Memristif Köprü Doğrultuculu Bir Liénard Osilatör Devresi
Year 2024,
Volume: 7 Issue: 2, 126 - 134, 31.12.2024
Arif Kivanc Ustun
,
Meltem Apaydın Üstün
,
Reşat Mutlu
Abstract
Bu çalışmada köprü doğrultucu ve R-L-C çıkış filtresi ile negatif direnç dönüştürücü içeren yeni bir Liénard osilatör tasarımı önerilmiştir. Köprü doğrultucu, memristif davranış sergilemekte ve periyodik kararlı durumda Liénard salınımı için gerekli olan çift doğrusal olmayan direnci sağlamaktadır. Devrenin matematiksel modeli, durum-uzay denklemleri ve doğrusal olmayan özelliklerinin analizi dahil olmak üzere geliştirilmiştir. LTSpice simülasyonları, daha yüksek frekanslarda memristif köprünün doğrusal olmayan bir direnç olarak işlev gördüğünü ve devrenin bir Liénard osilatörü olarak çalışmasını sağladığını göstermektedir. Simülasyon sonuçları, Liénard sistemlerine özgü periyodik dalga formları ve limit döngüleri göstermektedir, ancak Shottky diyotlarının eşik etkileri ve ikinci harmonik üretimi nedeniyle ideal sinüzoidal davranıştan kayda değer sapmalar görülmektedir. Önerilen osilatör, geleneksel iki değişkenli Liénard sistemlerinden daha fazla durum değişkenine sahip olmasına rağmen, kolayca temin edilebilen bileşenler kullanarak (Schottky diyotları, pasif elemanlar ve bir işlemsel yükselteç) sürekli salınımları başarıyla elde etmektedir. Devrenin davranışı, gerilim-akım karakteristikleri, limit döngüleri ve faz portreleri aracılığıyla analiz edilmiş, Liénard tipi bir osilatör olarak çalıştığı doğrulanmıştır. Bu çalışma, Liénard osilatörlerinin yarı iletken elemanlar kullanılarak uygulanması için yeni olanaklar sunmakta ve parametrik analiz ve analitik çözümler konusunda gelecekteki araştırmalar için farklı bakış açıları önermektedir.
References
- Van der Pol, B. (1920). theory of the amplitude of frfeE. forced triode vibrations. Radio review, 1, 701-710.
- Van der Pol, B. (1926). LXXXVIII. On “relaxation-oscillations”. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 2(11), 978-992.
- Van der Pol, B., & Van Der Mark, J. (1927). Frequency demultiplication. Nature, 120(3019), 363-364.
- Van der Pol, B. (1934). The nonlinear theory of electric oscillations. Proceedings of the Institute of Radio Engineers, 22(9), 1051-1086.
- Liénard A. (1928). Etude des oscillations entretenues. Revue Générale de l’électricité, 23:901-12 and 946–54.
- Nagumo, J., Arimoto, S., & Yoshizawa, S. (1962). An active pulse transmission line simulating nerve axon. Proceedings of the IRE, 50(10), 2061-2070.
- Dinh, T. P., Demongeot, J., Baconnier, P., & Benchetrit, G. (1983). Simulation of a biological oscillator: the respiratory system. Journal of Theoretical Biology, 103(1), 113-132.
- Atlas, G. M., & Desiderio, M. C. (2006, April). Solutions to the Van der Pol equation: A model of aortic blood flow. In Proceedings of the IEEE 32nd Annual Northeast Bioengineering Conference (pp. 143-144). IEEE.
- Mao'an, H. (2017). Bifurcation theory of limit cycles. Science press.
- Storti, D. W., & Rand, R. H. (1982). Dynamics of two strongly coupled van der Pol oscillators. International Journal of Non-Linear Mechanics, 17(3), 143-152.
- Rand, R. H., & Holmes, P. J. (1980). Bifurcation of periodic motions in two weakly coupled van der Pol oscillators. International Journal of Non-Linear Mechanics, 15(4-5), 387-399.
- Endo, T., & Mori, S. (1978). Mode analysis of a ring of a large number of mutually coupled van der Pol oscillators. IEEE Transactions on Circuits Endo, T., & Mori, S. (1978). Mode analysis of a ring of a large number of mutually coupled van der Pol oscillators. IEEE Transactions on Circuits and systems, 25(1), 7-18.
- Low, L. A., Reinhall, P. G., Storti, D. W., & Goldman, E. B. (2006). Coupled van der Pol oscillators as a simplified model for generation of neural patterns for jellyfish locomotion. Structural Control and Health Monitoring: The Official Journal of the International Association for Structural Control and Monitoring and of the European Association for the Control of Structures, 13(1), 417-429.
- Menzel, K. O., Arp, O., & Piel, A. (2011). Chain of coupled van der Pol oscillators as model system for density waves in dusty plasmas. Physical Review E—Statistical, Nonlinear, and Soft Matter Physics, 84(1), 016405.
- Sinha, M., Dörfler, F., Johnson, B. B., & Dhople, S. V. (2016, July). Synchronization of Liénard-type oscillators in uniform electrical networks. In 2016 American control conference (ACC) (pp. 4311-4316). IEEE.
- Kpomahou, Y., Midiwanou, C., Agbokpanzo, R., & Adjaï, L. H. D. (2022). Nonlinear resonances analysis of a rlc series circuit modeled by a modified van der pol oscillator. European Journal of Physics, 43(3), 035204.
- Kpomahou, Y. J. F., Miwadinou, C. H., & Hinvi, L. A. (2018). Mathematical modelling and parametric resonances of a nonlinear RLC series circuit. International Journal of Nonlinear Dynamics and Control, 1(2), 133-153.
- Kpomahou, Y. J. F., Miwadinou, C. H., Agbokpanzo, R. G., & Hinvi, L. A. (2021). Nonlinear dynamics of a RLC series circuit modeled by a generalized Van der Pol oscillator. International Journal of Nonlinear Sciences and Numerical Simulation, 22(3-4), 479-494.
- Kundu, P. K., & Chatterjee, S. (2024). Limit cycle oscillations in a mechanical system under fractional-order liénard type nonlinear feedback. Communications in Nonlinear Science and Numerical Simulation, 128, 107612.
- Mettin, R., Parlitz, U., & Lauterborn, W. (1993). Bifurcation structure of the driven van der Pol oscillator. International Journal of Bifurcation and Chaos, 3(06), 1529-1555.
- Ulonska, S., Omelchenko, I., Zakharova, A., & Schöll, E. (2016). Chimera states in networks of Van der Pol oscillators with hierarchical connectivities. Chaos: An Interdisciplinary Journal of Nonlinear Science, 26(9).
- Maccari, A. (2001). Bifurcation analysis of parametrically excited Rayleigh–Liénard oscillators. Nonlinear Dynamics, 25(4), 293-316.
- Kpomahou, Y. J. F., Hinvi, L. A., Adéchinan, J. A., & Miwadinou, C. H. (2021). Chaotic Dynamics of a Mixed Rayleigh–Liénard Oscillator Driven by Parametric Periodic Damping and External Excitations. Complexity, 2021(1), 6631094.
- Kingston, S. L., & Thamilmaran, K. (2017). Bursting oscillations and mixed-mode oscillations in driven Liénard system. International Journal of Bifurcation and Chaos, 27(07), 1730025.
- Slight, T. J., Romeira, B., Wang, L., Figueiredo, J. M., Wasige, E., & Ironside, C. N. (2008). A Liénard oscillator resonant tunnelling diode-laser diode hybrid integrated circuit: model and experiment. IEEE journal of quantum electronics, 44(12), 1158-1163.
- Kingston, S. L., & Kapitaniak, T. (2021). Rich dynamics of memristor based Liénard systems. In Mem-elements for Neuromorphic Circuits with Artificial Intelligence Applications (pp. 125-145). Academic Press.
- Çakır, K., Mutlu, R., & Karakulak, E. (2021). Ters-Paralel Bağlı Schottky Diyot Dizisi Tabanlı Van der Pol Osilatörü Devresinin Modellenmesi ve LTspice ve Simulink Kullanarak Analizi. EMO Bilimsel Dergi, 11(21), 81-91.
- Çakır, K., & Mutlu, R. (2022). Modeling and analysis of schottky diode bridge and JFET based liénard oscillator circuit. Sigma Journal of Engineering and Natural Sciences, 42(2), 503-515.
- Mevsim, E., & Mutlu, R. (2022). A Microcontroller-based Liénard Oscillator. European Journal of Engineering and Applied Sciences, 5(2), 80-85.
- Chua, L. (1971). Memristor-the missing circuit element. IEEE Transactions on circuit theory, 18(5), 507-519.
- Strukov, D. B., Snider, G. S., Stewart, D. R., & Williams, R. S. (2008). The missing memristor found. nature, 453(7191), 80-83.
- Vongehr, S., & Meng, X. (2015). The missing memristor has not been found. Scientific reports, 5(1), 11657.
- Chua, L. O., & Kang, S. M. (1976). Memristive devices and systems. Proceedings of the IEEE, 64(2), 209-223.
- Adhikari, S. P., Sah, M. P., Kim, H., & Chua, L. O. (2019). Three fingerprints of memristor. Handbook of Memristor Networks, 165-196.
- Pershin, Y. V., Martinez-Rincon, J., & Di Ventra, M. (2011). Memory circuit elements: from systems to applications. Journal of Computational and Theoretical Nanoscience, 8(3), 441-448.
- Pershin, Y. V., & Di Ventra, M. (2010). Practical approach to programmable analog circuits with memristors. IEEE Transactions on Circuits and Systems I: Regular Papers, 57(8), 1857-1864.
- Itoh, M., & Chua, L. O. (2008). Memristor oscillators. International journal of bifurcation and chaos, 18(11), 3183-3206.
- L. Minati, L. V. Gambuzza, W. J. Thio, J. C. Sprott, & M. Frasca (2020). “A chaotic circuit based on a physical memristor,” Chaos Solitons Fractals, 138, 109990.
- Kingston S. L., & Kapitaniak T. (2021). Rich dynamics of memristor based Liénard systems, Mem-elements for Neuromorphic Circuits with Artificial Intelligence Applications, 125–145.
- Kingston, S. L., Suresh, K., & Thamilmaran, K. (2018, April). Mixed-mode oscillations in memristor emulator based Liénard system. In AIP Conference Proceedings (Vol. 1942, No. 1). AIP Publishing.
- F. Corinto, & A. Ascoli, “Memristive Diode Bridge with LCR Filter,” Electronics Letters, 8(14), 2012.
- Bao, B., Yu, J., Hu, F., & Liu, Z. (2014). Generalized memristor consisting of diode bridge with first order parallel RC filter. International Journal of Bifurcation and Chaos, 24(11), 1450143.
- Çakır, K., Memristör Tabanlı Bir Liénard Osilatörü Tasarımı, (2024), Master Thesis, Tekirdağ Namık Kemal Üniversitesi.
- Knowm, Self Directed Channel Memristors, Rev. 3.2, October 6, 2019, https://knowm.org/downloads/Knowm_Memristors.pdf,%20Eri%C5%9Fim%20tarihi:%202%20Eyl%C3%BCl%202022.
- Dalmış, C., Mutlu, R., & Karakulak, E. (2023). Existence of Capacitive Effects in a Tungsten-based SDC Memristive System. Electronic Components and Materials, 53(3), 121-135.
- Panayotounakos, D. E., Panayotounakou, N. D., Vakakis, & A. F. (2003). On the lack of analytic solutions of the Van der Pol oscillator. Z. Angew. Math. Mech. 83(9): 611–615.
- D’Alessio, S. (2023). Solutions of the van der pol equation. The College Mathematics Journal, 54(2), 90-98.
- Bavinck, H., & Grasman, J. (1974). The method of matched asymptotic expansions for the periodic solution of the Van der Pol equation. Int. J. Non-Linear Mech. 9: 421–434.
- Davis, R. T., & Alfriend, K. T. (1967). Solutions to Van der Pol’s equation using a perturbation method. Int. J. Non-Linear Mech. 2: 153–162.
A Liénard Oscillator Circuit with a Memristive Bridge Rectifier
Year 2024,
Volume: 7 Issue: 2, 126 - 134, 31.12.2024
Arif Kivanc Ustun
,
Meltem Apaydın Üstün
,
Reşat Mutlu
Abstract
A novel Liénard oscillator design incorporating a bridge rectifier with an R-L-C output filter and negative resistance converter is presented. The bridge rectifier exhibits memristive behavior and provides the even nonlinear resistance required for Liénard oscillation in the periodic steady state. The circuit's mathematical model, including state-space equations and analysis of its nonlinear characteristics, is developed. LTSpice simulations demonstrate that at higher frequencies, the memristive bridge functions as a nonlinear resistor, enabling the circuit to operate as a Liénard oscillator. The simulation results show periodic waveforms and limit cycles characteristic of Liénard systems, though with notable deviations from ideal sinusoidal behavior due to the Schottky diodes' threshold effects and second harmonic generation. While the proposed oscillator has more state variables than traditional two-variable Liénard systems, it successfully achieves sustained oscillations using readily available components: Schottky diodes, passive elements, and an operational amplifier. The circuit's behavior is analyzed through voltage-current characteristics, limit cycles, and phase portraits, confirming its operation as a Liénard-type oscillator. This work opens new possibilities for implementing Liénard oscillators using semiconductor elements and suggests directions for future research in parametric analysis and analytical solutions.
Ethical Statement
The authors declared no conflicts of interest with respect to the research, authorship, and/or publication of this article.
References
- Van der Pol, B. (1920). theory of the amplitude of frfeE. forced triode vibrations. Radio review, 1, 701-710.
- Van der Pol, B. (1926). LXXXVIII. On “relaxation-oscillations”. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 2(11), 978-992.
- Van der Pol, B., & Van Der Mark, J. (1927). Frequency demultiplication. Nature, 120(3019), 363-364.
- Van der Pol, B. (1934). The nonlinear theory of electric oscillations. Proceedings of the Institute of Radio Engineers, 22(9), 1051-1086.
- Liénard A. (1928). Etude des oscillations entretenues. Revue Générale de l’électricité, 23:901-12 and 946–54.
- Nagumo, J., Arimoto, S., & Yoshizawa, S. (1962). An active pulse transmission line simulating nerve axon. Proceedings of the IRE, 50(10), 2061-2070.
- Dinh, T. P., Demongeot, J., Baconnier, P., & Benchetrit, G. (1983). Simulation of a biological oscillator: the respiratory system. Journal of Theoretical Biology, 103(1), 113-132.
- Atlas, G. M., & Desiderio, M. C. (2006, April). Solutions to the Van der Pol equation: A model of aortic blood flow. In Proceedings of the IEEE 32nd Annual Northeast Bioengineering Conference (pp. 143-144). IEEE.
- Mao'an, H. (2017). Bifurcation theory of limit cycles. Science press.
- Storti, D. W., & Rand, R. H. (1982). Dynamics of two strongly coupled van der Pol oscillators. International Journal of Non-Linear Mechanics, 17(3), 143-152.
- Rand, R. H., & Holmes, P. J. (1980). Bifurcation of periodic motions in two weakly coupled van der Pol oscillators. International Journal of Non-Linear Mechanics, 15(4-5), 387-399.
- Endo, T., & Mori, S. (1978). Mode analysis of a ring of a large number of mutually coupled van der Pol oscillators. IEEE Transactions on Circuits Endo, T., & Mori, S. (1978). Mode analysis of a ring of a large number of mutually coupled van der Pol oscillators. IEEE Transactions on Circuits and systems, 25(1), 7-18.
- Low, L. A., Reinhall, P. G., Storti, D. W., & Goldman, E. B. (2006). Coupled van der Pol oscillators as a simplified model for generation of neural patterns for jellyfish locomotion. Structural Control and Health Monitoring: The Official Journal of the International Association for Structural Control and Monitoring and of the European Association for the Control of Structures, 13(1), 417-429.
- Menzel, K. O., Arp, O., & Piel, A. (2011). Chain of coupled van der Pol oscillators as model system for density waves in dusty plasmas. Physical Review E—Statistical, Nonlinear, and Soft Matter Physics, 84(1), 016405.
- Sinha, M., Dörfler, F., Johnson, B. B., & Dhople, S. V. (2016, July). Synchronization of Liénard-type oscillators in uniform electrical networks. In 2016 American control conference (ACC) (pp. 4311-4316). IEEE.
- Kpomahou, Y., Midiwanou, C., Agbokpanzo, R., & Adjaï, L. H. D. (2022). Nonlinear resonances analysis of a rlc series circuit modeled by a modified van der pol oscillator. European Journal of Physics, 43(3), 035204.
- Kpomahou, Y. J. F., Miwadinou, C. H., & Hinvi, L. A. (2018). Mathematical modelling and parametric resonances of a nonlinear RLC series circuit. International Journal of Nonlinear Dynamics and Control, 1(2), 133-153.
- Kpomahou, Y. J. F., Miwadinou, C. H., Agbokpanzo, R. G., & Hinvi, L. A. (2021). Nonlinear dynamics of a RLC series circuit modeled by a generalized Van der Pol oscillator. International Journal of Nonlinear Sciences and Numerical Simulation, 22(3-4), 479-494.
- Kundu, P. K., & Chatterjee, S. (2024). Limit cycle oscillations in a mechanical system under fractional-order liénard type nonlinear feedback. Communications in Nonlinear Science and Numerical Simulation, 128, 107612.
- Mettin, R., Parlitz, U., & Lauterborn, W. (1993). Bifurcation structure of the driven van der Pol oscillator. International Journal of Bifurcation and Chaos, 3(06), 1529-1555.
- Ulonska, S., Omelchenko, I., Zakharova, A., & Schöll, E. (2016). Chimera states in networks of Van der Pol oscillators with hierarchical connectivities. Chaos: An Interdisciplinary Journal of Nonlinear Science, 26(9).
- Maccari, A. (2001). Bifurcation analysis of parametrically excited Rayleigh–Liénard oscillators. Nonlinear Dynamics, 25(4), 293-316.
- Kpomahou, Y. J. F., Hinvi, L. A., Adéchinan, J. A., & Miwadinou, C. H. (2021). Chaotic Dynamics of a Mixed Rayleigh–Liénard Oscillator Driven by Parametric Periodic Damping and External Excitations. Complexity, 2021(1), 6631094.
- Kingston, S. L., & Thamilmaran, K. (2017). Bursting oscillations and mixed-mode oscillations in driven Liénard system. International Journal of Bifurcation and Chaos, 27(07), 1730025.
- Slight, T. J., Romeira, B., Wang, L., Figueiredo, J. M., Wasige, E., & Ironside, C. N. (2008). A Liénard oscillator resonant tunnelling diode-laser diode hybrid integrated circuit: model and experiment. IEEE journal of quantum electronics, 44(12), 1158-1163.
- Kingston, S. L., & Kapitaniak, T. (2021). Rich dynamics of memristor based Liénard systems. In Mem-elements for Neuromorphic Circuits with Artificial Intelligence Applications (pp. 125-145). Academic Press.
- Çakır, K., Mutlu, R., & Karakulak, E. (2021). Ters-Paralel Bağlı Schottky Diyot Dizisi Tabanlı Van der Pol Osilatörü Devresinin Modellenmesi ve LTspice ve Simulink Kullanarak Analizi. EMO Bilimsel Dergi, 11(21), 81-91.
- Çakır, K., & Mutlu, R. (2022). Modeling and analysis of schottky diode bridge and JFET based liénard oscillator circuit. Sigma Journal of Engineering and Natural Sciences, 42(2), 503-515.
- Mevsim, E., & Mutlu, R. (2022). A Microcontroller-based Liénard Oscillator. European Journal of Engineering and Applied Sciences, 5(2), 80-85.
- Chua, L. (1971). Memristor-the missing circuit element. IEEE Transactions on circuit theory, 18(5), 507-519.
- Strukov, D. B., Snider, G. S., Stewart, D. R., & Williams, R. S. (2008). The missing memristor found. nature, 453(7191), 80-83.
- Vongehr, S., & Meng, X. (2015). The missing memristor has not been found. Scientific reports, 5(1), 11657.
- Chua, L. O., & Kang, S. M. (1976). Memristive devices and systems. Proceedings of the IEEE, 64(2), 209-223.
- Adhikari, S. P., Sah, M. P., Kim, H., & Chua, L. O. (2019). Three fingerprints of memristor. Handbook of Memristor Networks, 165-196.
- Pershin, Y. V., Martinez-Rincon, J., & Di Ventra, M. (2011). Memory circuit elements: from systems to applications. Journal of Computational and Theoretical Nanoscience, 8(3), 441-448.
- Pershin, Y. V., & Di Ventra, M. (2010). Practical approach to programmable analog circuits with memristors. IEEE Transactions on Circuits and Systems I: Regular Papers, 57(8), 1857-1864.
- Itoh, M., & Chua, L. O. (2008). Memristor oscillators. International journal of bifurcation and chaos, 18(11), 3183-3206.
- L. Minati, L. V. Gambuzza, W. J. Thio, J. C. Sprott, & M. Frasca (2020). “A chaotic circuit based on a physical memristor,” Chaos Solitons Fractals, 138, 109990.
- Kingston S. L., & Kapitaniak T. (2021). Rich dynamics of memristor based Liénard systems, Mem-elements for Neuromorphic Circuits with Artificial Intelligence Applications, 125–145.
- Kingston, S. L., Suresh, K., & Thamilmaran, K. (2018, April). Mixed-mode oscillations in memristor emulator based Liénard system. In AIP Conference Proceedings (Vol. 1942, No. 1). AIP Publishing.
- F. Corinto, & A. Ascoli, “Memristive Diode Bridge with LCR Filter,” Electronics Letters, 8(14), 2012.
- Bao, B., Yu, J., Hu, F., & Liu, Z. (2014). Generalized memristor consisting of diode bridge with first order parallel RC filter. International Journal of Bifurcation and Chaos, 24(11), 1450143.
- Çakır, K., Memristör Tabanlı Bir Liénard Osilatörü Tasarımı, (2024), Master Thesis, Tekirdağ Namık Kemal Üniversitesi.
- Knowm, Self Directed Channel Memristors, Rev. 3.2, October 6, 2019, https://knowm.org/downloads/Knowm_Memristors.pdf,%20Eri%C5%9Fim%20tarihi:%202%20Eyl%C3%BCl%202022.
- Dalmış, C., Mutlu, R., & Karakulak, E. (2023). Existence of Capacitive Effects in a Tungsten-based SDC Memristive System. Electronic Components and Materials, 53(3), 121-135.
- Panayotounakos, D. E., Panayotounakou, N. D., Vakakis, & A. F. (2003). On the lack of analytic solutions of the Van der Pol oscillator. Z. Angew. Math. Mech. 83(9): 611–615.
- D’Alessio, S. (2023). Solutions of the van der pol equation. The College Mathematics Journal, 54(2), 90-98.
- Bavinck, H., & Grasman, J. (1974). The method of matched asymptotic expansions for the periodic solution of the Van der Pol equation. Int. J. Non-Linear Mech. 9: 421–434.
- Davis, R. T., & Alfriend, K. T. (1967). Solutions to Van der Pol’s equation using a perturbation method. Int. J. Non-Linear Mech. 2: 153–162.