Günümüzün rekabetçi ortamında organizasyonların önem vermesi gereken stratejik kararlardan biri de tesis yer seçimi problemidir. Tesis yer seçimi problemlerinden biri olan p-medyan problemi, n adet düğüm noktasını kullanarak p tane tesisin konumunu, düğüm noktaları ile tesisler arasındaki taşımalardan kaynaklanan maliyetin minimize edilmesini sağlayarak elde etmeyi amaçlamaktadır. Bir diğer ifade ile p-medyan problemi p adet tesisin hangi aday bölgelere kurulacağının ve hangi müşterilerin hangi tesise atanacağının belirlenmesi problemidir. Problemde düğüm noktalarının talepleri sabit, hizmete sunulan tesislerin sayısı ve konumlarının bilindiği varsayıldığından problem kesikli uzayda tesis yer seçimi problemi içerisinde sınıflandırılmaktadır. Bu çalışmada ise p-medyan probleminde yer alan alternatif tesislerin konumlarının bilinmediği varsayılmış ve Karar Verici (KV) tarafından belirlenmiş olan p adet tesisin konumu matematiksel model yardımı ile elde edilmiştir. Sürekli uzayda tesis yer seçimi problemi olarak adlandırılan bu problem için Karesel Öklid uzaklığı kullanılarak doğrusal olmayan matematiksel model ele alınmıştır. Matematiksel modelin çözümü için GAMS 22.5 programı BARON çözücüsünden yararlanılmıştır.
tesis yeri seçimi sürekli uzayda tesis yeri seçimi p-medyan problemi matematiksel model doğrusal olmayan programlama
In our world where competition is increasing day by day, one of the strategic decisions that organizations should pay attention to is facility location problem. The p-median problem, which is one of the facility location problems, aims to obtain the location of p facilities by using n nodes to aim minimizing the cost of transportation between the nodes and the facilities. In other words, the p-median problem determine in which p facilities will be constructed and which customers will be assigned to which facility. The problem is classified as a facility location problem in discrete space, since it is assumed that the demands of the nodes are fixed, and the number and locations of the facilities are known. In this study, it is assumed that the locations of the alternative facilities are not known, and the locations of the p facilities determined by the Decision Maker (DM) are obtained with a mathematical model. For this problem, which is called the facility location problem in continuous space, a nonlinear mathematical model is considered by using Euclidean Squared distance. The GAMS 22.5 program and BARON solver were used to solve the nonlinear mathematical model.
Facility Location Facility Location in Continuous Space P-Median Problem Mathematical Model Nonlinear Mathematical Programming.
Primary Language | Turkish |
---|---|
Subjects | Engineering |
Journal Section | Articles |
Authors | |
Publication Date | November 30, 2021 |
Published in Issue | Year 2021 |