Research Article
BibTex RIS Cite

Production of Hydrogen-Rich Syngas from Mixed Wastes via Gasification Process

Year 2025, Volume: 8 Issue: 1, 69 - 80, 31.07.2025
https://doi.org/10.55581/ejeas.1715421

Abstract

This study investigates the relationship between cold gas efficiency and the H₂/CO ratio in the gasification of various biomass-based waste streams, aiming to optimize the energy and chemical performance of the produced syngas. Experiments were conducted using green waste, olive pomace, and sewage sludge under varying operational conditions, including different temperatures, gasifying agents, and flow rates. The calorific value of the resulting syngas ranged between 5 and 14 MJ/kg, while gas conversion efficiencies varied from 28% to 68%. Maximum syngas quality was achieved at higher temperatures and lower gasifying agent flow rates.The H₂/CO ratio reached up to 5 for green waste, 4 for olive pomace, and 6 for sewage sludge, indicating the potential to produce hydrogen-rich syngas from diverse feedstocks. Cold gas efficiencies were recorded as 92%, 62%, and 73%, respectively. These results demonstrate that waste-specific operational optimization can significantly enhance syngas composition and efficiency. This research contributes to the waste-to-energy literature by providing a comparative assessment of mixed waste gasification under different conditions, with a focus on hydrogen-rich syngas production. The innovative aspect lies in the integrated evaluation of both energy efficiency and H₂/CO balance across multiple feedstocks. The syngas produced can be utilized directly in energy systems such as gas turbines and internal combustion engines or serve as an intermediate for chemical synthesis processes, including methanol and ammonia production. The findings offer a promising approach for sustainable waste management and resource recovery through thermochemical conversion.

Supporting Institution

TÜBİTAK, İSTANBUL UNIVERSITY-CERRAHPAŞA

Thanks

This research was financially supported by the Scientific and Technological Research Council of Turkey (TÜBİTAK-ÇAYDAG) under the project titled "Sustainable Energy Recovery via Gasification of Sewage Sludge, Green Waste and Olive Pomace: Investigation of Beneficial Use Alternatives for Gasification Products" (Project No: 119R029). Additional support was provided by the Scientific Research Projects Coordination Unit of Istanbul University-Cerrahpaşa (Project ID: 35411).

References

  • Basu, P. (2010). Biomass gasification and pyrolysis: practical design and theory. Academic press, Kidlington, Oxford, UK.
  • Khan, Z., Javed, F., Shamair, Z., Hafeez, A., Fazal, T., Aslam, A., Rehman, F. (2021). Current developments in esterification reaction: A review on process and parameters. Journal of Industrial and Engineering Chemistry, 103, 80-101.
  • Lv, D., Xu, M., Liu, X., Zhan, Z., Li, Z., Yao, H. (2010). Effect of cellulose, lignin, alkali and alkaline earth metallic species on biomass pyrolysis and gasification. Fuel Processing Technology, 91(8), 903-909.
  • Fang, S., Deng, Z., Lin, Y., Huang, Z., Ding, L., Deng, L., Huang, H. (2021). Nitrogen migration in sewage sludge chemical looping gasification using copper slag modified by NiO as an oxygen carrier. Energy, 228, 120448.
  • Shen, Y., Liu, Y., Yu, H. (2018). Enhancement of the quality of syngas from catalytic steam gasification of biomass by the addition of methane/model biogas. International Journal of Hydrogen Energy, 43(45), 20428-20437.
  • Zhang, L., Wu, W., Siqu, N., Dekyi, T., Zhang, Y. (2019). Thermochemical catalytic-reforming conversion of municipal solid waste to hydrogen-rich synthesis gas via carbon supported catalysts. Chemical Engineering Journal, 361, 1617–1629. https://doi.org/10.1016/j.cej.2018.12.115.
  • Lu, W., Cao, Q., Xu, B., Adidharma, H., Gasem, K., Argyle, M., Fan, M. (2020). A new approach of reduction of carbon dioxide emission and optimal use of carbon and hydrogen content for the desired syngas production from coal. Journal of Cleaner Production, 265, 121786.
  • Li, Y., Wang, Z., He, Z., Luo, S., Su, D., Jiang, H., Xu, Q. (2020). Effects of temperature, hydrogen/carbon monoxide ratio and trace element addition on methane production performance from syngas biomethanation. Bioresource Technology, 295, 122296.
  • Shan, X., Qian, Y., Zhu, L., Lu, X. (2016). Effects of EGR rate and hydrogen/carbon monoxide ratio on combustion and emission characteristics of biogas/diesel dual fuel combustion engine. Fuel, 181, 1050-1057.
  • Chiodini, A., Bua, L., Carnelli, L., Zwart, R., Vreugdenhil, B., Vocciante, M. (2017). Enhancements in biomass-to-liquid processes: gasification aiming at high hydrogen/carbon monoxide ratios for direct Fischer-Tropsch synthesis applications. Biomass and Bioenergy, 106, 104-114.
  • Jiang, Y., Yan, H., Guo, Q., Wang, F., Wang, J. (2019). Multiple synergistic effects exerted by coexisting sodium and iron on catalytic steam gasification of coal char. Fuel Processing Technology, 191, 1-10.
  • Yang, X., Yu, M., Zheng, K., Wan, S., Wang, L. (2019). An experimental investigation into the behavior of premixed flames of hydrogen/carbon monoxide/air mixtures in a half-open duct. Fuel, 237, 619-629.
  • Lu, W., Cao, Q., Xu, B., Adidharma, H., Gasem, K., Argyle, M., Fan, M. (2020). A new approach of reduction of carbon dioxide emission and optimal use of carbon and hydrogen content for the desired syngas production from coal. Journal of Cleaner Production, 265, 121786.
  • Tanoh, T. S., Oumeziane, A. A., Lemonon, J., Escudero-Sanz, F. J., Salvador, S. (2021). A novel two-stage gasification strategy for nitrogen-free syngas production-pilot-scale experiments. Fuel Processing Technology, 217, 106821.
  • Pedrazzi, S., Santunione, G., Minarelli, A., Allesina, G. (2019). Energy and biochar co-production from municipal green waste gasification: A model applied to a landfill in the north of Italy. Energy Conversion and Management, 187, 274-282.
  • Arena, U. (2012). Process and technological aspects of municipal solid waste gasification. A review. Waste management, 32(4), 625-639.
  • Costa, P., Pinto, F., André, R. N., & Marques, P. (2021). Integration of Gasification and Solid Oxide Fuel Cells (SOFCs) for Combined Heat and Power (CHP). Processes 2021, 9, 254.
  • Jahn, L. G., Jahl, L. G., Bowers, B. B., & Sullivan, R. C. (2021). Morphology of organic carbon coatings on biomass-burning particles and their role in reactive gas uptake. ACS Earth and Space Chemistry, 5(9), 2184-2195.
  • Puig-Arnavat, M., Bruno, J.C., Coronas, A. (2010). Review and analysis of biomass gasification models. Renewable and Sustainable Energy Reviews, 14,2841–2851.
  • Chen, G., Liu, F., Guo, X., Zhang, Y., Yan, B., Cheng, Z. (2018). Co-gasification of acid hydrolysis residues and sewage sludge in a downdraft fixed gasifier with CaO as an in-bed additive. Energy Fuel, 32(5):5893–900.
  • Zhang, Y., Wan, L., Guan, J., Xiong, Q. A., Zhang, S., Jin, X. (2020). A review on biomass gasification: Effect of main parameters on char generation and reaction. Energy & Fuels, 34(11), 13438-13455.
  • Mutlu, O., Ghose, S., Gómez-Luna, J., Ausavarungnirun, R. (2019). Processing data where it makes sense: Enabling in-memory computation. Microprocessors and Microsystems, 67, 28-41.
  • Channiwala, S. A., Parikh, P. P. (2002). A unified correlation for estimating HHV of solid, liquid and gaseous fuels. Fuel, 81(8), 1051-1063.
  • Loha, C., Chatterjee, P. K., Chattopadhyay, H. (2011). Performance of fluidized bed steam gasification of biomass–modeling and experiment. Energy Conversion and Management, 52(3), 1583-1588.
  • Janajreh, I., Adeyemi, I., Raza, S. S., Ghenai, C. (2021). A review of recent developments and future prospects in gasification systems and their modeling. Renewable and Sustainable Energy Reviews, 138, 110505.
  • Rodriguez-Alejandro, D. A., Nam, H., Maglinao Jr, A. L., Capareda, S. C., Aguilera-Alvarado, A. F. (2016). Development of a modified equilibrium model for biomass pilot-scale fluidized bed gasifier performance predictions. Energy, 115, 1092-1108.
  • Saha, P., Uddin, M. H., Reza, M. T. (2019). A steady-state equilibrium-based carbon dioxide gasification simulation model for hydrothermally carbonized cow manure. Energy Conversion and Management, 191, 12-22.
  • AlNouss, A., McKay, G., & Al-Ansari, T. (2020). Production of syngas via gasification using optimum blends of biomass. Journal of Cleaner Production, 242, 118499.
  • Basu, P. (2010). Biomass gasification and pyrolysis: practical design and theory. Academic press, Kidlington, Oxford, UK.
  • Engineering ToolBox, (2003). Fuels- Higher and Lower Calorific Values. https://www.engineeringtoolbox.com/fuels-higher-calorific-values-d_169.html., [Ziyaret Tarihi: 20.04.2024].
  • Engineering ToolBox, (2018). Carbon Monoxide-Density and Specific Weight vs. Temperature and Pressure. https://www.engineeringtoolbox.com/carbon-monoxide-density-specific-weight-temperature-pressure-d_2092.html , [Ziyaret Tarihi: 20.04.2024].
  • Tezer, O., Karabag, N., Ozturk, M. U., Ongen, A., Ayol, A. (2022a). Comparison of green waste gasification performance in updraft and downdraft fixed bed gasifiers. International Journal of Hydrogen Energy, 47(74), 31864-31876.
  • Varank, G., Ongen, A., Guvenc, S.Y., Ozcan, H.K., Ozbas, E.E., Can Guven, E. (2021). Modeling and optimization of syngas production from biomass gasification. International Journal of Environmental Science and Technology. https://doi.org/10.1007/s13762-021-03374-3.
  • Öngen, A., Ozcan, H. K., Ozbas, E. E. (2016). Gasification of biomass and treatment sludge in a fixed bed gasifier. International Journal of Hydrogen Energy, 41(19), 8146-8153.
  • Ali, A. M., Inayat, M., Zahrani, A. A., Shahzad, K., Shahbaz, M., Sulaiman, S. A., Sadig, H. (2022). Process optimization and economic evaluation of air gasification of Saudi Arabian date palm fronds for H2-rich syngas using response surface methodology. Fuel, 316, 123359.
  • Chianese, S., Loipersböck, J., Malits, M., Rauch, R., Hofbauer, H., Molino, A., Musmarra, D. (2015). Hydrogen from the high temperature water gas shift reaction with an industrial Fe/Cr catalyst using biomass gasification tar rich synthesis gas. Fuel Processing Technology, 132, 39-48.
  • Hoang, A.T., Huang, Z., Nizetic, S., Pandey, A., Nguyen, X.P., Luque, R., Ongi H.C., Said, Z., Le, T.H., Pham, V.V. (2022). Characteristics of hydrogen production from steam gasification of plant-originated lignocellulosic biomass and its prospects in Vietnam. International Journal of Hydrogen Energy, 47(7):4394-425. https://doi.org/10.1016/j.ijhydene.2021.11.091
  • Özbaş, E. E., Aksu, D., Ongen, A., Aydin, M. A., Ozcan, H. K. (2019). Hydrogen production via biomass gasification, and modeling by supervised machine learning algorithms. International Journal of Hydrogen Energy, 44(32), 17260-17268.
  • Zang, G., Jia, J., Shi, Y., Sharma, T., Ratner, A. (2019). Modeling and economic analysis of waste tire gasification in fluidized and fixed bed gasifiers. Waste Management, 89, 201-211.
  • Varank, G., Ongen, A., Guvenc, S.Y., Ozcan, H.K., Ozbas, E.E., Can Guven, E. (2021). Modeling and optimization of syngas production from biomass gasification. International Journal of Environmental Science and Technology. https://doi.org/10.1007/s13762-021-03374-3.
  • Öngen, A., Özbaş, E. E., Ozcan, H. K., Aydın, S., Karabağ, N. (2020). Biomass and Its Thermochemical Conversion: Can It Be a Road Map for Transition to 100% Renewable Energy?. Accelerating the Transition to a 100% Renewable Energy Era, 393-409.
  • Tanoh, T. S., Oumeziane, A. A., Lemonon, J., Escudero-Sanz, F. J., Salvador, S. (2021). A novel two-stage gasification strategy for nitrogen-free syngas production-pilot-scale experiments. Fuel Processing Technology, 217, 106821.
  • Tamosiunas, A., Chouchene, A., Valatkevicius, P., Gimzauskaite, D., Aikas, M., Uscila, R., Ghorbel, M., Jeguirim, M. (2017). The potential of thermal plasma gasification of olive pomace charcoal. Energies, doi:10.3390/en10050710.
  • González-Vázquez, M. D. P., García, R., Gil, M. V., Pevida, C., Rubiera, F. (2018). Comparison of the gasification performance of multiple biomass types in a bubbling fluidized bed. Energy Conversion and Management, 176, 309-323.
  • Chen, G. B., Wu, F. H., Fang, T. L., Lin, H. T., Chao, Y. C. (2021). A study of Co-gasification of sewage sludge and palm kernel shells. Energy, 218, 119532.
  • Gai, C., Guo, Y., Liu, T., Peng, N., Liu, Z. (2016). Hydrogen-rich gas production by steam gasification of hydrochar derived from sewage sludge. International Journal of Hydrogen Energy, 41(5), 3363-3372.
  • Feng, Y., Yu, T., Ma, K., Xu, G., Hu, Y., Chen, D. (2018). Effect of hydrothermal temperature on the steam gasification performance of sewage sludge: syngas quality and tar formation. Energy Fuels, 32, 6834−6838.
  • Lee, U., Dong, J., Chung, J.N. (2018). Experimental investigation of sewage sludge solid waste conversion to syngas using high temperature steam gasification. Energy Conversion and Management, 158, 430-436.
  • Hu, M., Gao, L., Chen, Z., Ma, C., Zhou, Y., Chen, J., Guo, D. (2016). Syngas production by catalytic in-situ steam co-gasification of wet sewage sludge and pine sawdust. Energy Conversion and Management, 111, 409-416.
  • Li, H., Chen, Z., Huo, C., Hu, M., Guo, D., Xiao, B. (2015). Effect of bioleaching on hydrogen-rich gas production by steam gasification of sewage sludge. Energy Conversion and Management, 106, 1212-1218.
  • Qin, L., Zeng, Z., Zeng, G., Lai, C., Duan, A., Xiao, R., Jiang, D. (2019). Cooperative catalytic performance of bimetallic Ni-Au nanocatalyst for highly efficient hydrogenation of nitroaromatics and corresponding mechanism insight. Applied Catalysis B: Environmental, 259, 118035.
  • Ardebili, N. O., Saadatmand, S., Niknam, V., Khavari-Nejad, R. A. (2014). The alleviating effects of selenium and salicylic acid in salinity exposed soybean. Acta Physiologiae Plantarum, 36, 3199-3205.
  • Im-orb, K. Simasatitkul, L. (2016). Analysis of synthesis gas production with a flexible H2/CO ratio from rice straw gasification. Fuel, 164:361-73.
  • Lampropoulos, A., Binas, V., Konsolakis, M., Marnellos, G. E. (2021). Steam gasification of Greek lignite and its chars by co-feeding CO2 toward syngas production with an adjustable H2/CO ratio. International Journal of Hydrogen Energy, 46(56), 28486-28500.
  • Kong, G., Zhang, X., Wang, K., Zhou, L., Wang, J., Zhang, X., Han, L. (2023). Tunable H2/CO syngas production from co-gasification integrated with steam reforming of sewage sludge and agricultural biomass: A experimental study. Applied Energy, 342, 121195.
  • Yang, X., Kan, T., Kheradmand, A., Xu, H., Strezov, V., Aibing, Y., Jiang, Y. (2021). Tunable syngas production from two-stage sorption-enhanced steam gasification of sewage sludge. Chemical Engineering Journal, 404-126069.
  • Park, C., Joshi, R. K., Falascino, E., Pottimurthy, Y., Xu, D., Wang, D., Fan, L. S. (2023). Biomass gasification: Sub-pilot operation of> 600 h with extensive tar cracking property and high purity syngas production at H2:CO ratio∼2 using moving bed redox looping technology. Fuel Processing Technology, 252, 107966.
  • Kong, G., Zhang, X., Wang, K., Zhou, L., Wang, J., Zhang, X., Han, L. (2023). Tunable H2/CO syngas production from co-gasification integrated with steam reforming of sewage sludge and agricultural biomass: A experimental study. Applied Energy, 342, 121195.
  • Lampropoulos, A., Binas, V., Konsolakis, M., Marnellos, G. E. (2021). Steam gasification of Greek lignite and its chars by co-feeding CO2 toward syngas production with an adjustable H2/CO ratio. International Journal of Hydrogen Energy, 46(56), 28486-28500.
  • Jeong, Y. S., Mun, T. Y., Kim, J. S. (2022). Two-stage gasification of dried sewage sludge: Effects of gasifying agent, bed material, gas cleaning system and Ni-coated distributor on product gas quality. Renewable Energy, 185, 208-216.
  • Pedrazzi, S., Santunione, G., Minarelli, A., Allesina, G. (2019). Energy and biochar co-production from municipal green waste gasification: A model applied to a landfill in the north of Italy. Energy Conversion and Management, 187, 274-282.
  • Narnaware, S. L., Srivastava, N. S. L., Vahora, S. (2017). Gasification: An alternative solution for energy recovery and utilization of vegetable market waste. Waste Management & Research, 35(3), 276-284.
  • Saravanakumar, A., Sudha, M. R., Pradeshwaran, V., Ling, J. L. J., Lee, S. H. (2024). Green circular economy of co-gasification with municipal solid waste and wood waste in a novel downdraft gasifier with rotating grate. Chemical Engineering Journal, 479, 147987.
  • Aguado, R., Baccioli, A., Liponi, A., Vera, D. (2023). Continuous decentralized hydrogen production through alkaline water electrolysis powered by an oxygen-enriched air integrated biomass gasification combined cycle. Energy Conversion and Management, 289, 117149.

Gazlaştırma Prosesi ile Karma Atıklardan Hidrojence Zengin Sentez Gazı Üretimi

Year 2025, Volume: 8 Issue: 1, 69 - 80, 31.07.2025
https://doi.org/10.55581/ejeas.1715421

Abstract

Bu çalışma, çeşitli biyokütle temelli atık akışlarının gazlaştırılması sürecinde soğuk gaz verimliliği ile H₂/CO oranı arasındaki ilişkiyi incelemekte olup, üretilen sentez gazın enerji ve kimyasal performansının optimize edilmesini amaçlamaktadır. Deneyler; yeşil atık, zeytin posası ve arıtma çamuru kullanılarak farklı sıcaklıklar, gazlaştırıcı ajan türleri ve debi koşulları altında gerçekleştirilmiştir. Elde edilen sentez gazın ısıl değeri 5–14 MJ/kg arasında değişirken, gaz dönüşüm verimi %28 ila %68 arasında bulunmuştur. En yüksek sentez gaz kalitesi yüksek sıcaklık ve düşük gazlaştırıcı debisinde elde edilmiştir. H₂/CO oranı yeşil atık için 5’e, zeytin posası için 4’e ve arıtma çamuru için 6’ya kadar ulaşmıştır; bu durum farklı atık türlerinden hidrojen açısından zengin sentez gazı üretilebildiğini göstermektedir. Soğuk gaz verimliliği sırasıyla yeşil atıkta %92, zeytin posasında %62 ve arıtma çamurunda %73 olarak kaydedilmiştir. Bu sonuçlar, atığa özgü işletim optimizasyonlarının sentez gaz kompozisyonunu ve verimliliğini önemli ölçüde iyileştirebileceğini ortaya koymaktadır. Bu araştırma, farklı işletme koşulları altında karışık atıkların gazlaştırılması konusunda karşılaştırmalı bir değerlendirme sunarak atıktan enerji üretimi literatürüne katkı sağlamaktadır. Çalışmanın yenilikçi yönü, çoklu atık türlerinde enerji verimliliği ile H₂/CO dengesinin birlikte değerlendirilmesidir. Üretilen sentez gaz; gaz türbinleri ve içten yanmalı motorlar gibi enerji sistemlerinde doğrudan kullanılabileceği gibi, metanol ve amonyak gibi kimyasal sentez süreçlerinde ara ürün olarak da değerlendirilebilir. Bulgular, sürdürülebilir atık yönetimi ve kaynak geri kazanımı açısından umut verici bir yaklaşım sunmaktadır.

References

  • Basu, P. (2010). Biomass gasification and pyrolysis: practical design and theory. Academic press, Kidlington, Oxford, UK.
  • Khan, Z., Javed, F., Shamair, Z., Hafeez, A., Fazal, T., Aslam, A., Rehman, F. (2021). Current developments in esterification reaction: A review on process and parameters. Journal of Industrial and Engineering Chemistry, 103, 80-101.
  • Lv, D., Xu, M., Liu, X., Zhan, Z., Li, Z., Yao, H. (2010). Effect of cellulose, lignin, alkali and alkaline earth metallic species on biomass pyrolysis and gasification. Fuel Processing Technology, 91(8), 903-909.
  • Fang, S., Deng, Z., Lin, Y., Huang, Z., Ding, L., Deng, L., Huang, H. (2021). Nitrogen migration in sewage sludge chemical looping gasification using copper slag modified by NiO as an oxygen carrier. Energy, 228, 120448.
  • Shen, Y., Liu, Y., Yu, H. (2018). Enhancement of the quality of syngas from catalytic steam gasification of biomass by the addition of methane/model biogas. International Journal of Hydrogen Energy, 43(45), 20428-20437.
  • Zhang, L., Wu, W., Siqu, N., Dekyi, T., Zhang, Y. (2019). Thermochemical catalytic-reforming conversion of municipal solid waste to hydrogen-rich synthesis gas via carbon supported catalysts. Chemical Engineering Journal, 361, 1617–1629. https://doi.org/10.1016/j.cej.2018.12.115.
  • Lu, W., Cao, Q., Xu, B., Adidharma, H., Gasem, K., Argyle, M., Fan, M. (2020). A new approach of reduction of carbon dioxide emission and optimal use of carbon and hydrogen content for the desired syngas production from coal. Journal of Cleaner Production, 265, 121786.
  • Li, Y., Wang, Z., He, Z., Luo, S., Su, D., Jiang, H., Xu, Q. (2020). Effects of temperature, hydrogen/carbon monoxide ratio and trace element addition on methane production performance from syngas biomethanation. Bioresource Technology, 295, 122296.
  • Shan, X., Qian, Y., Zhu, L., Lu, X. (2016). Effects of EGR rate and hydrogen/carbon monoxide ratio on combustion and emission characteristics of biogas/diesel dual fuel combustion engine. Fuel, 181, 1050-1057.
  • Chiodini, A., Bua, L., Carnelli, L., Zwart, R., Vreugdenhil, B., Vocciante, M. (2017). Enhancements in biomass-to-liquid processes: gasification aiming at high hydrogen/carbon monoxide ratios for direct Fischer-Tropsch synthesis applications. Biomass and Bioenergy, 106, 104-114.
  • Jiang, Y., Yan, H., Guo, Q., Wang, F., Wang, J. (2019). Multiple synergistic effects exerted by coexisting sodium and iron on catalytic steam gasification of coal char. Fuel Processing Technology, 191, 1-10.
  • Yang, X., Yu, M., Zheng, K., Wan, S., Wang, L. (2019). An experimental investigation into the behavior of premixed flames of hydrogen/carbon monoxide/air mixtures in a half-open duct. Fuel, 237, 619-629.
  • Lu, W., Cao, Q., Xu, B., Adidharma, H., Gasem, K., Argyle, M., Fan, M. (2020). A new approach of reduction of carbon dioxide emission and optimal use of carbon and hydrogen content for the desired syngas production from coal. Journal of Cleaner Production, 265, 121786.
  • Tanoh, T. S., Oumeziane, A. A., Lemonon, J., Escudero-Sanz, F. J., Salvador, S. (2021). A novel two-stage gasification strategy for nitrogen-free syngas production-pilot-scale experiments. Fuel Processing Technology, 217, 106821.
  • Pedrazzi, S., Santunione, G., Minarelli, A., Allesina, G. (2019). Energy and biochar co-production from municipal green waste gasification: A model applied to a landfill in the north of Italy. Energy Conversion and Management, 187, 274-282.
  • Arena, U. (2012). Process and technological aspects of municipal solid waste gasification. A review. Waste management, 32(4), 625-639.
  • Costa, P., Pinto, F., André, R. N., & Marques, P. (2021). Integration of Gasification and Solid Oxide Fuel Cells (SOFCs) for Combined Heat and Power (CHP). Processes 2021, 9, 254.
  • Jahn, L. G., Jahl, L. G., Bowers, B. B., & Sullivan, R. C. (2021). Morphology of organic carbon coatings on biomass-burning particles and their role in reactive gas uptake. ACS Earth and Space Chemistry, 5(9), 2184-2195.
  • Puig-Arnavat, M., Bruno, J.C., Coronas, A. (2010). Review and analysis of biomass gasification models. Renewable and Sustainable Energy Reviews, 14,2841–2851.
  • Chen, G., Liu, F., Guo, X., Zhang, Y., Yan, B., Cheng, Z. (2018). Co-gasification of acid hydrolysis residues and sewage sludge in a downdraft fixed gasifier with CaO as an in-bed additive. Energy Fuel, 32(5):5893–900.
  • Zhang, Y., Wan, L., Guan, J., Xiong, Q. A., Zhang, S., Jin, X. (2020). A review on biomass gasification: Effect of main parameters on char generation and reaction. Energy & Fuels, 34(11), 13438-13455.
  • Mutlu, O., Ghose, S., Gómez-Luna, J., Ausavarungnirun, R. (2019). Processing data where it makes sense: Enabling in-memory computation. Microprocessors and Microsystems, 67, 28-41.
  • Channiwala, S. A., Parikh, P. P. (2002). A unified correlation for estimating HHV of solid, liquid and gaseous fuels. Fuel, 81(8), 1051-1063.
  • Loha, C., Chatterjee, P. K., Chattopadhyay, H. (2011). Performance of fluidized bed steam gasification of biomass–modeling and experiment. Energy Conversion and Management, 52(3), 1583-1588.
  • Janajreh, I., Adeyemi, I., Raza, S. S., Ghenai, C. (2021). A review of recent developments and future prospects in gasification systems and their modeling. Renewable and Sustainable Energy Reviews, 138, 110505.
  • Rodriguez-Alejandro, D. A., Nam, H., Maglinao Jr, A. L., Capareda, S. C., Aguilera-Alvarado, A. F. (2016). Development of a modified equilibrium model for biomass pilot-scale fluidized bed gasifier performance predictions. Energy, 115, 1092-1108.
  • Saha, P., Uddin, M. H., Reza, M. T. (2019). A steady-state equilibrium-based carbon dioxide gasification simulation model for hydrothermally carbonized cow manure. Energy Conversion and Management, 191, 12-22.
  • AlNouss, A., McKay, G., & Al-Ansari, T. (2020). Production of syngas via gasification using optimum blends of biomass. Journal of Cleaner Production, 242, 118499.
  • Basu, P. (2010). Biomass gasification and pyrolysis: practical design and theory. Academic press, Kidlington, Oxford, UK.
  • Engineering ToolBox, (2003). Fuels- Higher and Lower Calorific Values. https://www.engineeringtoolbox.com/fuels-higher-calorific-values-d_169.html., [Ziyaret Tarihi: 20.04.2024].
  • Engineering ToolBox, (2018). Carbon Monoxide-Density and Specific Weight vs. Temperature and Pressure. https://www.engineeringtoolbox.com/carbon-monoxide-density-specific-weight-temperature-pressure-d_2092.html , [Ziyaret Tarihi: 20.04.2024].
  • Tezer, O., Karabag, N., Ozturk, M. U., Ongen, A., Ayol, A. (2022a). Comparison of green waste gasification performance in updraft and downdraft fixed bed gasifiers. International Journal of Hydrogen Energy, 47(74), 31864-31876.
  • Varank, G., Ongen, A., Guvenc, S.Y., Ozcan, H.K., Ozbas, E.E., Can Guven, E. (2021). Modeling and optimization of syngas production from biomass gasification. International Journal of Environmental Science and Technology. https://doi.org/10.1007/s13762-021-03374-3.
  • Öngen, A., Ozcan, H. K., Ozbas, E. E. (2016). Gasification of biomass and treatment sludge in a fixed bed gasifier. International Journal of Hydrogen Energy, 41(19), 8146-8153.
  • Ali, A. M., Inayat, M., Zahrani, A. A., Shahzad, K., Shahbaz, M., Sulaiman, S. A., Sadig, H. (2022). Process optimization and economic evaluation of air gasification of Saudi Arabian date palm fronds for H2-rich syngas using response surface methodology. Fuel, 316, 123359.
  • Chianese, S., Loipersböck, J., Malits, M., Rauch, R., Hofbauer, H., Molino, A., Musmarra, D. (2015). Hydrogen from the high temperature water gas shift reaction with an industrial Fe/Cr catalyst using biomass gasification tar rich synthesis gas. Fuel Processing Technology, 132, 39-48.
  • Hoang, A.T., Huang, Z., Nizetic, S., Pandey, A., Nguyen, X.P., Luque, R., Ongi H.C., Said, Z., Le, T.H., Pham, V.V. (2022). Characteristics of hydrogen production from steam gasification of plant-originated lignocellulosic biomass and its prospects in Vietnam. International Journal of Hydrogen Energy, 47(7):4394-425. https://doi.org/10.1016/j.ijhydene.2021.11.091
  • Özbaş, E. E., Aksu, D., Ongen, A., Aydin, M. A., Ozcan, H. K. (2019). Hydrogen production via biomass gasification, and modeling by supervised machine learning algorithms. International Journal of Hydrogen Energy, 44(32), 17260-17268.
  • Zang, G., Jia, J., Shi, Y., Sharma, T., Ratner, A. (2019). Modeling and economic analysis of waste tire gasification in fluidized and fixed bed gasifiers. Waste Management, 89, 201-211.
  • Varank, G., Ongen, A., Guvenc, S.Y., Ozcan, H.K., Ozbas, E.E., Can Guven, E. (2021). Modeling and optimization of syngas production from biomass gasification. International Journal of Environmental Science and Technology. https://doi.org/10.1007/s13762-021-03374-3.
  • Öngen, A., Özbaş, E. E., Ozcan, H. K., Aydın, S., Karabağ, N. (2020). Biomass and Its Thermochemical Conversion: Can It Be a Road Map for Transition to 100% Renewable Energy?. Accelerating the Transition to a 100% Renewable Energy Era, 393-409.
  • Tanoh, T. S., Oumeziane, A. A., Lemonon, J., Escudero-Sanz, F. J., Salvador, S. (2021). A novel two-stage gasification strategy for nitrogen-free syngas production-pilot-scale experiments. Fuel Processing Technology, 217, 106821.
  • Tamosiunas, A., Chouchene, A., Valatkevicius, P., Gimzauskaite, D., Aikas, M., Uscila, R., Ghorbel, M., Jeguirim, M. (2017). The potential of thermal plasma gasification of olive pomace charcoal. Energies, doi:10.3390/en10050710.
  • González-Vázquez, M. D. P., García, R., Gil, M. V., Pevida, C., Rubiera, F. (2018). Comparison of the gasification performance of multiple biomass types in a bubbling fluidized bed. Energy Conversion and Management, 176, 309-323.
  • Chen, G. B., Wu, F. H., Fang, T. L., Lin, H. T., Chao, Y. C. (2021). A study of Co-gasification of sewage sludge and palm kernel shells. Energy, 218, 119532.
  • Gai, C., Guo, Y., Liu, T., Peng, N., Liu, Z. (2016). Hydrogen-rich gas production by steam gasification of hydrochar derived from sewage sludge. International Journal of Hydrogen Energy, 41(5), 3363-3372.
  • Feng, Y., Yu, T., Ma, K., Xu, G., Hu, Y., Chen, D. (2018). Effect of hydrothermal temperature on the steam gasification performance of sewage sludge: syngas quality and tar formation. Energy Fuels, 32, 6834−6838.
  • Lee, U., Dong, J., Chung, J.N. (2018). Experimental investigation of sewage sludge solid waste conversion to syngas using high temperature steam gasification. Energy Conversion and Management, 158, 430-436.
  • Hu, M., Gao, L., Chen, Z., Ma, C., Zhou, Y., Chen, J., Guo, D. (2016). Syngas production by catalytic in-situ steam co-gasification of wet sewage sludge and pine sawdust. Energy Conversion and Management, 111, 409-416.
  • Li, H., Chen, Z., Huo, C., Hu, M., Guo, D., Xiao, B. (2015). Effect of bioleaching on hydrogen-rich gas production by steam gasification of sewage sludge. Energy Conversion and Management, 106, 1212-1218.
  • Qin, L., Zeng, Z., Zeng, G., Lai, C., Duan, A., Xiao, R., Jiang, D. (2019). Cooperative catalytic performance of bimetallic Ni-Au nanocatalyst for highly efficient hydrogenation of nitroaromatics and corresponding mechanism insight. Applied Catalysis B: Environmental, 259, 118035.
  • Ardebili, N. O., Saadatmand, S., Niknam, V., Khavari-Nejad, R. A. (2014). The alleviating effects of selenium and salicylic acid in salinity exposed soybean. Acta Physiologiae Plantarum, 36, 3199-3205.
  • Im-orb, K. Simasatitkul, L. (2016). Analysis of synthesis gas production with a flexible H2/CO ratio from rice straw gasification. Fuel, 164:361-73.
  • Lampropoulos, A., Binas, V., Konsolakis, M., Marnellos, G. E. (2021). Steam gasification of Greek lignite and its chars by co-feeding CO2 toward syngas production with an adjustable H2/CO ratio. International Journal of Hydrogen Energy, 46(56), 28486-28500.
  • Kong, G., Zhang, X., Wang, K., Zhou, L., Wang, J., Zhang, X., Han, L. (2023). Tunable H2/CO syngas production from co-gasification integrated with steam reforming of sewage sludge and agricultural biomass: A experimental study. Applied Energy, 342, 121195.
  • Yang, X., Kan, T., Kheradmand, A., Xu, H., Strezov, V., Aibing, Y., Jiang, Y. (2021). Tunable syngas production from two-stage sorption-enhanced steam gasification of sewage sludge. Chemical Engineering Journal, 404-126069.
  • Park, C., Joshi, R. K., Falascino, E., Pottimurthy, Y., Xu, D., Wang, D., Fan, L. S. (2023). Biomass gasification: Sub-pilot operation of> 600 h with extensive tar cracking property and high purity syngas production at H2:CO ratio∼2 using moving bed redox looping technology. Fuel Processing Technology, 252, 107966.
  • Kong, G., Zhang, X., Wang, K., Zhou, L., Wang, J., Zhang, X., Han, L. (2023). Tunable H2/CO syngas production from co-gasification integrated with steam reforming of sewage sludge and agricultural biomass: A experimental study. Applied Energy, 342, 121195.
  • Lampropoulos, A., Binas, V., Konsolakis, M., Marnellos, G. E. (2021). Steam gasification of Greek lignite and its chars by co-feeding CO2 toward syngas production with an adjustable H2/CO ratio. International Journal of Hydrogen Energy, 46(56), 28486-28500.
  • Jeong, Y. S., Mun, T. Y., Kim, J. S. (2022). Two-stage gasification of dried sewage sludge: Effects of gasifying agent, bed material, gas cleaning system and Ni-coated distributor on product gas quality. Renewable Energy, 185, 208-216.
  • Pedrazzi, S., Santunione, G., Minarelli, A., Allesina, G. (2019). Energy and biochar co-production from municipal green waste gasification: A model applied to a landfill in the north of Italy. Energy Conversion and Management, 187, 274-282.
  • Narnaware, S. L., Srivastava, N. S. L., Vahora, S. (2017). Gasification: An alternative solution for energy recovery and utilization of vegetable market waste. Waste Management & Research, 35(3), 276-284.
  • Saravanakumar, A., Sudha, M. R., Pradeshwaran, V., Ling, J. L. J., Lee, S. H. (2024). Green circular economy of co-gasification with municipal solid waste and wood waste in a novel downdraft gasifier with rotating grate. Chemical Engineering Journal, 479, 147987.
  • Aguado, R., Baccioli, A., Liponi, A., Vera, D. (2023). Continuous decentralized hydrogen production through alkaline water electrolysis powered by an oxygen-enriched air integrated biomass gasification combined cycle. Energy Conversion and Management, 289, 117149.
There are 64 citations in total.

Details

Primary Language English
Subjects Waste Management, Reduction, Reuse and Recycling, Solid and Hazardous Wastes
Journal Section Research Articles
Authors

Atakan Öngen 0000-0002-9043-7382

Nazlıcan Yeşilova 0000-0001-6276-3597

Publication Date July 31, 2025
Submission Date June 6, 2025
Acceptance Date July 14, 2025
Published in Issue Year 2025 Volume: 8 Issue: 1