Review
BibTex RIS Cite

Plastik Atık Pirolizi Araştırmaları: Bilimsel Eğilimler ve Çevresel Etkiler Üzerine Kapsamlı Bir Bibliyometrik Analiz

Year 2025, Volume: 8 Issue: 1, 39 - 54, 31.07.2025
https://doi.org/10.55581/ejeas.1715426

Abstract

Plastik atıkların pirolizi, atıkların yararlı yakıt ve kimyasallara dönüştürülmesi yoluyla plastik kirliliğini yönetmek için umut verici bir yöntemdir. Bu çalışma, 2000-2025 yılları arasında Web of Science veri tabanındaki 2.019 makale üzerinden plastik atık pirolizi üzerine yapılan araştırmaları analiz etmektedir. Bibliyometrik araçlar kullanılarak yayın eğilimleri, öne çıkan yazarlar ve kurumlar, popüler dergiler, ana araştırma konuları ve uluslararası iş birlikleri incelenmiştir. Bulgular, 2017 yılından itibaren çevresel farkındalığın artması ve yeni politikaların etkisiyle araştırmalarda hızlı bir artış olduğunu göstermektedir. En fazla katkı sağlayan ülkeler Çin, Hindistan, ABD ve İspanya, Polonya ve İtalya gibi Avrupa ülkeleridir. Öne çıkan kurumlar arasında Ghent Üniversitesi ve Malezya Teknoloji Üniversitesi yer almaktadır. Temel araştırma alanları arasında katalitik ve eş-piroliz teknikleri, reaktör tasarımı, ürün analizi ve çevresel etkiler bulunmaktadır. Yeni araştırma eğilimleri arasında mikrodalga destekli piroliz, hidrojen üretimi ve döngüsel ekonomi yaklaşımları öne çıkmaktadır. Tüm ilerlemelere rağmen, süreç verimliliğinin artırılması, çevresel etkilerin değerlendirilmesi ve yeterince araştırılmamış plastik türlerine odaklanılması gibi zorluklar sürmektedir. Bu çalışma, mühendislik ve çevre bilimlerini birleştiren iş birliğine dayalı ve disiplinler arası yapısıyla bu alandaki gelişmeleri özetlemekte; araştırmacılar ve karar vericiler için önemli konu başlıkları ve araştırma boşluklarını ortaya koymaktadır. Küresel plastik atık sorununa çözüm sağlamak ve sürdürülebilir kaynak kullanımı hedefini desteklemek için etkili ve büyük ölçekli piroliz teknolojilerinin geliştirilmesi adına sürekli araştırma ve iş birliği gerekmektedir.

References

  • Qureshi, M. S., Oasmaa, A., Pihkola, H., Deviatkin, I., Tenhunen, A., Mannila, J., Minkkinen, H., Pohjakallio, M., & Laine-Ylijoki, J. (2020). Pyrolysis of plastic waste: Opportunities and challenges. Journal of Analytical and Applied Pyrolysis, 152, 104804.
  • Miandad, R., Barakat, M. A., Aburiazaiza, A. S., Rehan, M., & Nizami, A. S. (2016). Catalytic pyrolysis of plastic waste: A review. Process Safety and Environmental Protection, 102, 822–838.
  • Budsaereechai, K., Ngernyen, Y., & Hunt, A. J. (2019). Catalytic pyrolysis of plastic waste for fuel production: Low-cost bentonite catalysts. Sustainable Energy & Fuels, 3(3), 594–605. https://doi.org/10.1039/C8SE00432C
  • Anuar Sharuddin, S. D., Abnisa, F., Wan Daud, W. M. A., & Aroua, M. K. (2017). Energy recovery from pyrolysis of plastic waste: Study on non-recycled plastics (NRP) data as the real measure of plastic waste. Energy Conversion and Management, 148, 925–934.
  • Singh, R. K., & Ruj, B. (2016). Time and temperature depended fuel gas generation from pyrolysis of real world municipal plastic waste. Fuel, 174, 164–171.
  • Dogu, O., Pelucchi, M., Van de Vijver, R., Van Steenberge, P. H. M., D’hooge, D. R., Cuoci, A., Mehl, M., Frassoldati, A., Faravelli, T., & Van Geem, K. M. (2021). The chemistry of chemical recycling of solid plastic waste via pyrolysis and gasification: State-of-the-art, challenges, and future directions. Progress in Energy and Combustion Science, 84, 100901.
  • Zhang, X., Yan, C., Ma, Z., Li, H., Chen, G., & Wang, X. (2022). Insights into the co-pyrolysis kinetics and product mechanism of polyethylene, polypropylene, and their mixtures. Journal of Analytical and Applied Pyrolysis, 164, 105562.
  • Wu, C., & Williams, P. T. (2010). Pyrolysis–gasification of plastics, mixed plastics and real-world plastic waste with and without Ni–Mg–Al catalyst. Fuel, 89(11), 3022–3032.
  • Adrados, A., de Marco, I., Caballero, B. M., López, A., Laresgoiti, M. F., & Torres, A. (2012). Pyrolysis of plastic packaging waste: A comparison of plastic residuals from material recovery facilities with simulated plastic waste. Waste Management, 32(4), 826–832.
  • Kusenberg, M., Zayoud, A., Roosen, M., Dao Thi, H., Seifali Abbas-Abadi, M., Eschenbacher, A., Kresovic, U., De Meester, S., & Van Geem, K. M. (2022). A comprehensive experimental investigation of plastic waste pyrolysis oil quality and its dependence on the plastic waste composition. Fuel Processing Technology, 227, 107090.
  • Miandad, R., Barakat, M. A., Aburiazaiza, A. S., Rehan, M., Ismail, I. M. I., & Nizami, A. S. (2017). Effect of plastic waste types on pyrolysis liquid oil. International Biodeterioration & Biodegradation, 119, 239–252.
  • Harussani, M. M., Saptoadi, H., Idris, A., & Yoshikawa, K. (2022). Pyrolysis of COVID-19 polypropylene waste: Kinetic study, char and oil characterization. Journal of Environmental Chemical Engineering, 10(3), 107390. https://doi.org/10.1016/j.jece.2022.107390
  • Dai, L., Zhou, N., Lv, Y., Cheng, Y., Wang, Y., Liu, Y., Cobb, K., Chen, P., Lei, H., & Ruan, R. (2022). Pyrolysis technology for plastic waste recycling: A state-of-the-art review. Progress in Energy and Combustion Science, 93, 101021.
  • Miandad, R., Rehan, M., Barakat, M. A., Aburiazaiza, A. S., Khan, H., Ismail, I. M. I., Dhavamani, J., Gardy, J., Hassanpour, A., & Nizami, A.-S. (2019). Catalytic Pyrolysis of Plastic Waste: Moving Toward Pyrolysis Based Biorefineries. Frontiers in Energy Research, 7, 27.
  • Al-Salem, S. M., Antelava, A., Constantinou, A., Manos, G., & Dutta, A. (2017). A review on thermal and catalytic pyrolysis of plastic solid waste (PSW). Journal of Environmental Management, 197, 177–198. https://doi.org/10.1016/j.jenvman.2017.03.084
  • Kalargaris, I., Tian, G., & Gu, S. (2017). The utilisation of oils produced from plastic waste at different pyrolysis temperatures in a DI diesel engine. Energy, 131, 179–185.
  • Ryu, H. W., Kim, D. H., Jae, J., Lam, S. S., Park, E. D., & Park, Y.-K. (2020). Recent advances in catalytic co-pyrolysis of biomass and plastic waste for the production of petroleum-like hydrocarbons. Bioresource Technology, 310, 123473.
  • Miandad, R., Barakat, M. A., Rehan, M., Aburiazaiza, A. S., Ismail, I. M. I., & Nizami, A. S. (2017). Plastic waste to liquid oil through catalytic pyrolysis using natural and synthetic zeolite catalysts. Waste Management, 69, 66–78.
  • Ding, K., Liu, S., Huang, Y., Zhou, N., Peng, P., Wang, Y., Chen, P., & Ruan, R. (2019). Catalytic microwave-assisted pyrolysis of plastic waste over NiO and HY for gasoline-range hydrocarbons production. Energy Conversion and Management, 196, 1316–1325.
  • Almeida, M. F., & Marques, M. M. (2016). Thermal and catalytic pyrolysis of plastic waste. In M. F. Almeida & M. M. Marques (Eds.), Waste Biorefinery (pp. 511–548). Elsevier. https://doi.org/10.1016/B978-0-12-802980-0.00019-4
  • Wu, C., & Williams, P. T. (2010). Pyrolysis–gasification of plastics, mixed plastics and real-world plastic waste with and without Ni–Mg–Al catalyst. Fuel, 89(11), 3022–3032.
  • Yao, D., Li, H., Dai, Y., & Wang, C.-H. (2021). Impact of temperature on the activity of Fe-Ni catalysts for pyrolysis and decomposition processing of plastic waste. Chemical Engineering Journal, 408, 127268.
  • Odoi-Yorke, F., Agyekum, E. B., Rashid, F. L., Davis, J. E., & Togun, H. (2025). Trends and determinates of hydrogen energy acceptance, or adoption research: A review of two decades of research. Sustainable Energy Technologies and Assessments, 73, 104159.
  • Zhang, L., Han, K., Wang, Y., Zhu, Y., Zhong, S., & Zhong, G. (2023). A bibliometric analysis of Stirling engine and in-depth review of its application for energy supply systems. Energy Reviews, 100048.
  • Göçer, F., & Büyüksaatçı Kiriş, S. (2023). A bibliometric analysis of quality control charts. İstanbul Nişantaşı Üniversitesi Sosyal Bilimler Dergisi, 11(2), 263-282. https://doi.org/10.52122/nisantasisbd.1256691
  • Bastian, M., Heymann, S., & Jacomy, M. (2009, March). Gephi: an open source software for exploring and manipulating networks. In Proceedings of the international AAAI conference on web and social media (Vol. 3, No. 1, pp. 361-362).
  • Van Eck, N., & Waltman, L. (2010). Software survey: VOSviewer, a computer program for bibliometric mapping. scientometrics, 84(2), 523-538.
  • Liu, X., Zhang, J., & Guo, C. (2013). Full‐text citation analysis: A new method to enhance scholarly networks. Journal of the American Society for Information Science and Technology, 64(9), 1852-1863.
  • Aria, M., & Cuccurullo, C. (2017). bibliometrix: An R-tool for comprehensive science mapping analysis. Journal of informetrics, 11(4), 959-975.
  • Cobo, M. J., López‐Herrera, A. G., Herrera‐Viedma, E., & Herrera, F. (2011). Science mapping software tools: Review, analysis, and cooperative study among tools. Journal of the American Society for information Science and Technology, 62(7), 1382-1402.
  • Li, K., Rollins, J., & Yan, E. (2018). Web of Science use in published research and review papers 1997–2017: A selective, dynamic, cross-domain, content-based analysis. Scientometrics, 115(1), 1-20.
  • Li, P. F., Xu, Y., & Chen, Q. B. (2024). Global trends and research characteristics on CO2 capture and conversion from 2000 to 2023: A bibliometric review. Sustainable Energy Technologies and Assessments, 67, 103836.
  • Armenise, S., Wong, S. L., Ramírez-Velásquez, J. M., Launay, F., Wuebben, D., Ngadi, N., Rams, J., & Muñoz, M. (2021). Plastic waste recycling via pyrolysis: A bibliometric survey and literature review. Journal of Analytical and Applied Pyrolysis, 158, 105265.
  • Gonzalez-Aguilar, A. M., Pérez-García, V., & Riesco-Ávila, J. M. (2023). A thermo-catalytic pyrolysis of polystyrene waste review: A systematic, statistical, and bibliometric approach. Polymers, 15(6), 1582.
  • Klippel, M. S., & Martins, M. F. (2022). Physicochemical assessment of waxy products directly recovered from plastic waste pyrolysis: Review and synthesis of characterization techniques. Polymer Degradation and Stability, 204, 110090.
  • Ayub, Y., & Ren, J. (2024). Revealing the synergistic effect of feedstock compositions and process parameters in co-pyrolysis: A review based on bibliometric analysis and experimental studies. Journal of Cleaner Production, 459, 142540.
  • Chang, Y. H., Chong, W. W. F., Liew, C. S., Wong, K. Y., Tan, H. Y., Woon, K. S., Tan, J. P., & Mong, G. R. (2025). Unveiling the energy dynamics of plastic and sludge co-pyrolysis: A review and bibliometric exploration on catalysts and bioenergy generation potential. Journal of Analytical and Applied Pyrolysis, 186, 106885.
  • Sivan, D., Zafar, S., Rohit, R. V., Raj, V. R., Satheeshkumar, K., Raj, V., Moorthy, K., Misnon, I. I., Ramakrishna, S., & Jose, R. (2024). Towards circularity of plastics: A materials informatics perspective. Materials Today Sustainability, 28, 101001.
  • Nabgan, W., Ikram, M., Alhassan, M., Owgi, A. H. K., Van Tran, T., Parashuram, L., ... & Nordin, M. L. (2023). Bibliometric analysis and an overview of the application of the non-precious materials for pyrolysis reaction of plastic waste. Arabian Journal of Chemistry, 16(6), 104717.
  • Wong, S. L., Mong, G. R., Nyakuma, B. B., Ngadi, N., Wong, K. Y., Hernández, M. M., ... & Chong, C. T. (2022). Upcycling of plastic waste to carbon nanomaterials: a bibliometric analysis (2000–2019). Clean Technologies and Environmental Policy, 24(3), 739-759.
  • Ragaert, K., Delva, L., & Van Geem, K. (2017). Mechanical and chemical recycling of solid plastic waste. Waste Management, 69, 24–58.
  • Sharuddin, S. D. A., Abnisa, F., Daud, W. M. A. W., & Aroua, M. K. (2016). A review on pyrolysis of plastic wastes. Energy conversion and management, 115, 308-326.
  • Li, J., Liu, H., & Chen, J. P. (2018). Microplastics in freshwater systems: A review on occurrence, environmental effects, and methods for microplastics detection. Water research, 137, 362-374.
  • Vollmer, I., Jenks, M. J., Roelands, M. C., White, R. J., Van Harmelen, T., De Wild, P., ... & Weckhuysen, B. M. (2020). Beyond mechanical recycling: giving new life to plastic waste. Angewandte Chemie International Edition, 59(36), 15402-15423.
  • Al-Salem, S. M., Antelava, A., Constantinou, A., Manos, G., & Dutta, A. (2017). A review on thermal and catalytic pyrolysis of plastic solid waste (PSW). Journal of environmental management, 197, 177-198.
  • Ellis, L. D., Rorrer, N. A., Sullivan, K. P., Otto, M., McGeehan, J. E., Román-Leshkov, Y., ... & Beckham, G. T. (2021). Chemical and biological catalysis for plastics recycling and upcycling. Nature Catalysis, 4(7), 539-556.
  • Panda, A. K., Singh, R. K., & Mishra, D. K. (2010). Thermolysis of waste plastics to liquid fuel: A suitable method for plastic waste management and manufacture of value added products—A world prospective. Renewable and Sustainable Energy Reviews, 14(1), 233-248.
  • Miandad, R., Barakat, M. A., Aburiazaiza, A. S., Rehan, M., & Nizami, A. S. (2016). Catalytic pyrolysis of plastic waste: A review. Process Safety and Environmental Protection, 102, 822-838.
  • Thiounn, T., & Smith, R. C. (2020). Advances and approaches for chemical recycling of plastic waste. Journal of Polymer Science, 58(10), 1347-1364.
  • Wong, S. L., Ngadi, N., Abdullah, T. A. T., & Inuwa, I. M. (2015). Current state and future prospects of plastic waste as source of fuel: A review. Renewable and sustainable energy reviews, 50, 1167-1180.

Plastic Waste Pyrolysis Research: A Comprehensive Bibliometric Analysis of Scientific Trends and Environmental Implications

Year 2025, Volume: 8 Issue: 1, 39 - 54, 31.07.2025
https://doi.org/10.55581/ejeas.1715426

Abstract

Plastic waste pyrolysis is a promising method to manage plastic pollution by turning waste into useful fuels and chemicals. This study analyzes research on plastic waste pyrolysis from 2000 to 2025 using 2,019 articles from the Web of Science database. Using bibliometric tools, it examines trends in publications, key authors and institutions, popular journals, main research topics, and international cooperation. Findings show a rapid increase in research since 2017, driven by growing environmental awareness and new policies. The top contributing countries are China, India, the United States, and European countries such as Spain, Poland, and Italy. Leading institutions include Ghent University and Universiti Teknologi Malaysia. Main research areas cover catalytic and co-pyrolysis techniques, reactor design, product analysis, and environmental effects. New trends focus on microwave-assisted pyrolysis, hydrogen production, and circular economy approaches. Despite progress, challenges remain such as improving process efficiency, assessing environmental impacts, and addressing under-researched plastics. The study highlights the collaborative and interdisciplinary nature of the field, combining engineering and environmental science. This overview helps researchers and decision-makers understand key topics and gaps. Continued research and cooperation are needed to develop effective, large-scale pyrolysis technologies that can help solve the global plastic waste problem and support sustainable resource use.

References

  • Qureshi, M. S., Oasmaa, A., Pihkola, H., Deviatkin, I., Tenhunen, A., Mannila, J., Minkkinen, H., Pohjakallio, M., & Laine-Ylijoki, J. (2020). Pyrolysis of plastic waste: Opportunities and challenges. Journal of Analytical and Applied Pyrolysis, 152, 104804.
  • Miandad, R., Barakat, M. A., Aburiazaiza, A. S., Rehan, M., & Nizami, A. S. (2016). Catalytic pyrolysis of plastic waste: A review. Process Safety and Environmental Protection, 102, 822–838.
  • Budsaereechai, K., Ngernyen, Y., & Hunt, A. J. (2019). Catalytic pyrolysis of plastic waste for fuel production: Low-cost bentonite catalysts. Sustainable Energy & Fuels, 3(3), 594–605. https://doi.org/10.1039/C8SE00432C
  • Anuar Sharuddin, S. D., Abnisa, F., Wan Daud, W. M. A., & Aroua, M. K. (2017). Energy recovery from pyrolysis of plastic waste: Study on non-recycled plastics (NRP) data as the real measure of plastic waste. Energy Conversion and Management, 148, 925–934.
  • Singh, R. K., & Ruj, B. (2016). Time and temperature depended fuel gas generation from pyrolysis of real world municipal plastic waste. Fuel, 174, 164–171.
  • Dogu, O., Pelucchi, M., Van de Vijver, R., Van Steenberge, P. H. M., D’hooge, D. R., Cuoci, A., Mehl, M., Frassoldati, A., Faravelli, T., & Van Geem, K. M. (2021). The chemistry of chemical recycling of solid plastic waste via pyrolysis and gasification: State-of-the-art, challenges, and future directions. Progress in Energy and Combustion Science, 84, 100901.
  • Zhang, X., Yan, C., Ma, Z., Li, H., Chen, G., & Wang, X. (2022). Insights into the co-pyrolysis kinetics and product mechanism of polyethylene, polypropylene, and their mixtures. Journal of Analytical and Applied Pyrolysis, 164, 105562.
  • Wu, C., & Williams, P. T. (2010). Pyrolysis–gasification of plastics, mixed plastics and real-world plastic waste with and without Ni–Mg–Al catalyst. Fuel, 89(11), 3022–3032.
  • Adrados, A., de Marco, I., Caballero, B. M., López, A., Laresgoiti, M. F., & Torres, A. (2012). Pyrolysis of plastic packaging waste: A comparison of plastic residuals from material recovery facilities with simulated plastic waste. Waste Management, 32(4), 826–832.
  • Kusenberg, M., Zayoud, A., Roosen, M., Dao Thi, H., Seifali Abbas-Abadi, M., Eschenbacher, A., Kresovic, U., De Meester, S., & Van Geem, K. M. (2022). A comprehensive experimental investigation of plastic waste pyrolysis oil quality and its dependence on the plastic waste composition. Fuel Processing Technology, 227, 107090.
  • Miandad, R., Barakat, M. A., Aburiazaiza, A. S., Rehan, M., Ismail, I. M. I., & Nizami, A. S. (2017). Effect of plastic waste types on pyrolysis liquid oil. International Biodeterioration & Biodegradation, 119, 239–252.
  • Harussani, M. M., Saptoadi, H., Idris, A., & Yoshikawa, K. (2022). Pyrolysis of COVID-19 polypropylene waste: Kinetic study, char and oil characterization. Journal of Environmental Chemical Engineering, 10(3), 107390. https://doi.org/10.1016/j.jece.2022.107390
  • Dai, L., Zhou, N., Lv, Y., Cheng, Y., Wang, Y., Liu, Y., Cobb, K., Chen, P., Lei, H., & Ruan, R. (2022). Pyrolysis technology for plastic waste recycling: A state-of-the-art review. Progress in Energy and Combustion Science, 93, 101021.
  • Miandad, R., Rehan, M., Barakat, M. A., Aburiazaiza, A. S., Khan, H., Ismail, I. M. I., Dhavamani, J., Gardy, J., Hassanpour, A., & Nizami, A.-S. (2019). Catalytic Pyrolysis of Plastic Waste: Moving Toward Pyrolysis Based Biorefineries. Frontiers in Energy Research, 7, 27.
  • Al-Salem, S. M., Antelava, A., Constantinou, A., Manos, G., & Dutta, A. (2017). A review on thermal and catalytic pyrolysis of plastic solid waste (PSW). Journal of Environmental Management, 197, 177–198. https://doi.org/10.1016/j.jenvman.2017.03.084
  • Kalargaris, I., Tian, G., & Gu, S. (2017). The utilisation of oils produced from plastic waste at different pyrolysis temperatures in a DI diesel engine. Energy, 131, 179–185.
  • Ryu, H. W., Kim, D. H., Jae, J., Lam, S. S., Park, E. D., & Park, Y.-K. (2020). Recent advances in catalytic co-pyrolysis of biomass and plastic waste for the production of petroleum-like hydrocarbons. Bioresource Technology, 310, 123473.
  • Miandad, R., Barakat, M. A., Rehan, M., Aburiazaiza, A. S., Ismail, I. M. I., & Nizami, A. S. (2017). Plastic waste to liquid oil through catalytic pyrolysis using natural and synthetic zeolite catalysts. Waste Management, 69, 66–78.
  • Ding, K., Liu, S., Huang, Y., Zhou, N., Peng, P., Wang, Y., Chen, P., & Ruan, R. (2019). Catalytic microwave-assisted pyrolysis of plastic waste over NiO and HY for gasoline-range hydrocarbons production. Energy Conversion and Management, 196, 1316–1325.
  • Almeida, M. F., & Marques, M. M. (2016). Thermal and catalytic pyrolysis of plastic waste. In M. F. Almeida & M. M. Marques (Eds.), Waste Biorefinery (pp. 511–548). Elsevier. https://doi.org/10.1016/B978-0-12-802980-0.00019-4
  • Wu, C., & Williams, P. T. (2010). Pyrolysis–gasification of plastics, mixed plastics and real-world plastic waste with and without Ni–Mg–Al catalyst. Fuel, 89(11), 3022–3032.
  • Yao, D., Li, H., Dai, Y., & Wang, C.-H. (2021). Impact of temperature on the activity of Fe-Ni catalysts for pyrolysis and decomposition processing of plastic waste. Chemical Engineering Journal, 408, 127268.
  • Odoi-Yorke, F., Agyekum, E. B., Rashid, F. L., Davis, J. E., & Togun, H. (2025). Trends and determinates of hydrogen energy acceptance, or adoption research: A review of two decades of research. Sustainable Energy Technologies and Assessments, 73, 104159.
  • Zhang, L., Han, K., Wang, Y., Zhu, Y., Zhong, S., & Zhong, G. (2023). A bibliometric analysis of Stirling engine and in-depth review of its application for energy supply systems. Energy Reviews, 100048.
  • Göçer, F., & Büyüksaatçı Kiriş, S. (2023). A bibliometric analysis of quality control charts. İstanbul Nişantaşı Üniversitesi Sosyal Bilimler Dergisi, 11(2), 263-282. https://doi.org/10.52122/nisantasisbd.1256691
  • Bastian, M., Heymann, S., & Jacomy, M. (2009, March). Gephi: an open source software for exploring and manipulating networks. In Proceedings of the international AAAI conference on web and social media (Vol. 3, No. 1, pp. 361-362).
  • Van Eck, N., & Waltman, L. (2010). Software survey: VOSviewer, a computer program for bibliometric mapping. scientometrics, 84(2), 523-538.
  • Liu, X., Zhang, J., & Guo, C. (2013). Full‐text citation analysis: A new method to enhance scholarly networks. Journal of the American Society for Information Science and Technology, 64(9), 1852-1863.
  • Aria, M., & Cuccurullo, C. (2017). bibliometrix: An R-tool for comprehensive science mapping analysis. Journal of informetrics, 11(4), 959-975.
  • Cobo, M. J., López‐Herrera, A. G., Herrera‐Viedma, E., & Herrera, F. (2011). Science mapping software tools: Review, analysis, and cooperative study among tools. Journal of the American Society for information Science and Technology, 62(7), 1382-1402.
  • Li, K., Rollins, J., & Yan, E. (2018). Web of Science use in published research and review papers 1997–2017: A selective, dynamic, cross-domain, content-based analysis. Scientometrics, 115(1), 1-20.
  • Li, P. F., Xu, Y., & Chen, Q. B. (2024). Global trends and research characteristics on CO2 capture and conversion from 2000 to 2023: A bibliometric review. Sustainable Energy Technologies and Assessments, 67, 103836.
  • Armenise, S., Wong, S. L., Ramírez-Velásquez, J. M., Launay, F., Wuebben, D., Ngadi, N., Rams, J., & Muñoz, M. (2021). Plastic waste recycling via pyrolysis: A bibliometric survey and literature review. Journal of Analytical and Applied Pyrolysis, 158, 105265.
  • Gonzalez-Aguilar, A. M., Pérez-García, V., & Riesco-Ávila, J. M. (2023). A thermo-catalytic pyrolysis of polystyrene waste review: A systematic, statistical, and bibliometric approach. Polymers, 15(6), 1582.
  • Klippel, M. S., & Martins, M. F. (2022). Physicochemical assessment of waxy products directly recovered from plastic waste pyrolysis: Review and synthesis of characterization techniques. Polymer Degradation and Stability, 204, 110090.
  • Ayub, Y., & Ren, J. (2024). Revealing the synergistic effect of feedstock compositions and process parameters in co-pyrolysis: A review based on bibliometric analysis and experimental studies. Journal of Cleaner Production, 459, 142540.
  • Chang, Y. H., Chong, W. W. F., Liew, C. S., Wong, K. Y., Tan, H. Y., Woon, K. S., Tan, J. P., & Mong, G. R. (2025). Unveiling the energy dynamics of plastic and sludge co-pyrolysis: A review and bibliometric exploration on catalysts and bioenergy generation potential. Journal of Analytical and Applied Pyrolysis, 186, 106885.
  • Sivan, D., Zafar, S., Rohit, R. V., Raj, V. R., Satheeshkumar, K., Raj, V., Moorthy, K., Misnon, I. I., Ramakrishna, S., & Jose, R. (2024). Towards circularity of plastics: A materials informatics perspective. Materials Today Sustainability, 28, 101001.
  • Nabgan, W., Ikram, M., Alhassan, M., Owgi, A. H. K., Van Tran, T., Parashuram, L., ... & Nordin, M. L. (2023). Bibliometric analysis and an overview of the application of the non-precious materials for pyrolysis reaction of plastic waste. Arabian Journal of Chemistry, 16(6), 104717.
  • Wong, S. L., Mong, G. R., Nyakuma, B. B., Ngadi, N., Wong, K. Y., Hernández, M. M., ... & Chong, C. T. (2022). Upcycling of plastic waste to carbon nanomaterials: a bibliometric analysis (2000–2019). Clean Technologies and Environmental Policy, 24(3), 739-759.
  • Ragaert, K., Delva, L., & Van Geem, K. (2017). Mechanical and chemical recycling of solid plastic waste. Waste Management, 69, 24–58.
  • Sharuddin, S. D. A., Abnisa, F., Daud, W. M. A. W., & Aroua, M. K. (2016). A review on pyrolysis of plastic wastes. Energy conversion and management, 115, 308-326.
  • Li, J., Liu, H., & Chen, J. P. (2018). Microplastics in freshwater systems: A review on occurrence, environmental effects, and methods for microplastics detection. Water research, 137, 362-374.
  • Vollmer, I., Jenks, M. J., Roelands, M. C., White, R. J., Van Harmelen, T., De Wild, P., ... & Weckhuysen, B. M. (2020). Beyond mechanical recycling: giving new life to plastic waste. Angewandte Chemie International Edition, 59(36), 15402-15423.
  • Al-Salem, S. M., Antelava, A., Constantinou, A., Manos, G., & Dutta, A. (2017). A review on thermal and catalytic pyrolysis of plastic solid waste (PSW). Journal of environmental management, 197, 177-198.
  • Ellis, L. D., Rorrer, N. A., Sullivan, K. P., Otto, M., McGeehan, J. E., Román-Leshkov, Y., ... & Beckham, G. T. (2021). Chemical and biological catalysis for plastics recycling and upcycling. Nature Catalysis, 4(7), 539-556.
  • Panda, A. K., Singh, R. K., & Mishra, D. K. (2010). Thermolysis of waste plastics to liquid fuel: A suitable method for plastic waste management and manufacture of value added products—A world prospective. Renewable and Sustainable Energy Reviews, 14(1), 233-248.
  • Miandad, R., Barakat, M. A., Aburiazaiza, A. S., Rehan, M., & Nizami, A. S. (2016). Catalytic pyrolysis of plastic waste: A review. Process Safety and Environmental Protection, 102, 822-838.
  • Thiounn, T., & Smith, R. C. (2020). Advances and approaches for chemical recycling of plastic waste. Journal of Polymer Science, 58(10), 1347-1364.
  • Wong, S. L., Ngadi, N., Abdullah, T. A. T., & Inuwa, I. M. (2015). Current state and future prospects of plastic waste as source of fuel: A review. Renewable and sustainable energy reviews, 50, 1167-1180.
There are 50 citations in total.

Details

Primary Language English
Subjects Waste Management, Reduction, Reuse and Recycling, Environmental Pollution and Prevention
Journal Section Reviews
Authors

Barış Kiriş 0000-0002-0246-3733

Atakan Öngen 0000-0002-9043-7382

Adem Yurtsever 0000-0001-6512-5232

Publication Date July 31, 2025
Submission Date June 6, 2025
Acceptance Date July 14, 2025
Published in Issue Year 2025 Volume: 8 Issue: 1