Research Article
BibTex RIS Cite

İlkokul Öğrencilerinin Sosyobilimsel Konulara İlişkin İnformal Akıl Yürütme Örüntülerinin İncelenmesi

Year 2020, Volume: 20 Issue: 86, 61 - 84, 31.03.2020

Abstract

Problem Durumu: Fen eğitiminin temel amacı bilim okuryazarı bireyler yetiştirmektir. Bilimle ilgili karmaşık sosyal meseleleri tartışma ve karar verme yeteneği gerektiren bilimsel okuryazarlık becerisinin sosyobilimsel konular (SBK) yoluyla kazandırılabileceği kabul edilmektedir. SBK bireyleri etkileyen, üzerinde görüş birliği sağlanamamış, risk ve olasılıkları anlamayı içeren, açık uçlu ikilemler biçiminde yapılandırılmış, ahlaki ve etik seçimler yapılması gereken, çözümü birden çok alternatifi kapsayan ama kesin bir çözümü olmayan güncel olaylardır. SBK’ların tartışılması genellikle bireylerin sosyobilimsel argümantasyon yapmasını gerektirmektedir. Bu argümantasyon biçimi informal akıl yürütme olarak adlandırılmaktadır. İnformal akıl yürütme, SBK’da karar alma sürecinde konuyla ilgili kanıtların değerlendirilmesi, farklı bakış açılarının düşünülmesi ve bu zihinsel eylemler sonucunda bireyin kendi vardığı sonucu siyasal, ekonomik, ahlaki, ekolojik vb. argümanlarla gerekçelendirebilmesini içeren düşünme süreçlerini açıklamaktadır. Son yıllarda SBK’da informal akıl yürütme süreçlerini inceleyen ve giderek artan bir alan yazın oluşmaktadır. Ancak bu araştırmalarda ilkokul öğrencilerine odaklanılmamaktadır. Fen sınıflarında SBK’lar öğrenme bağlamı olarak kullanılıyorsa ya da kullanılacaksa, ilkokul öğrencilerinin informal akıl yürütme örüntülerini ve akıl yürütmelerinin niteliklerini anlamak önemlidir. Böylece öğrencilerin SBK’lara ilişkin kararlarını nasıl yapılandırdıklarını, SBK’ları nasıl tartıştıklarını ve çözdüklerini keşfedilebilerek bu basamakta yapılan fen etkinliklerine ilişkin anlayış kazanılabilir.


Araştırmanın amacı:
Bu araştırmada ilkokul öğrencilerin SBK’lara ilişkin informal akıl yürütme örüntüleri ile bu örüntülerin niteliğini keşfetmek amaçlanmıştır. Bu kapsamda şu araştırma soruları oluşturulmuştur: (1) İlkokul öğrencilerinin farklı SBK’lara ilişkin oluşturdukları informal akıl yürütme örüntüleri nedir?, (2) İlkokul öğrencilerinin SBK’lara ilişkin yaptıkları akıl yürütme örüntülerinin niteliği nedir?

Yöntem: Araştırmada temel nitel araştırma deseni kullanılmıştır. Araştırma katılımcılarını belirlemek üzere örnekleme iki aşamada yapılmıştır. Bu amaçla öncelikle tipik durum örneklemesi kullanılarak araştırma verilerinin toplanacağı okullar belirlenmiştir. Bu kapsamda araştırmanın uygulamasının sosyoekonomik düzey bakımından kent ortalamasına yakın üç ilkokulda gerçekleştirilmesine karar verilmiştir. İkinci aşamada ise belirlenen okullarda öğrenim görmekte olan öğrencilerden katılımcıları belirlemek üzere kritik durum örneklemesi kullanılmıştır. Buna göre en fazla bilgiyi verebilecek ve bilgi üretimi konusunda en büyük etkiyi yapacak katılımcıları seçmek üzere kritik durum genel ve fen akademik başarısı yüksek öğrenciler olarak belirlenmiştir. Buna göre sekiz kız ve 11 erkek öğrenci araştırmanın katılımcılarını oluşturmuştur. Araştırma verileri yarı yapılandırılmış görüşmeler yoluyla toplanmıştır. Verileri toplamak üzere Organ Nakli, Geri Dönüşüm ve Orman Alanlarının Kullanımı SBK’larını içeren üç adet senaryo ve görüşme sorularını geliştirilmiştir. SBK senaryolarının, bu konuların doğası gereği karşıt fikirler içermesine özen gösterilmiştir. Araştırmada kullanılan görüşme sorular ise katılımcıların iddialarını belirtmeleri, iddialarını gerekçelendirmeleri, olası karşıt iddiaları belirlemeleri ve karşıt iddiaları çürütebilecekleri argümanlar oluşturmalarını sağlamak üzere oluşturulmuştur. Her bir oturumda katılımcılar önce senaryoyu okumuşlardır. Okumalarını tamamladıktan sonra anlaşılmayan bir yer olup olmadığı ve ek açıklama isteyip istemediklerini sorulmuştur. Verilerin analizinde tematik analiz yaklaşımı kullanılmıştır. Analiz sonucunda informal akıl yürütme örüntülerini açıklamak üzere (i) mantıksal informal akıl yürütme örüntüsü, (ii) duygusal informal akıl yürütme örüntüsü ve (ii) sezgisel informal akıl yürütme örüntüsü temalarını oluşturulmuştur. İnformal akıl yürütme örüntülerinin niteliğini açıklamak üzere ise (i) düşük nitelikli informal akıl yürütme örüntüsü ve (ii) nitelikli informal akıl yürütme örüntüsü temaları yapılandırılmıştır.


Bulgular:
Araştırmada, katılımcıların en çok sezgisel akıl yürütme örüntüsü oluşturdukları görülmüştür. Bu akıl yürütme örüntüsünü duygusal akıl yürütme örüntüsü izlemektedir. Katılımcıların en az kullandıkları akıl yürütme örüntüsü ise mantıksal akıl yürütme örüntüsüdür. Akıl yürütme örüntüsünün niteliği bakımından değerlendirildiğinde ise katılımcılar daha çok düşük nitelikli düşünme süreçlerini kullanmışlardır. Yani katılımcıların çoğunluğu SSI senaryolarına ilişkin sadece iddia geliştirmişler ve bu iddialarını gerekçelendirmişlerdir. Bununla birlikte az sayıda katılımcının iddia oluşturma, gerekçelendirme, olası karşıt görüşleri belirleme ve bu görüşleri çürütme yeterliğinde oldukları anlaşılmaktadır.


Sonuç ve Öneriler:
Araştırmada SBK’ların çözüme yönelik düşünme süreçlerinde sadece bilişsel düşünmenin değil duyuşsal düşünme özelliklerinin de işe koşulduğu belirlenmiştir. Araştırmanın en ilginç sonucu en az kullanılan akıl yürütme örüntüsünün mantıksal akıl yürütme örüntüsü; en çok kullanılan akıl yürütme örüntüsünün ise sezgisel akıl yürütme örüntüsü olmasıdır. Fen ve fen eğitimi çoğunlukla rasyonalist düşünme kalıplarıyla karakterize edilmektedir. Bu durum daha çok formal akıl yürütme ile ilişkilidir. İnformal akıl yürütme ise formal akıl yürütmeden farklı olarak bilim ve teknoloji tabanlı güncel sorunları tartışırken sosyal, çevresel, etik, ahlaki, ekonomik, politik, duygusal vb. önceliklerin de düşünme sürecini etkilediğini ortaya koymaktadır. Bu nedenle öğretmenler SBK tartışma sürecinde öğrencilerin kullandıkları duygusal ve sezgisel akıl yürütmenin önemini kabul etmeli ve değer vermelidir. Akıl yürütme örüntüsünün niteliği bakımından öğrencilerin zorlandıkları ve çoğunlukla karşıt iddiaları belirleme düzeyine çıkabildikleri söylenebilir. Geleneksel olarak fen öğretimi belirli bilimsel bilgilerin doğrudan aktarımı üzerine odaklanmaktadır. Öğrencilerin bilim temelli sosyal konular üzerine düşünmelerini sağlayacak bağlamlar ise günümüz fen öğretim programlarında yer alsa bile bu bağlamların öğretmenler tarafından işe koşulmadığı bilinmektedir. Dolayısıyla öğrenciler hem SBK’ları tartışma konusunda deneyimsiz hem de içerik bilgisi bakımından yetersiz oldukları için nitelikli argümanlar oluşturmamış olabilirler. Bu nedenle, ilkokul düzeyinde akıl yürütmenin niteliğini geliştirmeye dönük uygulamalı araştırmalar yapılması gerektiği düşünülmektedir.

References

  • Albe, V. (2008). Students’ positions and considerations of scientific evidence about a controversial socioscientific issue. Science & Education, 17, 805-827.
  • American Association for the Advancement of Science. (1993). Project 2061: Benchmarks for science literacy. New York: Oxford University Press.
  • Berg, B.L. (2001). Qualitative research methods for the social sciences (4th ed.). Boston: Allyn & Bacon.
  • Braun, V., & Clarke, V. (2006). Using thematic analysis in psychology. Qualitative Research in Psychology, 3(2), 77-101.
  • Cavagnetto, A.R., Hand, B., & Norton-Meier, L. (2010). The nature of elementary student science discourse in the context of the science writing heuristic approach. International Journal of Science Education, 32, 427-449.
  • Cetin P.S., Dogan, N., & Kutluca, A.Y. (2014). The quality of preservice science teachers’ argumentation: Influence of content knowledge. Journal of Science Teacher Education, 25(3), 309-331.
  • Christenson, N., Rundgren, S.-N.C., & Höglund, H.-O. (2012). Using the SEE-SEP model to analyze upper secondary students’ use of supporting reasons in arguing socioscientific issues. Journal of Science Education and Technology, 21(3), 342-352.
  • Dawson, V. (2015). Western Australian high school students’ understandings about the socioscientific issue of climate change. International Journal of Science Education, 37(7), 1024-1043.
  • Dawson, V., & Carson, K. (2017). Using climate change scenarios to assess high school students’ argumentation skills. Research in Science & Technological Education, 35(1), 1-16.
  • Dawson, V., & Venville, G. (2013). Introducing high school biology students to argumentation about socioscientific issues. Canadian Journal of Science, Mathematics and Technology Education, 13(4), 356-372.
  • Day, S.P. & Bryce, T. G. K. (2011). Does the discussion of socio‐scientific issues require a paradigm shift in science teachers’ thinking? International Journal of Science Education, 33(12), 1675-1702.
  • Driver, R., Newton, P., & Osborne, J. (2000). Establishing the norms of scientific argumentation in classrooms. Science Education, 84, 287-312.
  • Duschl, R., & Osborne, J. (2002). Supporting and promoting argumentation discourse in science education. Studies in Science Education, 38, 39-72.
  • Ekborg, M. (2008). Opinion building on a socio-scientific issue: The case of genetically modified plants. Journal of Biological Education, 42(2), 60-65.
  • Emery, K., Harlow, D., Whitmer, A., & Gaines, S. (2017). Compelling evidence: An influence on middle school students’ accounts that may impact decisionmaking about socioscientific issues. Environmental Education Research, 23(8), 1115-1129.
  • Evagorou, M., Jimenez-Aleixandre, M.P. & Osborne, J. (2012). ‘Should we kill the grey squirrels?’ A study exploring students’ justifications and decision-making. International Journal of Science Education, 34(3), 401-428.
  • Flick, U. (2009). An introduction to qualitative research (4th ed.). London: Sage.
  • Foong, C.-C., & Daniel, E. G. S. (2013). Students’ argumentation skills across two socio-scientific issues in a Confucian classroom: Is transfer possible? International Journal of Science Education, 35(14), 2331-2355.
  • Fowler, S.R., Zeidler, D.L., & Sadler, T.D. (2009). Moral sensitivity in the context of socioscientific issues in high school science students. International Journal of Science Education, 31(2), 279-296.
  • Gibson, W.J. & Brown, A. (2009). Working with qualitative data. LA: Sage.
  • Grace, M., Lee, Y.C., Asshoff, R., & Wallin, A. (2015). Student decision-making about a globally familiar socioscientific issue: The value of sharing and comparing views with international counterparts. International Journal of Science Education, 37(11), 1855-1874.
  • Grooms, J., Sampson, V., & Golden, B. (2014). Comparing the effectiveness of verification and inquiry laboratories in supporting undergraduate science students in constructing arguments around socioscientific issues. International Journal of Science Education, 36(9), 1412-1433.
  • Hansson, L., Redfors, A. & Rosberg, M. (2011). Students’ socio-scientific reasoning in an astrobiological context during work with a digital learning environment. Journal of Science Education and Technology, 20(4), 388-402.
  • Jimenez-Aleixandre, M.P., Rodriguez, A.B., & Duschl, R.A. (2000). “Doing the lesson” or “doing science”: Argument in high school genetics. Science Education, 84, 757-792.
  • Khishfe, R. (2014). Explicit nature of science and argumentation instruction in the context of socioscientific issues: An effect on student learning and transfer. International Journal of Science Education, 36(6), 974-1016.
  • Kolarova, T., Hadjiali, I., & Denev, I. (2013). High school students’ reasoning in making decisions about socio-ethical issues of genetic engineering: case of gene therapy. Biotechnology & Biotechnological Equipment, 27(2), 3737-3747.
  • Kolstø, S.D. (2001a). Scientific literacy for citizenship: Tools for dealing with the science dimension of controversial SSI. Science Education, 85(3), 291-310.
  • Kolstø, S.D. (2001b). 'To trust or not to trust,…'-pupils' ways of judging information encountered in a socio-scientific issue. International Journal of Science Education, 23(9), 877-901.
  • Kolstø, S.D. (2006). Patterns in students’ argumentation confronted with a risk-focused socio-scientific issue. International Journal of Science Education, 28(14), 1689-1716.
  • Kortland, K. (1996). An STS case study about students’ decision making on the waste issue. Science Education, 80, 673-689.
  • Kuhn, D. (1999). A developmental model of critical thinking. Educational Researcher, 28(2), 16-25.
  • Lee, M. (2007). Developing decision-making skills for socio-scientific issues. Journal of Biological Education, 41(4), 170-177.
  • Levinson, R. (2006). Towards a theoretical framework for teaching controversial socio-scientific issues. International Journal of Science Education, 28(10), 1201-1224.
  • Liu, S., & Roehrig. G. (2019). Exploring science teachers’ argumentation and personal epistemology about global climate change. Research in Science Education, 49(1), 173–189.
  • Means, M.L., & Voss, J.F. (1996). Who reasons well? Two studies of informal reasoning among children of different grade, ability, and knowledge levels. Cognition and Instruction, 14(2), 139-178.
  • Merriam, S. (2009). Qualitative research: A guide to design and implementation. San Francisco: Jossey-Bass.
  • Ministry of National Education (2013). Science and technology curriculum of elementary schools (3th-8th Grades). Ankara, Turkey: Board of Education.
  • Molinatti, G., Girault, Y., & Hammond, C. (2010). High school students debate the use of embryonic stem cells: The influence of context on decision‐making. International Journal of Science Education, 32(16), 2235-2251.
  • Morris, H. (2014). Socioscientific issues and multidisciplinarity in school science textbooks. International Journal of Science Education, 36(7), 1137-1158.
  • National Research Council (1996). National science education standards. Washington, DC: National Academies Press.
  • National Science Teachers Association (2000). NSTA position statement on the nature of science. Retrieved from http://www.nsta.org/about/positions/natureofscience.aspx
  • Osborne, J., Erduran, S., & Simon, S. (2004). Enhancing the quality of argumentation in science classrooms. Journal of Research in Science Teaching, 41(10), 994-1020.
  • Ozden, M. (2011). 4. ve 5. sınıflar fen ve teknoloji dersinin vatandaslık egitimi bakımından islevselligi [The function of science and technology courses in 4th and 5th grades in terms of citizenship education] (Unpublished doctoral dissertation). Anadolu Universitesi Egitim Bilimleri Enstitusu, Eskisehir.
  • Ozden, M. (2015). Prospective elementary school teachers views about socioscientific issues: A concurrent parallel design study. International Electronic Journal of Elementary Education, 7(3), 333-354.
  • Ozturk, N., & Yilmaz-Tuzun, O. (2017). Preservice science teachers’ epistemological beliefs and informal reasoning regarding socioscientific issues. Research in Science Education, 47(6), 1275–1304.
  • Patronis, T., Potari, D., & Spiliotopoulou, V. (1999). Students’ argumentation in decisionmaking on a socio-scientific issue: Implications for teaching. International Journal of Science Education, 21, 745-754.
  • Patton, M.Q. (2001). Qualitative evaluation and research methods (3rd ed.). London: Sage.
  • Pedretti, E. (2003). Teaching science, technology, society and environment education: Preservice teachers’ philosophical and pedagogical landscapes. In D. L. Zeidler (Ed.), The role of moral reasoning on socioscientific issues and discourse in science education (pp.219-239). London: Kluwer.
  • Rundgren, S.-N.C. (2011). How does background affect attitudes to socioscientific issues in Taiwan? Public Understanding of Science, 20, 722-732.
  • Sadler, T.D. (2003). Informal reasoning regarding SSI: The influence of morality and content knowledge. (Doctoral dissertation). Available from ProQuest Dissertations and Theses database. (UMI No. 3080007)
  • Sadler, T.D. (2004a). Moral and ethical dimensions of socioscientific decision-making as integral components of scientific literacy. The Science Educator, 13, 39-48.
  • Sadler, T.D. (2004b). Informal reasoning regarding socioscientific issues: A critical review of research. Journal of Research in Science Teaching, 41(5), 513-536.
  • Sadler, T.D. (2009). Situated learning in science education: Socio-scientific issues as contexts for practice. Studies in Science Education, 45, 1-42.
  • Sadler, T.D., & Zeidler, D.L. (2004). The morality of SSI: Construal and resolution of genetic engineering dilemmas. Science Education, 88, 4-27.
  • Sadler, T.D., & Zeidler, D.L. (2005a). Patterns of informal reasoning in the context of socioscientific decision making. Journal of Research in Science Teaching, 42, 112-138.
  • Sadler, T.D., & Zeidler, D.L. (2005b). The significance of content knowledge for informal reasoning regarding SSI: Applying genetics knowledge to genetic engineering issues. Science Education, 89, 71-93.
  • Sakschewski, M., Eggert, S., Schneider, S. & Bögeholz, S. (2014). Students’ socioscientific reasoning and decision-making on energy-related issues: Development of a measurement instrument. International Journal of Science Education, 36(14), 2291-2313.
  • Saldaña, J. (2009). The coding manual for qualitative researchers. LA: Sage.
  • Topcu, M.S. (2008). Preservice science teachers’ informal reasoning regarding socioscientific issues and the factors influencing their informal reasoning. (Unpublished doctoral dissertation). METU, Ankara.
  • Topcu, M.S. (2010). Development of attitudes towards socioscientific issues scale for undergraduate students. Evalutopation & Research in Education, 23(1), 51-67.
  • Topcu, M.S., Yilmaz-Tuzun, O., & Sadler, T.D. (2011). Turkish preservice science teachers’ informal reasoning regarding socioscientific issues and the factors influencing their informal reasoning. Journal of Science Teacher Education, 22(4), 313-332.
  • Toulmin, S.E. (2003). The uses of argument (Updated ed.). New York: Cambridge University Press.
  • Vaismoradi, M., Turunen, H. & Bondas, T. (2013). Content analysis and thematic analysis: Implications for conducting a qualitative descriptive study. Nursing & Health Sciences, 15(3), 398-405.
  • Willig, C. (2013). Interpretation and analysis. In U. Flick. (Ed.), The Sage handbook of qualitative data analysis (pp. 136-149). Los Angeles: Sage.
  • Wu, Y.T., & Tsai, C.C. (2011). High school students’ informal reasoning regarding a socioscientific issue, with relation to scientific epistemological beliefs and cognitive structures. International Journal of Science Education, 33(3), 371-400.
  • Yang, F.Y., & Anderson, O.R. (2003). Senior high school students’ preference and reasoning modes about nuclear energy use. International Journal of Science Education, 25, 221-244.
  • Zeidler, D.L. & Sadler, D.L. (2011). An inclusive view of scientific literacy: Core issues and future directions of socioscientific reasoning. In C. Linder, L. Ostman, D.A.
  • Roberts, P. Wickman, G. Erickson, & A. MacKinnon (Eds.), Promoting scientific literacy: Science education research in transaction (pp. 176-192). New York: Routledge/Taylor & Francis.
  • Zeidler, D.L., & Keefer, M. (2003). The role of moral reasoning and the status of socioscientific issues in science education: Philosophical, psychological and pedagogical considerations. In D.L. Zeidler (Ed.), The role of moral reasoning and discourse on socioscientific issues in science education (pp. 7-38). Dordrecht: Kluwer.
  • Zohar, A., & Nemet, F. (2002). Fostering students’ knowledge and argumentation skills through dilemmas in human genetics. Journal of Research in Science Teaching, 39(1), 35-62.

Elementary School Students’ Informal Reasoning and Its’ Quality Regarding Socio-Scientific Issues

Year 2020, Volume: 20 Issue: 86, 61 - 84, 31.03.2020

Abstract

Purpose: Since developing science literacy is a primary objective of science education and socio-scientific (SSI) decision-making is an important aspect of science literacy, it is valuable to explore how students structure their decisions related to SSIs, and how they discuss and solve SSIs. The aim of present study was to examine elementary school students’ informal reasoning patterns related to SSIs, and the quality of these patterns.


Research Methods:
In the study, I employed basic qualitative design. To recruit the participants, I used typical case sampling to determine the schools and then I employed critical case sampling to select these participants. I gathered the data through semi-structured interviews and employed thematic analysis in the data analysis process.

Findings: The findings revealed that the participants used logical, emotional and intuitive informal reasoning patterns to solve socio-scientific issues. However, a notable result of the study is that the least used reasoning pattern was logical reasoning while the most frequently used pattern was intuitive reasoning. Furthermore, it was found that the participants were engaged mostly in low-quality reasoning.

Implications for Research and Practice: The results of the study revealed that individuals use not only logic, but also emotions and intuition while looking for an answer for SSIs. Therefore, ıt is important for science educators to consider value-laden science teaching.

References

  • Albe, V. (2008). Students’ positions and considerations of scientific evidence about a controversial socioscientific issue. Science & Education, 17, 805-827.
  • American Association for the Advancement of Science. (1993). Project 2061: Benchmarks for science literacy. New York: Oxford University Press.
  • Berg, B.L. (2001). Qualitative research methods for the social sciences (4th ed.). Boston: Allyn & Bacon.
  • Braun, V., & Clarke, V. (2006). Using thematic analysis in psychology. Qualitative Research in Psychology, 3(2), 77-101.
  • Cavagnetto, A.R., Hand, B., & Norton-Meier, L. (2010). The nature of elementary student science discourse in the context of the science writing heuristic approach. International Journal of Science Education, 32, 427-449.
  • Cetin P.S., Dogan, N., & Kutluca, A.Y. (2014). The quality of preservice science teachers’ argumentation: Influence of content knowledge. Journal of Science Teacher Education, 25(3), 309-331.
  • Christenson, N., Rundgren, S.-N.C., & Höglund, H.-O. (2012). Using the SEE-SEP model to analyze upper secondary students’ use of supporting reasons in arguing socioscientific issues. Journal of Science Education and Technology, 21(3), 342-352.
  • Dawson, V. (2015). Western Australian high school students’ understandings about the socioscientific issue of climate change. International Journal of Science Education, 37(7), 1024-1043.
  • Dawson, V., & Carson, K. (2017). Using climate change scenarios to assess high school students’ argumentation skills. Research in Science & Technological Education, 35(1), 1-16.
  • Dawson, V., & Venville, G. (2013). Introducing high school biology students to argumentation about socioscientific issues. Canadian Journal of Science, Mathematics and Technology Education, 13(4), 356-372.
  • Day, S.P. & Bryce, T. G. K. (2011). Does the discussion of socio‐scientific issues require a paradigm shift in science teachers’ thinking? International Journal of Science Education, 33(12), 1675-1702.
  • Driver, R., Newton, P., & Osborne, J. (2000). Establishing the norms of scientific argumentation in classrooms. Science Education, 84, 287-312.
  • Duschl, R., & Osborne, J. (2002). Supporting and promoting argumentation discourse in science education. Studies in Science Education, 38, 39-72.
  • Ekborg, M. (2008). Opinion building on a socio-scientific issue: The case of genetically modified plants. Journal of Biological Education, 42(2), 60-65.
  • Emery, K., Harlow, D., Whitmer, A., & Gaines, S. (2017). Compelling evidence: An influence on middle school students’ accounts that may impact decisionmaking about socioscientific issues. Environmental Education Research, 23(8), 1115-1129.
  • Evagorou, M., Jimenez-Aleixandre, M.P. & Osborne, J. (2012). ‘Should we kill the grey squirrels?’ A study exploring students’ justifications and decision-making. International Journal of Science Education, 34(3), 401-428.
  • Flick, U. (2009). An introduction to qualitative research (4th ed.). London: Sage.
  • Foong, C.-C., & Daniel, E. G. S. (2013). Students’ argumentation skills across two socio-scientific issues in a Confucian classroom: Is transfer possible? International Journal of Science Education, 35(14), 2331-2355.
  • Fowler, S.R., Zeidler, D.L., & Sadler, T.D. (2009). Moral sensitivity in the context of socioscientific issues in high school science students. International Journal of Science Education, 31(2), 279-296.
  • Gibson, W.J. & Brown, A. (2009). Working with qualitative data. LA: Sage.
  • Grace, M., Lee, Y.C., Asshoff, R., & Wallin, A. (2015). Student decision-making about a globally familiar socioscientific issue: The value of sharing and comparing views with international counterparts. International Journal of Science Education, 37(11), 1855-1874.
  • Grooms, J., Sampson, V., & Golden, B. (2014). Comparing the effectiveness of verification and inquiry laboratories in supporting undergraduate science students in constructing arguments around socioscientific issues. International Journal of Science Education, 36(9), 1412-1433.
  • Hansson, L., Redfors, A. & Rosberg, M. (2011). Students’ socio-scientific reasoning in an astrobiological context during work with a digital learning environment. Journal of Science Education and Technology, 20(4), 388-402.
  • Jimenez-Aleixandre, M.P., Rodriguez, A.B., & Duschl, R.A. (2000). “Doing the lesson” or “doing science”: Argument in high school genetics. Science Education, 84, 757-792.
  • Khishfe, R. (2014). Explicit nature of science and argumentation instruction in the context of socioscientific issues: An effect on student learning and transfer. International Journal of Science Education, 36(6), 974-1016.
  • Kolarova, T., Hadjiali, I., & Denev, I. (2013). High school students’ reasoning in making decisions about socio-ethical issues of genetic engineering: case of gene therapy. Biotechnology & Biotechnological Equipment, 27(2), 3737-3747.
  • Kolstø, S.D. (2001a). Scientific literacy for citizenship: Tools for dealing with the science dimension of controversial SSI. Science Education, 85(3), 291-310.
  • Kolstø, S.D. (2001b). 'To trust or not to trust,…'-pupils' ways of judging information encountered in a socio-scientific issue. International Journal of Science Education, 23(9), 877-901.
  • Kolstø, S.D. (2006). Patterns in students’ argumentation confronted with a risk-focused socio-scientific issue. International Journal of Science Education, 28(14), 1689-1716.
  • Kortland, K. (1996). An STS case study about students’ decision making on the waste issue. Science Education, 80, 673-689.
  • Kuhn, D. (1999). A developmental model of critical thinking. Educational Researcher, 28(2), 16-25.
  • Lee, M. (2007). Developing decision-making skills for socio-scientific issues. Journal of Biological Education, 41(4), 170-177.
  • Levinson, R. (2006). Towards a theoretical framework for teaching controversial socio-scientific issues. International Journal of Science Education, 28(10), 1201-1224.
  • Liu, S., & Roehrig. G. (2019). Exploring science teachers’ argumentation and personal epistemology about global climate change. Research in Science Education, 49(1), 173–189.
  • Means, M.L., & Voss, J.F. (1996). Who reasons well? Two studies of informal reasoning among children of different grade, ability, and knowledge levels. Cognition and Instruction, 14(2), 139-178.
  • Merriam, S. (2009). Qualitative research: A guide to design and implementation. San Francisco: Jossey-Bass.
  • Ministry of National Education (2013). Science and technology curriculum of elementary schools (3th-8th Grades). Ankara, Turkey: Board of Education.
  • Molinatti, G., Girault, Y., & Hammond, C. (2010). High school students debate the use of embryonic stem cells: The influence of context on decision‐making. International Journal of Science Education, 32(16), 2235-2251.
  • Morris, H. (2014). Socioscientific issues and multidisciplinarity in school science textbooks. International Journal of Science Education, 36(7), 1137-1158.
  • National Research Council (1996). National science education standards. Washington, DC: National Academies Press.
  • National Science Teachers Association (2000). NSTA position statement on the nature of science. Retrieved from http://www.nsta.org/about/positions/natureofscience.aspx
  • Osborne, J., Erduran, S., & Simon, S. (2004). Enhancing the quality of argumentation in science classrooms. Journal of Research in Science Teaching, 41(10), 994-1020.
  • Ozden, M. (2011). 4. ve 5. sınıflar fen ve teknoloji dersinin vatandaslık egitimi bakımından islevselligi [The function of science and technology courses in 4th and 5th grades in terms of citizenship education] (Unpublished doctoral dissertation). Anadolu Universitesi Egitim Bilimleri Enstitusu, Eskisehir.
  • Ozden, M. (2015). Prospective elementary school teachers views about socioscientific issues: A concurrent parallel design study. International Electronic Journal of Elementary Education, 7(3), 333-354.
  • Ozturk, N., & Yilmaz-Tuzun, O. (2017). Preservice science teachers’ epistemological beliefs and informal reasoning regarding socioscientific issues. Research in Science Education, 47(6), 1275–1304.
  • Patronis, T., Potari, D., & Spiliotopoulou, V. (1999). Students’ argumentation in decisionmaking on a socio-scientific issue: Implications for teaching. International Journal of Science Education, 21, 745-754.
  • Patton, M.Q. (2001). Qualitative evaluation and research methods (3rd ed.). London: Sage.
  • Pedretti, E. (2003). Teaching science, technology, society and environment education: Preservice teachers’ philosophical and pedagogical landscapes. In D. L. Zeidler (Ed.), The role of moral reasoning on socioscientific issues and discourse in science education (pp.219-239). London: Kluwer.
  • Rundgren, S.-N.C. (2011). How does background affect attitudes to socioscientific issues in Taiwan? Public Understanding of Science, 20, 722-732.
  • Sadler, T.D. (2003). Informal reasoning regarding SSI: The influence of morality and content knowledge. (Doctoral dissertation). Available from ProQuest Dissertations and Theses database. (UMI No. 3080007)
  • Sadler, T.D. (2004a). Moral and ethical dimensions of socioscientific decision-making as integral components of scientific literacy. The Science Educator, 13, 39-48.
  • Sadler, T.D. (2004b). Informal reasoning regarding socioscientific issues: A critical review of research. Journal of Research in Science Teaching, 41(5), 513-536.
  • Sadler, T.D. (2009). Situated learning in science education: Socio-scientific issues as contexts for practice. Studies in Science Education, 45, 1-42.
  • Sadler, T.D., & Zeidler, D.L. (2004). The morality of SSI: Construal and resolution of genetic engineering dilemmas. Science Education, 88, 4-27.
  • Sadler, T.D., & Zeidler, D.L. (2005a). Patterns of informal reasoning in the context of socioscientific decision making. Journal of Research in Science Teaching, 42, 112-138.
  • Sadler, T.D., & Zeidler, D.L. (2005b). The significance of content knowledge for informal reasoning regarding SSI: Applying genetics knowledge to genetic engineering issues. Science Education, 89, 71-93.
  • Sakschewski, M., Eggert, S., Schneider, S. & Bögeholz, S. (2014). Students’ socioscientific reasoning and decision-making on energy-related issues: Development of a measurement instrument. International Journal of Science Education, 36(14), 2291-2313.
  • Saldaña, J. (2009). The coding manual for qualitative researchers. LA: Sage.
  • Topcu, M.S. (2008). Preservice science teachers’ informal reasoning regarding socioscientific issues and the factors influencing their informal reasoning. (Unpublished doctoral dissertation). METU, Ankara.
  • Topcu, M.S. (2010). Development of attitudes towards socioscientific issues scale for undergraduate students. Evalutopation & Research in Education, 23(1), 51-67.
  • Topcu, M.S., Yilmaz-Tuzun, O., & Sadler, T.D. (2011). Turkish preservice science teachers’ informal reasoning regarding socioscientific issues and the factors influencing their informal reasoning. Journal of Science Teacher Education, 22(4), 313-332.
  • Toulmin, S.E. (2003). The uses of argument (Updated ed.). New York: Cambridge University Press.
  • Vaismoradi, M., Turunen, H. & Bondas, T. (2013). Content analysis and thematic analysis: Implications for conducting a qualitative descriptive study. Nursing & Health Sciences, 15(3), 398-405.
  • Willig, C. (2013). Interpretation and analysis. In U. Flick. (Ed.), The Sage handbook of qualitative data analysis (pp. 136-149). Los Angeles: Sage.
  • Wu, Y.T., & Tsai, C.C. (2011). High school students’ informal reasoning regarding a socioscientific issue, with relation to scientific epistemological beliefs and cognitive structures. International Journal of Science Education, 33(3), 371-400.
  • Yang, F.Y., & Anderson, O.R. (2003). Senior high school students’ preference and reasoning modes about nuclear energy use. International Journal of Science Education, 25, 221-244.
  • Zeidler, D.L. & Sadler, D.L. (2011). An inclusive view of scientific literacy: Core issues and future directions of socioscientific reasoning. In C. Linder, L. Ostman, D.A.
  • Roberts, P. Wickman, G. Erickson, & A. MacKinnon (Eds.), Promoting scientific literacy: Science education research in transaction (pp. 176-192). New York: Routledge/Taylor & Francis.
  • Zeidler, D.L., & Keefer, M. (2003). The role of moral reasoning and the status of socioscientific issues in science education: Philosophical, psychological and pedagogical considerations. In D.L. Zeidler (Ed.), The role of moral reasoning and discourse on socioscientific issues in science education (pp. 7-38). Dordrecht: Kluwer.
  • Zohar, A., & Nemet, F. (2002). Fostering students’ knowledge and argumentation skills through dilemmas in human genetics. Journal of Research in Science Teaching, 39(1), 35-62.
There are 70 citations in total.

Details

Primary Language English
Journal Section Articles
Authors

Muhammet Ozden This is me

Publication Date March 31, 2020
Published in Issue Year 2020 Volume: 20 Issue: 86

Cite

APA Ozden, M. (2020). Elementary School Students’ Informal Reasoning and Its’ Quality Regarding Socio-Scientific Issues. Eurasian Journal of Educational Research, 20(86), 61-84.
AMA Ozden M. Elementary School Students’ Informal Reasoning and Its’ Quality Regarding Socio-Scientific Issues. Eurasian Journal of Educational Research. March 2020;20(86):61-84.
Chicago Ozden, Muhammet. “Elementary School Students’ Informal Reasoning and Its’ Quality Regarding Socio-Scientific Issues”. Eurasian Journal of Educational Research 20, no. 86 (March 2020): 61-84.
EndNote Ozden M (March 1, 2020) Elementary School Students’ Informal Reasoning and Its’ Quality Regarding Socio-Scientific Issues. Eurasian Journal of Educational Research 20 86 61–84.
IEEE M. Ozden, “Elementary School Students’ Informal Reasoning and Its’ Quality Regarding Socio-Scientific Issues”, Eurasian Journal of Educational Research, vol. 20, no. 86, pp. 61–84, 2020.
ISNAD Ozden, Muhammet. “Elementary School Students’ Informal Reasoning and Its’ Quality Regarding Socio-Scientific Issues”. Eurasian Journal of Educational Research 20/86 (March 2020), 61-84.
JAMA Ozden M. Elementary School Students’ Informal Reasoning and Its’ Quality Regarding Socio-Scientific Issues. Eurasian Journal of Educational Research. 2020;20:61–84.
MLA Ozden, Muhammet. “Elementary School Students’ Informal Reasoning and Its’ Quality Regarding Socio-Scientific Issues”. Eurasian Journal of Educational Research, vol. 20, no. 86, 2020, pp. 61-84.
Vancouver Ozden M. Elementary School Students’ Informal Reasoning and Its’ Quality Regarding Socio-Scientific Issues. Eurasian Journal of Educational Research. 2020;20(86):61-84.