A Water Absorption Chamber Design for Cable Capacitance Measurement Tests
Year 2024,
Volume: 7 Issue: 2, 150 - 158, 31.12.2024
Ercan Ulutay
,
Metin Yurtsever
,
Avşin Öztaş
,
Uğur Akyol
,
Reşat Mutlu
Abstract
XLPO cables used in ships should be tested for water absorption. Test standards require the cables be submerged in a water absorption chamber and kept at 75 0C for 14 days. Once every 7 days, the cables within the chamber are tested by applying high voltage, and their capacitance, dissipation factor, stability factor, and relative Permittivity are measured. In this study, a water absorption chamber used in the experiments is designed using fiberglass material and controlled with an ENDA ET 4420 temperature controller. It is experimentally shown that the water absorption chamber performs well.
Ethical Statement
This study has been supported through the project UPN -2402 funded by the research and development center of Ünika Üniversal Kablo Sanayi ve Tic. A.Ş. The researchers are thankful to Samet Sarı, Fatih Yerişenoglu, and Sedef Özcan for their assistance.
Supporting Institution
Ünika Üniversal Kablo Sanayi ve Tic. A.Ş.
Thanks
This study has been supported through the project UPN -2402 funded by the research and development center of Ünika Üniversal Kablo Sanayi ve Tic. A.Ş. The researchers are thankful to Samet Sarı, Fatih Yerişenoglu, and Sedef Özcan for their assistance.
References
- Moore, G. F. (Ed.) (1997). Electric cables handbook, Blackwell Science, UK.
- Thue, W. A. (Ed.) (2017). Electrical power cable engineering, CRC Press, Boca Raton.
- Tan, R. K., Önder, K., Yerişenoğlu, F., & Mutlu, R. (2023). Usage of an Excel spreadsheet for a thermal endurance test report. European Journal of Engineering and Applied Sciences, 6(2), 91-97.
- Yurtsever M., Öztaş A., & Mutlu, R. (2024). Assessing the relationship between color change and tensile strength in Thermoplastic Polyolefin outer sheaths of low-voltage power cables. Trakya University Journal of Engineering Sciences, 25(1), 11-19.
- Georgallis, G. (2021). Submarine cables. The global cable industry: materials, markets, products, Wiley Online Library.
- Worzyk, T., Submarine power cables: design, installation, repair, environmental aspects. Springer Science & Business Media, pp. 291-310. 2009.
- Karhan, M., Çakır, M. F., & Uğur, M. (2021). A new approach to the analysis of water treeing using feature extraction of vented type water tree images. Journal of Electrical Engineering & Technology, 16, 1241-1252.
- Karhan, M., Çakır, M. F., & Uğur, M. (2020). Analysis of electric field and potential distribution of experimental setup for initiating and growing vented type water trees using finite element method. Journal of Science and Arts, 20(3), 755-766.
- Standard, IEEE. (2021). IEEE 1580-2021. IEEE Recommended practice for marine cable for use on shipboard and fixed or floating facilities. IEEE. https://standards.ieee.org/ieee/1580/7228/, (Access date; March 28, 2022).
- NEMA WC 53 standard,
https://webstore.ansi.org/standards/nema/ansinemawc53icea275812020, (Access date; March 15, 2022).
- NEMA WC 57 standard,
https://webstore.ansi.org/standards/nema/ansinemawc57icea735322021, (Access date; March 15, 2022).
- Badmera, V., & Patel, R. R. (2017). Electrical characterization of XLPE cable using accelerated water absorption test on medium voltage power cable and partial discharge test on power cable with termination defects. In 2017 Innovations in Power and Advanced Computing Technologies (i-PACT) (pp. 1-7). IEEE.
- Brain, M., & Elliott, S. A. R. A. (2006). How water heaters work. (Access date; December 26, 2023)
- Duff, C. A., Design of a temperature controllable demand water heater, (2012), PhD, University of Johannesburg, Johannesburg, South Africa.
- Biddle, R., Wetzel, J. R., & Cech, R. (1997). Design and performance of low-wattage electrical heater probe. In 38th Annual Meeting of the Institute of Nuclear Materials Management (pp. 20-24). Los Alamos National Lab.
- Cheng, C., Lin, J., Zhang, H., Wang, Q., Xi, L., Wang, L., & Luo, C. (2023). Design and research of power battery temperature control by PLC. Frontiers in Computing and Intelligent Systems, 4(1), 63-66.
- Abdurahman, A., Sunardi, S., Sugeng, S., Setiawan, J., & Syukur, A. M. (2022). Design of PLC based temperature control system for food stability test chamber. Sebatik, 26(2), 482-488.
- Ghafourian, J., Avashbeigi, S., Hedayatnia, A., & Rezvanijalal, J. (2023). Implementation of PID controller for sequential control of flow, level and temperature in Festo MPS PA compact workstation by PLC. In 7th International Conference on Electrical, Computer and Mechanical Engineering (pp. 1-10).
- Rahmadini, V. F., Ma'arif, A., & Abu, N. S. (2023). Design of water heater temperature control system using PID control. Control Systems and Optimization Letters, 1(2), 111-117.
- Zhao, J., & Wang, W. (2022). Application and study of kiln temperature control system based on PLC. Journal of Physics: Conference Series, 2378(1), p. 012021.
- Rahmadini, V. F., Ma'arif A., & Abu, N. S. (2023). Design of water heater temperature control system using PID control. Control Systems and Optimization Letters, 1(2), 111-117.
- Khairunnas, M. D., Ariyanto, E., & Prabowo, S. (2018). Design and implementation of smart bath water heater using Arduino. In 2018 6th International Conference on Information and Communication Technology (ICoICT) (pp. 184-188). IEEE.
- Harvey, M. E. (1968), Precision temperature‐controlled water bath. Review of Scientific Instruments, 39(1), 13-18.
- Chakraborty, S., Bera, S. K., Bera, S. C., & Mandal, N. (2018). Design of a simple temperature transmitter circuit of an electric heater operated water bath. IEEE Sensors Journal, 18(8), 3140-3151.
- Rashidmardani, A., & Hamzei, M. (2013). Effect of various parameters on indirect fired water bath heaters’ efficiency to reduce energy losses. International Journal of Science and Engineering Investigations, 2(12), 17-25.
- Liang, Z., Zheng, Y., Zhou, N., & Liu, S. (2019). User research–based design strategy for an electric water heater and its application. IOP Conference Series: Materials Science and Engineering, 573(1), p. 012052.
- Shabanian, S., Ashrafizadeh, F., Saeidi, N., & Ashrafi, A. (2016). Failure analysis of carbon steel components in a water bath heater and the influence of ethylene glycol concentration. Engineering Failure Analysis, 66, 533-543.
- Tinianov, B., Nakagawa, M., & Muñoz, D. (2005). Prediction of the thermal conductivity of fiberglass insulation using propagation constant: A technique overview. The Journal of the Acoustical Society of America, 117(4_Supplement), 2555-2555.
- https://enda.com/automation/temperature-controllers/et4420/etx420.pdf, (Access date; December 26, 2024)
- Salmaz, E., Kaplan, B., Akkuş, G., Zorlu, S., & Özdaş, D. Ö. (2023). Farklı ışık kaynakları polimerizasyonda ne kadar ısı oluşturur?. Selcuk Dental Journal, 10(4), 300-305.
- Juang, C. F., & Chen, J. S. (2006). Water bath temperature control by a recurrent fuzzy controller and its FPGA implementation. IEEE Transactions on Industrial Electronics, 53(3), 941-949.
- Yener, T., Yener, Ş. Ç., & Mutlu, R. (2019). An IoT-based PDCS system. In International Informatics and Software Engineering Conference (UBMYK), (pp. 1-4). IEEE.
Kablo Kapasitans Ölçüm Testleri için Su Emme Odası Tasarımı
Year 2024,
Volume: 7 Issue: 2, 150 - 158, 31.12.2024
Ercan Ulutay
,
Metin Yurtsever
,
Avşin Öztaş
,
Uğur Akyol
,
Reşat Mutlu
Abstract
Gemilerde kullanılan XLPO kablolar su emme açısından test edilmelidir. Test standartları, kabloların su emme odasına batırılıp 75 0C’de 14 gün saklanmasını gerektirmektedir. Her 7 günde bir, oda içerisindeki kablolar yüksek gerilim uygulanarak test edilerek kapasite, kayıp faktörü, stabilite faktörü ve bağıl geçirgenlik ölçümleri yapılır. Bu çalışmada deneylerde kullanılan bir su emme odası fiberglas malzeme kullanılarak tasarlanmış ve bir ENDA ET 4420 sıcaklık kontrolörü kullanarak kontrol edilmiştir. Deneysel olarak su emme odasının iyi başarımla çalıştığı gösterilmiştir.
References
- Moore, G. F. (Ed.) (1997). Electric cables handbook, Blackwell Science, UK.
- Thue, W. A. (Ed.) (2017). Electrical power cable engineering, CRC Press, Boca Raton.
- Tan, R. K., Önder, K., Yerişenoğlu, F., & Mutlu, R. (2023). Usage of an Excel spreadsheet for a thermal endurance test report. European Journal of Engineering and Applied Sciences, 6(2), 91-97.
- Yurtsever M., Öztaş A., & Mutlu, R. (2024). Assessing the relationship between color change and tensile strength in Thermoplastic Polyolefin outer sheaths of low-voltage power cables. Trakya University Journal of Engineering Sciences, 25(1), 11-19.
- Georgallis, G. (2021). Submarine cables. The global cable industry: materials, markets, products, Wiley Online Library.
- Worzyk, T., Submarine power cables: design, installation, repair, environmental aspects. Springer Science & Business Media, pp. 291-310. 2009.
- Karhan, M., Çakır, M. F., & Uğur, M. (2021). A new approach to the analysis of water treeing using feature extraction of vented type water tree images. Journal of Electrical Engineering & Technology, 16, 1241-1252.
- Karhan, M., Çakır, M. F., & Uğur, M. (2020). Analysis of electric field and potential distribution of experimental setup for initiating and growing vented type water trees using finite element method. Journal of Science and Arts, 20(3), 755-766.
- Standard, IEEE. (2021). IEEE 1580-2021. IEEE Recommended practice for marine cable for use on shipboard and fixed or floating facilities. IEEE. https://standards.ieee.org/ieee/1580/7228/, (Access date; March 28, 2022).
- NEMA WC 53 standard,
https://webstore.ansi.org/standards/nema/ansinemawc53icea275812020, (Access date; March 15, 2022).
- NEMA WC 57 standard,
https://webstore.ansi.org/standards/nema/ansinemawc57icea735322021, (Access date; March 15, 2022).
- Badmera, V., & Patel, R. R. (2017). Electrical characterization of XLPE cable using accelerated water absorption test on medium voltage power cable and partial discharge test on power cable with termination defects. In 2017 Innovations in Power and Advanced Computing Technologies (i-PACT) (pp. 1-7). IEEE.
- Brain, M., & Elliott, S. A. R. A. (2006). How water heaters work. (Access date; December 26, 2023)
- Duff, C. A., Design of a temperature controllable demand water heater, (2012), PhD, University of Johannesburg, Johannesburg, South Africa.
- Biddle, R., Wetzel, J. R., & Cech, R. (1997). Design and performance of low-wattage electrical heater probe. In 38th Annual Meeting of the Institute of Nuclear Materials Management (pp. 20-24). Los Alamos National Lab.
- Cheng, C., Lin, J., Zhang, H., Wang, Q., Xi, L., Wang, L., & Luo, C. (2023). Design and research of power battery temperature control by PLC. Frontiers in Computing and Intelligent Systems, 4(1), 63-66.
- Abdurahman, A., Sunardi, S., Sugeng, S., Setiawan, J., & Syukur, A. M. (2022). Design of PLC based temperature control system for food stability test chamber. Sebatik, 26(2), 482-488.
- Ghafourian, J., Avashbeigi, S., Hedayatnia, A., & Rezvanijalal, J. (2023). Implementation of PID controller for sequential control of flow, level and temperature in Festo MPS PA compact workstation by PLC. In 7th International Conference on Electrical, Computer and Mechanical Engineering (pp. 1-10).
- Rahmadini, V. F., Ma'arif, A., & Abu, N. S. (2023). Design of water heater temperature control system using PID control. Control Systems and Optimization Letters, 1(2), 111-117.
- Zhao, J., & Wang, W. (2022). Application and study of kiln temperature control system based on PLC. Journal of Physics: Conference Series, 2378(1), p. 012021.
- Rahmadini, V. F., Ma'arif A., & Abu, N. S. (2023). Design of water heater temperature control system using PID control. Control Systems and Optimization Letters, 1(2), 111-117.
- Khairunnas, M. D., Ariyanto, E., & Prabowo, S. (2018). Design and implementation of smart bath water heater using Arduino. In 2018 6th International Conference on Information and Communication Technology (ICoICT) (pp. 184-188). IEEE.
- Harvey, M. E. (1968), Precision temperature‐controlled water bath. Review of Scientific Instruments, 39(1), 13-18.
- Chakraborty, S., Bera, S. K., Bera, S. C., & Mandal, N. (2018). Design of a simple temperature transmitter circuit of an electric heater operated water bath. IEEE Sensors Journal, 18(8), 3140-3151.
- Rashidmardani, A., & Hamzei, M. (2013). Effect of various parameters on indirect fired water bath heaters’ efficiency to reduce energy losses. International Journal of Science and Engineering Investigations, 2(12), 17-25.
- Liang, Z., Zheng, Y., Zhou, N., & Liu, S. (2019). User research–based design strategy for an electric water heater and its application. IOP Conference Series: Materials Science and Engineering, 573(1), p. 012052.
- Shabanian, S., Ashrafizadeh, F., Saeidi, N., & Ashrafi, A. (2016). Failure analysis of carbon steel components in a water bath heater and the influence of ethylene glycol concentration. Engineering Failure Analysis, 66, 533-543.
- Tinianov, B., Nakagawa, M., & Muñoz, D. (2005). Prediction of the thermal conductivity of fiberglass insulation using propagation constant: A technique overview. The Journal of the Acoustical Society of America, 117(4_Supplement), 2555-2555.
- https://enda.com/automation/temperature-controllers/et4420/etx420.pdf, (Access date; December 26, 2024)
- Salmaz, E., Kaplan, B., Akkuş, G., Zorlu, S., & Özdaş, D. Ö. (2023). Farklı ışık kaynakları polimerizasyonda ne kadar ısı oluşturur?. Selcuk Dental Journal, 10(4), 300-305.
- Juang, C. F., & Chen, J. S. (2006). Water bath temperature control by a recurrent fuzzy controller and its FPGA implementation. IEEE Transactions on Industrial Electronics, 53(3), 941-949.
- Yener, T., Yener, Ş. Ç., & Mutlu, R. (2019). An IoT-based PDCS system. In International Informatics and Software Engineering Conference (UBMYK), (pp. 1-4). IEEE.