Review Article
BibTex RIS Cite

The blood-brain barrier: a focus on neurovascular unit components

Year 2024, Volume: 3 Issue: 3, 127 - 135, 31.12.2024
https://doi.org/10.55971/EJLS.1533200

Abstract

The blood–brain barrier (BBB) provides an optimum environment for neurons by ensuring the integrity and homeostasis of highly fragile brain cells under physiological conditions, protecting the brain from changes in the blood with both structural (tight junctions) and metabolic (enzymes) barriers, selective transport, and the metabolism and modification of substances in the blood and brain. The endothelial cells of the brain capillaries, located at the interfaces between the blood and the brain, are critical components that limit the permeability of the BBB. These cells have unique morphological, biochemical, and functional characteristics that distinguish them from those found in the peripheral vascular system. In addition to endothelial cells, astrocytic perivascular end-feet, pericytes, neurons, microglia, and smooth muscle cells also play significant roles in maintaining the homeostasis of the brain parenchyma. Thus, the BBB effectively prevents various molecules and therapeutic drugs from entering the brain parenchyma and reaching the target area at sufficiently high concentrations. The passage of a substance through the BBB and its entry into the brain depends on various factors, including the substance’s lipophilicity, diffusion capability, molecular weight, electrical charge, blood concentration, and multiple primary and secondary factors. Drug delivery systems developed in recent years, through techniques and methods aimed at controlled and safe opening or bypassing of the BBB, are believed to provide significant benefits in the lesion area by allowing therapeutic substances to optimally enter the brain from the circulation. This article provides a review of the BBB and its components, highlighting their significance among the brain’s different interfaces. It also discusses approaches for delivering therapeutic substances to the affected area under optimal conditions and concentrations in various brain pathologies.

References

  • Abbott NJ, Patabendige AA, Dolman DE, Yusof SR, Begley DJ. Structure and function of the blood-brain barrier. Neurobiol Dis. (2010);37(1):13-25. https://doi.org/10.1016/j.nbd.2009.07.030.
  • Saunders NR, Ek CJ, Habgood MD, Dziegielewska KM. Barriers in the brain: a renaissance? Trends Neurosci. (2008);31(6):279-86. https://doi.org/10.1016/j.tins.2008.03.003
  • Stokum JA, Gerzanich V, Simard JM. Molecular pathophysiology of cerebral edema. J Cereb Blood Flow Metab. (2016);36(3):513-38. https://doi.org/10.1177/0271678X15617172
  • Badaut J, Ghersi-Egea JF, Thorne RG, Konsman JP. Blood-brain borders: a proposal to address limitations of historical blood-brain barrier terminology. Fluids Barriers CNS. (2024);21(1):3. https://doi.org/10.1186/s12987-023-00478-5
  • McConnell HL, Mishra A. Cells of the Blood-Brain Barrier: An Overview of the Neurovascular Unit in Health and Disease. Methods Mol Biol. (2022);2492:3-24. https://doi.org/10.1007/978-1-0716-2289-6_1
  • Zlokovic BV. Neurovascular pathways to neurodegeneration in Alzheimer’s disease and other disorders. Nat Rev Neurosci. (2011);12(12):723-38. https://doi.org/10.1038/nrn3114
  • Engelhardt B, Sorokin L. The blood-brain and the blood-cerebrospinal fluid barriers: function and dysfunction. Semin Immunopathol. (2009);31(4):497-511. https://doi.org/10.1007/s00281-009-0177-0
  • Sá-Pereira I, Brites D, Brito MA. Neurovascular unit: a focus on pericytes. Mol Neurobiol. (2012);45(2):327-47. https://doi.org/10.1007/s12035-012-8244-2
  • Srinivasan B, Kolli AR, Esch MB, Abaci HE, Shuler ML, Hickman JJ. TEER measurement techniques for in vitro barrier model systems. J Lab Autom. (2015);20(2):107-26. https://doi.org/10.1177/2211068214561025
  • Hawkins BT, Davis TP. The blood-brain barrier/neurovascular unit in health and disease. Pharmacol Rev. (2005);57(2):173-85. https://doi.org/10.1124/pr.57.2.4
  • Kadry H, Noorani B, Cucullo L. A blood-brain barrier overview on structure, function, impairment, and biomarkers of integrity. Fluids Barriers CNS. (2020);17(1):69. https://doi.org/10.1186/s12987-020-00230-3
  • Koziara JM, Lockman PR, Allen DD, Mumper RJ. The blood-brain barrier and brain drug delivery. J Nanosci Nanotechnol. (2006);6(9-10):2712-35. https://doi.org/10.1166/jnn.2006.441
  • Minn A, Ghersi-Egea JF, Perrin R, Leininger B, Siest G. Drug metabolizing enzymes in the brain and cerebral microvessels. Brain Res Brain Res Rev. (1991);16(1):65-82. https://doi.org/10.1016/0165-0173(91)90020-9
  • Cardoso FL, Brites D, Brito MA. Looking at the blood-brain barrier: molecular anatomy and possible investigation approaches. Brain Res Rev. (2010);64(2):328-63. https://doi.org/10.1016/j.brainresrev.2010.05.003
  • Abbott NJ, Friedman A. Overview and introduction: the blood-brain barrier in health and disease. Epilepsia. (2012);53 Suppl 6(0 6):1-6. https://doi.org/10.1111/j.1528-1167.2012.03696.x
  • Carvey PM, Hendey B, Monahan AJ. The blood-brain barrier in neurodegenerative disease: a rhetorical perspective. J Neurochem. (2009);111(2):291-314. https://doi.org/10.1111/j.1471-4159.2009.06319.x
  • Filosa JA, Morrison HW, Iddings JA, Du W, Kim KJ. Beyond neurovascular coupling, role of astrocytes in the regulation of vascular tone. Neuroscience. (2016);323:96-109. https://doi.org/10.1016/j.neuroscience.2015.03.064
  • Cohen-Kashi Malina K, Cooper I, Teichberg VI. Closing the gap between the in-vivo and in-vitro blood-brain barrier tightness. Brain Res. (2009);1284:12-21. https://doi.org/10.1016/j.brainres.2009.05.072
  • Haydon PG, Carmignoto G. Astrocyte control of synaptic transmission and neurovascular coupling. Physiol Rev. (2006);86(3):1009-31. https://doi.org/10.1152/physrev.00049.2005
  • Salmina AB. Neuron-glia interactions as therapeutic targets in neurodegeneration. J Alzheimers Dis. (2009);16(3):485-502. https://doi.org/10.3233/JAD-2009-0988
  • Koehler RC, Roman RJ, Harder DR. Astrocytes and the regulation of cerebral blood flow. Trends Neurosci. (2009);32(3):160-9. https://doi.org/10.1016/j.tins.2008.11.005
  • Krueger M, Bechmann I. CNS pericytes: concepts, misconceptions, and a way out. Glia. (2010);58(1):1-10. https://doi.org/10.1002/glia.20898
  • Alarcon-Martinez L, Yemisci M, Dalkara T. Pericyte morphology and function. Histol Histopathol. (2021);36(6):633-643. https://doi.org/10.14670/HH-18-314
  • Bonkowski D, Katyshev V, Balabanov RD, Borisov A, Dore-Duffy P. The CNS microvascular pericyte: pericyte-astrocyte crosstalk in the regulation of tissue survival. Fluids Barriers CNS. (2011);8(1):8. https://doi.org/10.1186/2045-8118-8-8
  • Dore-Duffy P, Katychev A, Wang X, Van Buren E. CNS microvascular pericytes exhibit multipotential stem cell activity. J Cereb Blood Flow Metab. (2006);26(5):613-24. https://doi.org/10.1038/sj.jcbfm.9600272
  • Peppiatt CM, Howarth C, Mobbs P, Attwell D. Bidirectional control of CNS capillary diameter by pericytes. Nature. (2006);443(7112):700-4. https://doi.org/10.1038/nature05193
  • Muoio V, Persson PB, Sendeski MM. The neurovascular unit - concept review. Acta Physiol (Oxf). (2014);210(4):790-8. https://doi.org/10.1111/apha.12250
  • Armulik A, Genové G, Mäe M, Nisancioglu MH, Wallgard E, Niaudet C, He L, Norlin J, Lindblom P, Strittmatter K, Johansson BR, Betsholtz C. Pericytes regulate the blood-brain barrier. Nature. (2010);468(7323):557-61. https://doi.org/10.1038/nature09522
  • Bouchard BA, Shatos MA, Tracy PB. Human brain pericytes differentially regulate expression of procoagulant enzyme complexes comprising the extrinsic pathway of blood coagulation. Arterioscler Thromb Vasc Biol. (1997);17(1):1-9. https://doi.org/10.1161/01.atv.17.1.1
  • Kim JA, Tran ND, Li Z, Yang F, Zhou W, Fisher MJ. Brain endothelial hemostasis regulation by pericytes. J Cereb Blood Flow Metab. (2006);26(2):209-17. https://doi.org/10.1038/sj.jcbfm.9600181
  • Kim SU, de Vellis J. Microglia in health and disease. J Neurosci Res. (2005);81(3):302-13. https://doi.org/10.1002/jnr.20562
  • Nayak D, Roth TL, McGavern DB. Microglia development and function. Annu Rev Immunol. (2014);32:367-402. https://doi.org/10.1146/annurev-immunol-032713-120240
  • Colonna M, Butovsky O. Microglia Function in the Central Nervous System During Health and Neurodegeneration. Annu Rev Immunol. (2017);35:441-468. https://doi.org/10.1146/annurev-immunol-051116-052358
  • Rodríguez-Gómez JA, Kavanagh E, Engskog-Vlachos P, Engskog MKR, Herrera AJ, Espinosa-Oliva AM, Joseph B, Hajji N, Venero JL, Burguillos MA. Microglia: Agents of the CNS Pro-Inflammatory Response. Cells. (2020);9(7):1717. https://doi.org/10.3390/cells9071717
  • Ronaldson PT, Davis TP. Regulation of blood-brain barrier integrity by microglia in health and disease: A therapeutic opportunity. J Cereb Blood Flow Metab. (2020);40(1_suppl):S6-S24. https://doi.org/10.1177/0271678X20951995
  • Bernier LP, Bohlen CJ, York EM, Choi HB, Kamyabi A, Dissing-Olesen L, Hefendehl JK, Collins HY, Stevens B, Barres BA, MacVicar BA. Nanoscale Surveillance of the Brain by Microglia via cAMP-Regulated Filopodia. Cell Rep. (2019);27(10):2895-2908.e4. https://doi.org/10.1016/j.celrep.2019.05.010
  • Mosser CA, Baptista S, Arnoux I, Audinat E. Microglia in CNS development: Shaping the brain for the future. Prog Neurobiol. (2017);149-150:1-20. https://doi.org/10.1016/j.pneurobio.2017.01.002
  • Liu LR, Liu JC, Bao JS, Bai QQ, Wang GQ. Interaction of Microglia and Astrocytes in the Neurovascular Unit. Front Immunol. (2020);11:1024. https://doi.org/10.3389/fimmu.2020.01024
  • Kaur IP, Bhandari R, Bhandari S, Kakkar V. Potential of solid lipid nanoparticles in brain targeting. J Control Release. (2008);127(2):97-109. https://doi.org/10.1016/j.jconrel.2007.12.018
  • Witt KA, Gillespie TJ, Huber JD, Egleton RD, Davis TP. Peptide drug modifications to enhance bioavailability and blood-brain barrier permeability. Peptides. (2001);22(12):2329-2343. https://doi:10.1016/s0196-9781(01)00537-x
  • Pardridge WM. Blood-brain barrier delivery. Drug Discov Today. (2007);12(1-2):54-61. https://doi.org/10.1016/j.drudis.2006.10.013
  • Pardridge WM. Molecular Trojan horses for blood-brain barrier drug delivery. Curr Opin Pharmacol. (2006);6(5):494-500. https://doi:10.1016/j.coph.2006.06.001
  • Gosselet F, Loiola RA, Roig A, Rosell A, Culot M. Central nervous system delivery of molecules across the blood-brain barrier. Neurochem Int. (2021);144:104952. https://doi: 10.1016/j.neuint.2020.104952.
  • Lipinski CA, Lombardo F, Dominy BW, Feeney PJ. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev. (2001);46(1-3):3-26. https://doi:10.1016/s0169-409x(00)00129-0
  • Roskoski R Jr. Rule of five violations among the FDA-approved small molecule protein kinase inhibitors. Pharmacol Res. (2023);191:106774. https://doi:10.1016/j.phrs.2023.106774
  • Murugesan A, Konda Mani S, Koochakkhani S, et al. Design, synthesis and anticancer evaluation of novel arylhydrazones of active methylene compounds. Int J Biol Macromol. (2024);254(Pt 3):127909. https://doi:10.1016/j.ijbiomac.2023.127909
  • Huwyler J, Wu D, Pardridge WM. Brain drug delivery of small molecules using immunoliposomes. Proc Natl Acad Sci U S A. (1996) Nov 26;93(24):14164-9. https://doi.org/10.1073/pnas.93.24.14164
  • Chen TC, Wang W, Schönthal AH. From the groin to the brain: a transfemoral path to blood-brain barrier opening. Oncotarget. (2023);14:413-416. https://doi.org/10.18632/oncotarget.28414
  • Sánchez-Dengra B, González-Álvarez I, Bermejo M, González-Álvarez M. Access to the CNS: Strategies to overcome the BBB. Int J Pharm. (2023);636:122759. https://doi: 10.1016/j.ijpharm.2023.122759
  • Fong H, Zhou B, Feng H, Luo C, Bai B, Zhang J, Wang Y. Recapitulation of Structure-Function-Regulation of Blood-Brain Barrier under (Patho)Physiological Conditions. Cells. (2024);13(3):260. https://doi.org/10.3390/cells13030260
  • Virtanen PS, Ortiz KJ, Patel A, Blocher WA 3rd, Richardson AM. Blood-Brain Barrier Disruption for the Treatment of Primary Brain Tumors: Advances in the Past Half-Decade. Curr Oncol Rep. (2024);26(3):236-249. https://doi.org/10.1007/s11912-024-01497-7
  • Wang M, Etu J, Joshi S. Enhanced disruption of the blood brain barrier by intracarotid mannitol injection during transient cerebral hypoperfusion in rabbits. J Neurosurg Anesthesiol. (2007);19(4):249-56. https://doi.org/10.1097/ANA.0b013e3181453851
  • Hasegawa Y, Iuchi T, Sakaida T, Yokoi S, Kawasaki K. The influence of carmustine wafer implantation on tumor bed cysts and peritumoral brain edema. J Clin Neurosci. (2016);31:67-71. https://doi.org/10.1016/j.jocn.2015.12.033
  • Liu HL, Hua MY, Chen PY, Chu PC, Pan CH, Yang HW, Huang CY, Wang JJ, Yen TC, Wei KC. Blood-brain barrier disruption with focused ultrasound enhances delivery of chemotherapeutic drugs for glioblastoma treatment. Radiology. (2010);255(2):415-25. https://doi.org/10.1148/radiol.10090699
  • Gernert M, Feja M. Bypassing the Blood-Brain Barrier: Direct Intracranial Drug Delivery in Epilepsies. Pharmaceutics. (2020);12(12):1134. https://doi:10.3390/pharmaceutics12121134
  • Sousa F, Dhaliwal HK, Gattacceca F, Sarmento B, Amiji MM. Enhanced anti-angiogenic effects of bevacizumab in glioblastoma treatment upon intranasal administration in polymeric nanoparticles. J Control Release. (2019);309:37-47. https://doi:10.1016/j.jconrel.2019.07.033
  • Ferreira NN, de Oliveira Junior E, Granja S, Boni FI, Ferreira LMB, Cury BSF, Santos LCR, Reis RM, Lima EM, Baltazar F, Gremião MPD. Nose-to-brain co-delivery of drugs for glioblastoma treatment using nanostructured system. Int J Pharm. (2021);603:120714. https://doi:10.1016/j.ijpharm.2021.120714
Year 2024, Volume: 3 Issue: 3, 127 - 135, 31.12.2024
https://doi.org/10.55971/EJLS.1533200

Abstract

References

  • Abbott NJ, Patabendige AA, Dolman DE, Yusof SR, Begley DJ. Structure and function of the blood-brain barrier. Neurobiol Dis. (2010);37(1):13-25. https://doi.org/10.1016/j.nbd.2009.07.030.
  • Saunders NR, Ek CJ, Habgood MD, Dziegielewska KM. Barriers in the brain: a renaissance? Trends Neurosci. (2008);31(6):279-86. https://doi.org/10.1016/j.tins.2008.03.003
  • Stokum JA, Gerzanich V, Simard JM. Molecular pathophysiology of cerebral edema. J Cereb Blood Flow Metab. (2016);36(3):513-38. https://doi.org/10.1177/0271678X15617172
  • Badaut J, Ghersi-Egea JF, Thorne RG, Konsman JP. Blood-brain borders: a proposal to address limitations of historical blood-brain barrier terminology. Fluids Barriers CNS. (2024);21(1):3. https://doi.org/10.1186/s12987-023-00478-5
  • McConnell HL, Mishra A. Cells of the Blood-Brain Barrier: An Overview of the Neurovascular Unit in Health and Disease. Methods Mol Biol. (2022);2492:3-24. https://doi.org/10.1007/978-1-0716-2289-6_1
  • Zlokovic BV. Neurovascular pathways to neurodegeneration in Alzheimer’s disease and other disorders. Nat Rev Neurosci. (2011);12(12):723-38. https://doi.org/10.1038/nrn3114
  • Engelhardt B, Sorokin L. The blood-brain and the blood-cerebrospinal fluid barriers: function and dysfunction. Semin Immunopathol. (2009);31(4):497-511. https://doi.org/10.1007/s00281-009-0177-0
  • Sá-Pereira I, Brites D, Brito MA. Neurovascular unit: a focus on pericytes. Mol Neurobiol. (2012);45(2):327-47. https://doi.org/10.1007/s12035-012-8244-2
  • Srinivasan B, Kolli AR, Esch MB, Abaci HE, Shuler ML, Hickman JJ. TEER measurement techniques for in vitro barrier model systems. J Lab Autom. (2015);20(2):107-26. https://doi.org/10.1177/2211068214561025
  • Hawkins BT, Davis TP. The blood-brain barrier/neurovascular unit in health and disease. Pharmacol Rev. (2005);57(2):173-85. https://doi.org/10.1124/pr.57.2.4
  • Kadry H, Noorani B, Cucullo L. A blood-brain barrier overview on structure, function, impairment, and biomarkers of integrity. Fluids Barriers CNS. (2020);17(1):69. https://doi.org/10.1186/s12987-020-00230-3
  • Koziara JM, Lockman PR, Allen DD, Mumper RJ. The blood-brain barrier and brain drug delivery. J Nanosci Nanotechnol. (2006);6(9-10):2712-35. https://doi.org/10.1166/jnn.2006.441
  • Minn A, Ghersi-Egea JF, Perrin R, Leininger B, Siest G. Drug metabolizing enzymes in the brain and cerebral microvessels. Brain Res Brain Res Rev. (1991);16(1):65-82. https://doi.org/10.1016/0165-0173(91)90020-9
  • Cardoso FL, Brites D, Brito MA. Looking at the blood-brain barrier: molecular anatomy and possible investigation approaches. Brain Res Rev. (2010);64(2):328-63. https://doi.org/10.1016/j.brainresrev.2010.05.003
  • Abbott NJ, Friedman A. Overview and introduction: the blood-brain barrier in health and disease. Epilepsia. (2012);53 Suppl 6(0 6):1-6. https://doi.org/10.1111/j.1528-1167.2012.03696.x
  • Carvey PM, Hendey B, Monahan AJ. The blood-brain barrier in neurodegenerative disease: a rhetorical perspective. J Neurochem. (2009);111(2):291-314. https://doi.org/10.1111/j.1471-4159.2009.06319.x
  • Filosa JA, Morrison HW, Iddings JA, Du W, Kim KJ. Beyond neurovascular coupling, role of astrocytes in the regulation of vascular tone. Neuroscience. (2016);323:96-109. https://doi.org/10.1016/j.neuroscience.2015.03.064
  • Cohen-Kashi Malina K, Cooper I, Teichberg VI. Closing the gap between the in-vivo and in-vitro blood-brain barrier tightness. Brain Res. (2009);1284:12-21. https://doi.org/10.1016/j.brainres.2009.05.072
  • Haydon PG, Carmignoto G. Astrocyte control of synaptic transmission and neurovascular coupling. Physiol Rev. (2006);86(3):1009-31. https://doi.org/10.1152/physrev.00049.2005
  • Salmina AB. Neuron-glia interactions as therapeutic targets in neurodegeneration. J Alzheimers Dis. (2009);16(3):485-502. https://doi.org/10.3233/JAD-2009-0988
  • Koehler RC, Roman RJ, Harder DR. Astrocytes and the regulation of cerebral blood flow. Trends Neurosci. (2009);32(3):160-9. https://doi.org/10.1016/j.tins.2008.11.005
  • Krueger M, Bechmann I. CNS pericytes: concepts, misconceptions, and a way out. Glia. (2010);58(1):1-10. https://doi.org/10.1002/glia.20898
  • Alarcon-Martinez L, Yemisci M, Dalkara T. Pericyte morphology and function. Histol Histopathol. (2021);36(6):633-643. https://doi.org/10.14670/HH-18-314
  • Bonkowski D, Katyshev V, Balabanov RD, Borisov A, Dore-Duffy P. The CNS microvascular pericyte: pericyte-astrocyte crosstalk in the regulation of tissue survival. Fluids Barriers CNS. (2011);8(1):8. https://doi.org/10.1186/2045-8118-8-8
  • Dore-Duffy P, Katychev A, Wang X, Van Buren E. CNS microvascular pericytes exhibit multipotential stem cell activity. J Cereb Blood Flow Metab. (2006);26(5):613-24. https://doi.org/10.1038/sj.jcbfm.9600272
  • Peppiatt CM, Howarth C, Mobbs P, Attwell D. Bidirectional control of CNS capillary diameter by pericytes. Nature. (2006);443(7112):700-4. https://doi.org/10.1038/nature05193
  • Muoio V, Persson PB, Sendeski MM. The neurovascular unit - concept review. Acta Physiol (Oxf). (2014);210(4):790-8. https://doi.org/10.1111/apha.12250
  • Armulik A, Genové G, Mäe M, Nisancioglu MH, Wallgard E, Niaudet C, He L, Norlin J, Lindblom P, Strittmatter K, Johansson BR, Betsholtz C. Pericytes regulate the blood-brain barrier. Nature. (2010);468(7323):557-61. https://doi.org/10.1038/nature09522
  • Bouchard BA, Shatos MA, Tracy PB. Human brain pericytes differentially regulate expression of procoagulant enzyme complexes comprising the extrinsic pathway of blood coagulation. Arterioscler Thromb Vasc Biol. (1997);17(1):1-9. https://doi.org/10.1161/01.atv.17.1.1
  • Kim JA, Tran ND, Li Z, Yang F, Zhou W, Fisher MJ. Brain endothelial hemostasis regulation by pericytes. J Cereb Blood Flow Metab. (2006);26(2):209-17. https://doi.org/10.1038/sj.jcbfm.9600181
  • Kim SU, de Vellis J. Microglia in health and disease. J Neurosci Res. (2005);81(3):302-13. https://doi.org/10.1002/jnr.20562
  • Nayak D, Roth TL, McGavern DB. Microglia development and function. Annu Rev Immunol. (2014);32:367-402. https://doi.org/10.1146/annurev-immunol-032713-120240
  • Colonna M, Butovsky O. Microglia Function in the Central Nervous System During Health and Neurodegeneration. Annu Rev Immunol. (2017);35:441-468. https://doi.org/10.1146/annurev-immunol-051116-052358
  • Rodríguez-Gómez JA, Kavanagh E, Engskog-Vlachos P, Engskog MKR, Herrera AJ, Espinosa-Oliva AM, Joseph B, Hajji N, Venero JL, Burguillos MA. Microglia: Agents of the CNS Pro-Inflammatory Response. Cells. (2020);9(7):1717. https://doi.org/10.3390/cells9071717
  • Ronaldson PT, Davis TP. Regulation of blood-brain barrier integrity by microglia in health and disease: A therapeutic opportunity. J Cereb Blood Flow Metab. (2020);40(1_suppl):S6-S24. https://doi.org/10.1177/0271678X20951995
  • Bernier LP, Bohlen CJ, York EM, Choi HB, Kamyabi A, Dissing-Olesen L, Hefendehl JK, Collins HY, Stevens B, Barres BA, MacVicar BA. Nanoscale Surveillance of the Brain by Microglia via cAMP-Regulated Filopodia. Cell Rep. (2019);27(10):2895-2908.e4. https://doi.org/10.1016/j.celrep.2019.05.010
  • Mosser CA, Baptista S, Arnoux I, Audinat E. Microglia in CNS development: Shaping the brain for the future. Prog Neurobiol. (2017);149-150:1-20. https://doi.org/10.1016/j.pneurobio.2017.01.002
  • Liu LR, Liu JC, Bao JS, Bai QQ, Wang GQ. Interaction of Microglia and Astrocytes in the Neurovascular Unit. Front Immunol. (2020);11:1024. https://doi.org/10.3389/fimmu.2020.01024
  • Kaur IP, Bhandari R, Bhandari S, Kakkar V. Potential of solid lipid nanoparticles in brain targeting. J Control Release. (2008);127(2):97-109. https://doi.org/10.1016/j.jconrel.2007.12.018
  • Witt KA, Gillespie TJ, Huber JD, Egleton RD, Davis TP. Peptide drug modifications to enhance bioavailability and blood-brain barrier permeability. Peptides. (2001);22(12):2329-2343. https://doi:10.1016/s0196-9781(01)00537-x
  • Pardridge WM. Blood-brain barrier delivery. Drug Discov Today. (2007);12(1-2):54-61. https://doi.org/10.1016/j.drudis.2006.10.013
  • Pardridge WM. Molecular Trojan horses for blood-brain barrier drug delivery. Curr Opin Pharmacol. (2006);6(5):494-500. https://doi:10.1016/j.coph.2006.06.001
  • Gosselet F, Loiola RA, Roig A, Rosell A, Culot M. Central nervous system delivery of molecules across the blood-brain barrier. Neurochem Int. (2021);144:104952. https://doi: 10.1016/j.neuint.2020.104952.
  • Lipinski CA, Lombardo F, Dominy BW, Feeney PJ. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev. (2001);46(1-3):3-26. https://doi:10.1016/s0169-409x(00)00129-0
  • Roskoski R Jr. Rule of five violations among the FDA-approved small molecule protein kinase inhibitors. Pharmacol Res. (2023);191:106774. https://doi:10.1016/j.phrs.2023.106774
  • Murugesan A, Konda Mani S, Koochakkhani S, et al. Design, synthesis and anticancer evaluation of novel arylhydrazones of active methylene compounds. Int J Biol Macromol. (2024);254(Pt 3):127909. https://doi:10.1016/j.ijbiomac.2023.127909
  • Huwyler J, Wu D, Pardridge WM. Brain drug delivery of small molecules using immunoliposomes. Proc Natl Acad Sci U S A. (1996) Nov 26;93(24):14164-9. https://doi.org/10.1073/pnas.93.24.14164
  • Chen TC, Wang W, Schönthal AH. From the groin to the brain: a transfemoral path to blood-brain barrier opening. Oncotarget. (2023);14:413-416. https://doi.org/10.18632/oncotarget.28414
  • Sánchez-Dengra B, González-Álvarez I, Bermejo M, González-Álvarez M. Access to the CNS: Strategies to overcome the BBB. Int J Pharm. (2023);636:122759. https://doi: 10.1016/j.ijpharm.2023.122759
  • Fong H, Zhou B, Feng H, Luo C, Bai B, Zhang J, Wang Y. Recapitulation of Structure-Function-Regulation of Blood-Brain Barrier under (Patho)Physiological Conditions. Cells. (2024);13(3):260. https://doi.org/10.3390/cells13030260
  • Virtanen PS, Ortiz KJ, Patel A, Blocher WA 3rd, Richardson AM. Blood-Brain Barrier Disruption for the Treatment of Primary Brain Tumors: Advances in the Past Half-Decade. Curr Oncol Rep. (2024);26(3):236-249. https://doi.org/10.1007/s11912-024-01497-7
  • Wang M, Etu J, Joshi S. Enhanced disruption of the blood brain barrier by intracarotid mannitol injection during transient cerebral hypoperfusion in rabbits. J Neurosurg Anesthesiol. (2007);19(4):249-56. https://doi.org/10.1097/ANA.0b013e3181453851
  • Hasegawa Y, Iuchi T, Sakaida T, Yokoi S, Kawasaki K. The influence of carmustine wafer implantation on tumor bed cysts and peritumoral brain edema. J Clin Neurosci. (2016);31:67-71. https://doi.org/10.1016/j.jocn.2015.12.033
  • Liu HL, Hua MY, Chen PY, Chu PC, Pan CH, Yang HW, Huang CY, Wang JJ, Yen TC, Wei KC. Blood-brain barrier disruption with focused ultrasound enhances delivery of chemotherapeutic drugs for glioblastoma treatment. Radiology. (2010);255(2):415-25. https://doi.org/10.1148/radiol.10090699
  • Gernert M, Feja M. Bypassing the Blood-Brain Barrier: Direct Intracranial Drug Delivery in Epilepsies. Pharmaceutics. (2020);12(12):1134. https://doi:10.3390/pharmaceutics12121134
  • Sousa F, Dhaliwal HK, Gattacceca F, Sarmento B, Amiji MM. Enhanced anti-angiogenic effects of bevacizumab in glioblastoma treatment upon intranasal administration in polymeric nanoparticles. J Control Release. (2019);309:37-47. https://doi:10.1016/j.jconrel.2019.07.033
  • Ferreira NN, de Oliveira Junior E, Granja S, Boni FI, Ferreira LMB, Cury BSF, Santos LCR, Reis RM, Lima EM, Baltazar F, Gremião MPD. Nose-to-brain co-delivery of drugs for glioblastoma treatment using nanostructured system. Int J Pharm. (2021);603:120714. https://doi:10.1016/j.ijpharm.2021.120714
There are 57 citations in total.

Details

Primary Language English
Subjects Pharmacology and Pharmaceutical Sciences (Other)
Journal Section Reviews
Authors

Betül Can 0000-0001-8430-5298

İ. Özkan Alataş 0000-0002-1753-8873

Publication Date December 31, 2024
Submission Date August 14, 2024
Acceptance Date December 17, 2024
Published in Issue Year 2024 Volume: 3 Issue: 3

Cite

Vancouver Can B, Alataş İÖ. The blood-brain barrier: a focus on neurovascular unit components. Eur J Life Sci. 2024;3(3):127-35.