of Fly Ash

Year 2022, Volume: 5 Issue: 1, 16 - 21, 31.07.2022
https://doi.org/10.55581/ejeas.1125144

Abstract

Carbon dioxide (CO2) released into the atmosphere during cement production is one of the important factors causing global warming. Therefore, the use of different materials has gained importance to reduce cement consumption. For this purpose, the use of alkali-activated materials (AAM) is becoming widespread. The physical and mechanical properties of alkali-activated mortars produced with blast furnace slag (BFS) and 2 different types of fly ash (FA) were investigated in this study. Mortars were produced by using F class FA from Tunçbilek Thermal Power Plant and C class FA from Çayırhan Thermal Power Plant, CEN reference sand, BFS, sodium hydroxide (NaOH), distilled water, and chemical additives. The water/binder and sand/binder ratios were taken as 0.5 and 3, respectively. FA was used by replacing 0%, 10%, 20%, 30%, and 40% by weight of BFS. For 1st series of alkali-activated mortar samples sealing cure was applied at 21±1℃ for 28 days. For 2nd series of alkali-activated mortar samples the thermal cure was applied at 105±5℃ for 2 days, and the sealing cure was applied at 21±1℃ for 26 days. The workability, water absorption ratio by weight, void ratio, flexural strength, and compressive strength of the alkali-activated mortar samples were determined. As a result of the study, the closest compressive strength to YFC100 was obtained for UKF10 in the 1st and 2nd series.

References

  • Meyer, C. (2009). The greening of the concrete industry. Cement and Concrete Composites, 31, 601-605.
  • Erdoğan, T. Y. (2015). Beton. ODTÜ Geliştirme Vakfı Yayıncılık ve İletişim A.Ş., 6-8.
  • Provis, J. L., & Deventer, J. S. J. (2014). Alkali activated materials: state of the art report.
  • Rodrigue, A., Duchesne, J., Fournier, B., & Bissonnette, B. (2018). Influence of added water and fly ash content on the characteristics, properties and early-age cracking sensitivity of alkali-activated slag/fly ash concrete cured at ambient temperature. Construction and Building Materials, 171, 929-941.
  • Alanazi, H., Hu, J., & Kim, Y. R. (2019). Effect of slag, silica fume, and metakaolin on properties and performance of alkali-activated fly ash cured at ambient temperature. Construction and Building Materials, 197, 747-756.
  • Tokyay M., & Erdoğdu, K. (2009). Cüruflar ve Cüruflu Çimentolar. TÇMB.
  • Erdoğan, T. Y. (2015). Beton. ODTÜ Geliştirme Vakfı Yayıncılık ve İletişim A.Ş., 205-212.
  • Baradan, B. (2015). Beton. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Yayınları, 34-42.
  • Yazdi, M. A., Liebscher, M., Hempel, S., Yang, J., & Mechtcherine, V. (2018). Correlation of microstructural and mechanical properties of geopolymers produced from fly ash and slag at room temperature. Construction and Building Materials, 191, 330-341.
  • Hu, X., Shi, C., Shi, Z., & Zhang, L. (2019). Compressive strength, pore structure and chloride transport properties of alkali-activated slag/fly ash mortars. Cement and Concrete Composites, 104.
  • Hadi, M. N. S., Farhan, N. A., & Sheikh, M. N. (2017). Design of geopolymer concrete with GGBFS at ambient curing condition using Taguchi method. Construction and Building Materials, 140, 424-431.
  • Nath, P., & Sarker, P. K. (2014). Effect of GGBFS on setting, workability and early strength properties of fly ash geopolymer concrete cured in ambient condition. Construction and Building Materials, 66, 163-171.
  • Kürklü, G. (2016). The effect of high temperature on the design of blast furnace slag and coarse fly ash-based geopolymer mortar. Composites Part B: Engineering, 92, 9-18.
  • Mohammed, B. S., Haruna, S., Mubarak bn Abdul Wahab, M., & Liew, M. S. (2019). Optimization and characterization of cast in-situ alkali-activated pastes by response surface methodology. Construction and Building Materials, 225, 776-787.
  • Jang, J. G., Lee, N. K., & Lee, H. K. (2014). Fresh and hardened properties of alkali-activated fly ash/slag pastes with superplasticizers. Construction and Building Materials, 50, 169-176.
  • Shang, J., Dai, J. G., Zhao, T.J., Guo, S. Y., Zhang, P., & Mu, B. (2018). Alternation of traditional cement mortars using fly ash-based geopolymer mortars modified by slag. Journal of Cleaner Production, 203, 746-756.
  • Chi, M., & Huang, R. (2013). Binding mechanism and properties of alkali-activated fly ash/slag mortars. Construction and Building Materials, 40, 291-298.
  • TS EN 196-1. (2016). Çimento deney yöntemleri-Bölüm 1: Dayanım tayini.
  • TS EN 1015-3. (2000). Kagir harcı-Deney metotları-Bölüm 3: Taze harç kıvamının tayini (yayılma tablası ile).

Farklı Tipte Uçucu Kül Kullanılarak Üretilen Alkaliyle Aktive Edilmiş Harçların Fiziksel ve Mekanik Özellikleri

Year 2022, Volume: 5 Issue: 1, 16 - 21, 31.07.2022
https://doi.org/10.55581/ejeas.1125144

Abstract

Çimento üretimi sırasında atmosfere salınan karbondioksit (CO2), küresel ısınmaya neden olan önemli faktörlerden biridir. Bu nedenle, çimento tüketimini azaltmak amacıyla farklı malzemelerin kullanımı önem kazanmıştır. Bu amaçla alkalilerle aktive edilmiş malzemelerin (AAM) kullanımı oldukça yaygınlaşmaktadır. Bu çalışmada; yüksek fırın cürufu (YFC) ve 2 farklı tipte uçucu kül (UK) ile üretilen alkaliyle aktive edilmiş harçların fiziksel ve mekanik özellikleri araştırılmıştır. Harçlar; Tunçbilek Termik Santrali'nden temin edilen F sınıfı UK ile Çayırhan Termik Santrali'nden elde edilen C sınıfı UK, CEN referans kumu, YFC, sodyum hidroksit (NaOH), distile su ve kimyasal katkı maddesi kullanılarak üretilmiştir. Su/bağlayıcı ve kum/bağlayıcı oranı sırasıyla 0.5 ve 3 olarak alınmıştır. UK; YFC ile ağırlıkça %0, %10, %20, %30 ve %40 oranlarında yer değiştirilerek kullanılmıştır. Alkaliyle aktive edilmiş harç numunelerinin 1. serisine; 28 gün boyunca 21±1˚C’de sızdırmazlık kürü, 2. serisine ise 2 gün boyunca 105±5˚C’de ısıl kür ve 26 gün boyunca 21±1 ˚C’de sızdırmazlık kürü uygulanmıştır. Alkaliyle aktive edilmiş harç numunelerinin yayılma değeri, ağırlıkça su emme oranı, boşluk oranı, eğilme dayanımı ve basınç dayanımı belirlenmiştir. Çalışma sonucunda 1. ve 2. seride YFC100’e en yakın basınç dayanımı UKF10’da elde edilmiştir.

References

  • Meyer, C. (2009). The greening of the concrete industry. Cement and Concrete Composites, 31, 601-605.
  • Erdoğan, T. Y. (2015). Beton. ODTÜ Geliştirme Vakfı Yayıncılık ve İletişim A.Ş., 6-8.
  • Provis, J. L., & Deventer, J. S. J. (2014). Alkali activated materials: state of the art report.
  • Rodrigue, A., Duchesne, J., Fournier, B., & Bissonnette, B. (2018). Influence of added water and fly ash content on the characteristics, properties and early-age cracking sensitivity of alkali-activated slag/fly ash concrete cured at ambient temperature. Construction and Building Materials, 171, 929-941.
  • Alanazi, H., Hu, J., & Kim, Y. R. (2019). Effect of slag, silica fume, and metakaolin on properties and performance of alkali-activated fly ash cured at ambient temperature. Construction and Building Materials, 197, 747-756.
  • Tokyay M., & Erdoğdu, K. (2009). Cüruflar ve Cüruflu Çimentolar. TÇMB.
  • Erdoğan, T. Y. (2015). Beton. ODTÜ Geliştirme Vakfı Yayıncılık ve İletişim A.Ş., 205-212.
  • Baradan, B. (2015). Beton. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Yayınları, 34-42.
  • Yazdi, M. A., Liebscher, M., Hempel, S., Yang, J., & Mechtcherine, V. (2018). Correlation of microstructural and mechanical properties of geopolymers produced from fly ash and slag at room temperature. Construction and Building Materials, 191, 330-341.
  • Hu, X., Shi, C., Shi, Z., & Zhang, L. (2019). Compressive strength, pore structure and chloride transport properties of alkali-activated slag/fly ash mortars. Cement and Concrete Composites, 104.
  • Hadi, M. N. S., Farhan, N. A., & Sheikh, M. N. (2017). Design of geopolymer concrete with GGBFS at ambient curing condition using Taguchi method. Construction and Building Materials, 140, 424-431.
  • Nath, P., & Sarker, P. K. (2014). Effect of GGBFS on setting, workability and early strength properties of fly ash geopolymer concrete cured in ambient condition. Construction and Building Materials, 66, 163-171.
  • Kürklü, G. (2016). The effect of high temperature on the design of blast furnace slag and coarse fly ash-based geopolymer mortar. Composites Part B: Engineering, 92, 9-18.
  • Mohammed, B. S., Haruna, S., Mubarak bn Abdul Wahab, M., & Liew, M. S. (2019). Optimization and characterization of cast in-situ alkali-activated pastes by response surface methodology. Construction and Building Materials, 225, 776-787.
  • Jang, J. G., Lee, N. K., & Lee, H. K. (2014). Fresh and hardened properties of alkali-activated fly ash/slag pastes with superplasticizers. Construction and Building Materials, 50, 169-176.
  • Shang, J., Dai, J. G., Zhao, T.J., Guo, S. Y., Zhang, P., & Mu, B. (2018). Alternation of traditional cement mortars using fly ash-based geopolymer mortars modified by slag. Journal of Cleaner Production, 203, 746-756.
  • Chi, M., & Huang, R. (2013). Binding mechanism and properties of alkali-activated fly ash/slag mortars. Construction and Building Materials, 40, 291-298.
  • TS EN 196-1. (2016). Çimento deney yöntemleri-Bölüm 1: Dayanım tayini.
  • TS EN 1015-3. (2000). Kagir harcı-Deney metotları-Bölüm 3: Taze harç kıvamının tayini (yayılma tablası ile).
There are 19 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Research Articles
Authors

Veysel Akyüncü 0000-0003-3171-1553

Yunus Emre Avşar 0000-0001-5197-0267

Publication Date July 31, 2022
Submission Date June 2, 2022
Published in Issue Year 2022 Volume: 5 Issue: 1