Research Article
BibTex RIS Cite

Biotechnological Production and Valorization of Bio-based Polyphosphate Using Sacharomyces cerevisiae CBS:1502 Strain

Year 2025, Volume: 9 Issue: 1, 14 - 26, 30.06.2025

Abstract

Phosphorus, primarily sourced from rock phosphate, is essential for all living organisms a n d i s widely used in agriculture, food, cosmetics, animal feed, and electronics. However, the demand for phosphate exceeds its availability, threatening future supplies. To address this, biotechnologists are investigating methods to recover and recycle phosphate, focusing on extracting polyphosphate from waste streams. This study explores the capacity of the yeast Saccharomyces cerevisiae to bioaccumulate free phosphate from a synthetic medium with high phosphate concentrations. Our experiments demonstrated a significant decrease in phosphate levels over time, indicating consumption by the yeast. The strain utilized in our study was able to store a maximum of 10% polyphosphate, which, while lower than the 28% storage capacity reported for other strains, still highlights the potential of yeast to absorb phosphate from environments with elevated levels. This approach not only offers a method for addressing eutrophication in aquatic ecosystems by removing excess phosphates, but also promotes a circular economy. The extracted polyphosphate can be repurposed for applications such as fire control and agriculture, thereby reducing dependence on new phosphate sources and fostering a more sustainable environment.

References

  • Agledal L., Niere M. & Ziegler M. 2010. The phosphate makes a difference: cellular functions of NADP. Redox Report, 15(1), 2–10. doi: 10.1179/174329210X12650506623122
  • Albi T. & Serrano A. 2016. Inorganic polyphosphate in the microbial world. Emerging roles for a multifaceted biopolymer. World Journal of Microbiology and Biotechnology, 32, 1–12.
  • Badamasi H., Yaro M. N., Ibrahim A. & Bashir I. A. 2019. Impacts of phosphates on water quality and aquatic life. Chem. Res. J., 4, 124–133.
  • Bechtaoui N., Rabiu M. K., Raklami A., Oufdou K., Hafidi M. & Jemo M. 2021. Phosphate- dependent regulation of growth and stresses management in plants. Frontiers in Plant Science, 12, 679916.
  • Booth J. W. & Guidotti G. 1997. Phosphate transport in yeast vacuoles. Journal of Biological Chemistry, 272(33), 20408–20413. Doi: https://doi.org/10.1074/jbc.272.33.20408
  • Bruna R. E., Kendra C. G. & Pontes M. H. 2022. Coordination of phosphate and magnesium metabolism in bacteria. In Phosphate Metabolism: From Physiology to Toxicity, 135–150. Cham: Springer International Publishing, Doi: https://doi.org/10.1007/978-3-030-91623-7_12
  • Christ J. J. & Blank L. M. 2018. Analytical polyphosphate extraction from Saccharomyces cerevisiae. Analytical Biochemistry, 563, 71–78, Doi: https://doi.org/10.1016/j.ab.2018.09.021
  • Cooper J., Lombardi R., Boardman D. & Carliell-Marquet C. 2011. The future distribution and production of global phosphate rock reserves. Resources, Conservation and Recycling, 57, 78–86.
  • Council I. S. 2020. The Leaching, Extraction and Bioremediation of Metals Found in Florida Phosphogypsum. Doctoral dissertation, Florida Agricultural and Mechanical University. Dorozhkin S. V. & Epple M. 2002. Biological and medical significance of calcium phosphates. Angewandte Chemie International Edition, 41(17), 3130–3146.
  • Erecinska M., Stubbs M., Miyata Y., Ditre C. M. & Wilson D. F. 1977. Regulation of cellular metabolism by intracellular phosphate. Biochimica et Biophysica Acta (BBA)-Bioenergetics, 462(1), 20–35. Doi: https://doi.org/10.1016/0005-2728(77)90186-4
  • Giots F., Donaton M. C. & Thevelein J. M. 2003. Inorganic phosphate is sensed by specific phosphate carriers and acts in concert with glucose as a nutrient signal for activation of the protein kinase A pathway in the yeast Saccharomyces cerevisiae. Molecular Microbiology, 47(4), 1163–1181. Doi: https://doi.org/10.1046/j.1365-2958.2003.03365.x
  • Goodman J. & Rothstein A. 1957. The active transport of phosphate into the yeast cell. The Journal of General Physiology, 40(6), 915–923. Doi: https://doi.org/10.1085/jgp.40.6.915
  • Grula E. A., Weaver R. H. & Edwards O. F. 1954. Studies on a strain of Caulobacter from water II: Nutrition, with implications for cytology. Journal of Bacteriology, 68(2), 201–206.
  • Grünberg W. 2014. Treatment of phosphorus balance disorders. Veterinary Clinics: Food Animal Practice, 30(2), 383–408. Doi: https://doi.org/10.1007/s11274-015-1983-2
  • Ibtisham F., Nawab A. A. M. I. R., Li G., Xiao M., An L. & Naseer G. 2018. Effect of nutrition on reproductive efficiency of dairy animals. Medycyna Weterynaryjna, 74(6), 356–361.
  • Kertesz M. A. & Frossard E. 2024. Biological transformations of mineral nutrients in soils and their role in soil biogeochemistry. In Soil Microbiology, Ecology and Biochemistry, 439–471.Elsevier. Doi: https://doi.org/10.1016/B978-0-12-822941-5.00015-6
  • König H. & Winkler A. 1948. Über Einschlüsse in Bakterien und ihre Veränderung im Elektronenmikroskop. Naturwissenschaften, 35, 136–144. doi: https://doi.org/10.1007/BF00631596 Kumar D. & Kumar D. 2023. Phosphate Rock: An Industry in Transition
  • Leo L. 2008. Scientists warn of lack of vital phosphorus as biofuels raise demand. The Times. http://business.timesonline.co.uk/tol/business/industry_sectors/natural_res
  • Lindegren C. C. 1947. Function of Yolutin (Metaphosphate) in mitosis. Nature, 159(4028), 63–64. Doi: https://doi.org/10.1038/159063a0
  • Mallin M. A., Johnson V. L. & Ensign S. H. 2009. Comparative impacts of stormwater runoff on urban, suburban, and rural streams' water quality. Environmental Monitoring and Assessment,159, 475–491. Doi: https://doi.org/10.1007/s10661-008-0644-4
  • Maurer M. 1996. Erhöhte biologische Phosphorelimination: Modellierung der biologischen und chemischen Prozesse. Doctoral dissertation, ETH Zurich.
  • Michigami T., Kawai M., Yamazaki M. & Ozono K. 2018. Phosphate as a signaling molecule and its sensing mechanism. Physiological Reviews, 98(4), 2317–2348. Doi: https://doi.org/10.1152/physrev.00022.2017
  • Némery J., Garnier J. & Morel C. 2005. Phosphorus budget in the Marne Watershed (France): Urban vs. diffuse sources, dissolved vs. particulate forms. Biogeochemistry, 72, 35– 66. Doi: https://doi.org/10.1007/s10533-004-0346-7
  • Reilly M. 2007. The last place on earth to preserve a piece of Earth's original crust. New Scientist, 194(2608), 38. Doi: https://doi.org/10.1016/S0262-4079(07)61659-1
  • Sambrook J., Fritsch E. F. & Maniatis T. 1989. Molecular cloning: a laboratory manual. 2nd ed. Cold Spring Harbor Laboratory Press, New York, 9–14.
  • Sharpley A. & Wang X. 2014. Managing agricultural phosphorus for water quality: Lessons from the USA and China. Journal of Environmental Sciences, 26(9), 1770–1782. Doi: https://doi.org/10.1016/j.jes.2014.06.024
  • Smets B., Ghillebert R., De Snijder P., Binda M., Swinnen E., De Virgilio C. & Winderickx J. 2010. Life in the midst of scarcity: adaptations to nutrient availability in Saccharomyces cerevisiae. Current Genetics, 56, 1–16.
  • Soetan K. O., Olaiya C. O. & Oyewole O. E. 2010. The importance of mineral elements for humans, domestic animals and plants: A review. African Journal of Food Science, 4(5), 200–222.
  • Spears B. M., Brownlie W. J., Cordell D., Hermann L. & Mogollón J. M. 2022. Concerns about global phosphorus demand for lithium-iron-phosphate batteries in the light electric vehicle sector. Communications Materials, 3(1), 14. Doi: https://doi.org/10.1038/s43246-020-00095-x
  • Verduyn C., Postma E., Scheffers W. A. & Van Dijken J. P. 1992. Effect of benzoic acid on metabolic fluxes in yeasts: a continuous-culture study on the regulation of respiration and alcoholic fermentation. Yeast, 8(7), 501–517.
  • Vulla K., Francis B., Komba R. & Janes Z. 2025. Polyphosphates: Essential bioenergetic reservoirs and their role as critical nutrient depleters in biological systems. International Journal of Life Science Research Archive, 8(1), 19–32. Doi: https://doi.org/10.53771/ijlsra.2025.8.1.0024
  • Walker G. M. 1998. Yeast physiology and biotechnology. John Wiley & Sons.Winkler A. 1953. The metachromatic granules of bacteria. In Symposium Bact. Cytol., a section of the Int. Congr. of Microbiol. (Rome).
  • Wurtsbaugh W. A., Paerl H. W. & Dodds W. K. 2019. Nutrients, eutrophication and harmful algal blooms along the freshwater to marine continuum. Wiley Interdisciplinary Reviews: Water, 6(5), e1373. Doi: https://doi.org/10.1002/wat2.1373
  • Xu Y., Wu Y., Esquivel-Elizondo S., Dolfing J. & Rittmann B. E. 2020. Using microbial aggregates to entrap aqueous phosphorus. Trends in Biotechnology, 38(11), 1292–1303.
There are 34 citations in total.

Details

Primary Language English
Subjects Food Technology
Journal Section Article
Authors

Kelvin Vulla 0000-0002-4037-2568

Beatrice Francis

Early Pub Date June 30, 2025
Publication Date June 30, 2025
Submission Date May 8, 2025
Acceptance Date June 25, 2025
Published in Issue Year 2025 Volume: 9 Issue: 1

Cite

APA Vulla, K., & Francis, B. (2025). Biotechnological Production and Valorization of Bio-based Polyphosphate Using Sacharomyces cerevisiae CBS:1502 Strain. Eurasian Journal of Food Science and Technology, 9(1), 14-26.
AMA Vulla K, Francis B. Biotechnological Production and Valorization of Bio-based Polyphosphate Using Sacharomyces cerevisiae CBS:1502 Strain. EJFST. June 2025;9(1):14-26.
Chicago Vulla, Kelvin, and Beatrice Francis. “Biotechnological Production and Valorization of Bio-Based Polyphosphate Using Sacharomyces Cerevisiae CBS:1502 Strain”. Eurasian Journal of Food Science and Technology 9, no. 1 (June 2025): 14-26.
EndNote Vulla K, Francis B (June 1, 2025) Biotechnological Production and Valorization of Bio-based Polyphosphate Using Sacharomyces cerevisiae CBS:1502 Strain. Eurasian Journal of Food Science and Technology 9 1 14–26.
IEEE K. Vulla and B. Francis, “Biotechnological Production and Valorization of Bio-based Polyphosphate Using Sacharomyces cerevisiae CBS:1502 Strain”, EJFST, vol. 9, no. 1, pp. 14–26, 2025.
ISNAD Vulla, Kelvin - Francis, Beatrice. “Biotechnological Production and Valorization of Bio-Based Polyphosphate Using Sacharomyces Cerevisiae CBS:1502 Strain”. Eurasian Journal of Food Science and Technology 9/1 (June2025), 14-26.
JAMA Vulla K, Francis B. Biotechnological Production and Valorization of Bio-based Polyphosphate Using Sacharomyces cerevisiae CBS:1502 Strain. EJFST. 2025;9:14–26.
MLA Vulla, Kelvin and Beatrice Francis. “Biotechnological Production and Valorization of Bio-Based Polyphosphate Using Sacharomyces Cerevisiae CBS:1502 Strain”. Eurasian Journal of Food Science and Technology, vol. 9, no. 1, 2025, pp. 14-26.
Vancouver Vulla K, Francis B. Biotechnological Production and Valorization of Bio-based Polyphosphate Using Sacharomyces cerevisiae CBS:1502 Strain. EJFST. 2025;9(1):14-26.

Eurasian Journal of Food Science and Technology (EJFST)   e-ISSN: 2667-4890   Web: https://dergipark.org.tr/en/pub/ejfst   e-mail: foodsciencejournal@gmail.com