Elastomer Karakterli Kauçuk Burçlar İçin Otomatik Test Kontrol Ünitesi Geliştirilmesi ve SCADA ile İzlenmesi
Year 2021,
, 66 - 68, 15.12.2021
Selim Sefa Baysal
,
Muhammed Abdullah Özel
,
Mehmet Can Küçükbaşak
,
Furkan Göğer
,
Cemil Sungur
Abstract
Elastomer karakterli kauçuk burçlar, araç parçalarının bağlantı noktaları arasında kuvveti iletebilmek, titreşimleri sönümlemek ve parçalar arası boşluğu giderebilmek amacıyla kullanılmaktadır. Burçların çok yönlü kuvvetlere ve burulmalara maruz kaldığı bilinmektedir. Bu nedenle burçlarda kauçuğun metale iyi yapışmış olması ve burçta kullanılan kauçuğun istenilen sertlikte olması en önemli özelliklerdir. Bu özelliklerin doğruluğu burca uygulanan statik testler ile sağlanmaktadır. Burca uygulanan statik test yükleri test edilen burcun yapısına göre belirlenmektedir. Bu çalışma ile burçlarda deformasyon olup olmadığı, yapışma problemi, standart yükler altında burçların esneme değerlerinin ölçülmesi ve doğrulanması amaçlanmıştır. Burç üzerine uygulanacak olan yükler, test kontrol ünitesine tanımlanmış, sensörlerden toplanan veriler yapay sinir ağlarına aktarılarak veri tabanı oluşturulmuştur. Oluşturulan veri tabanı, her bir burç için toplanan deformasyon ve yapışma verilerini kendi içerisinde karşılaştırmıştır. Karşılaştırma sonucunda deformasyon, kauçuk yapışma oranı önceki veriler ile kıyaslandığında burcun kopma değişimi %15 ve üzeri olduğunda test sistemi otomatik olarak durarak burcun gövdeden kopmasını engellemiştir.
Supporting Institution
AYDINLAR YEDEK PARÇA SAN. TİC. A.Ş.
Project Number
AYD1220-01
Thanks
Çalışmada desteklerinden dolayı AR-GE müdürümüz Sn. Ahmet ÇAKAL'a teşekkür ederiz.
References
- Kadlowec, J., Wineman, A. & Hulbert, G, (2003). Elastomer bushing response: experiments and finite element modeling. Acta Mechanica 163, 25–38.
- Adkins, J & Gent, A., (2002). Load-deflexion relations of rubber bush mountings. British Journal of Applied Physics. 5. 354.
- Ok, J., Yoo, W., & Sohn, J., (2007). Experimental study on the bushing characteristics under several excitation inputs for bushing modeling. International Journal of Automotive Technology, 8, 455-465.
- García Tárrago, M. J., Kari, L., Viñolas, J., & Gil-Negrete, N., (2007). Torsion stiffness of a rubber bushing: A simple engineering design formula including the amplitude dependence. The Journal of Strain Analysis for Engineering Design, 42(1), 13–21.
- Yoo, W. S., Baek, W. K., & Sohn, J. H., (2004). A practical model for bushing components for vehicle dynamic analysis. International journal of vehicle design, 36(4), 345-364.
- Heissing, B., (2011). Chassis handbook: fundamentals, driving dynamics, components, mechatronics, perspectives, (M. Ersoy, Ed), Vieweg + Teubner, 316-320.
- Kuo, E., (1997)."Testing and Characterization of Elastomeric Bushings for Large Deflection Behavior," SAE Technical Paper 970099.
- H. S. Lee J. K. Shin S. Msolli H. S. Kim (2015) Department of Mechanical, Robotics and Energy Engineering, Dongguk University-Seoul, 30 Pildong-ro 1-gil, Jung-gu, Seoul 04620
- G. Previati, M. Kaliske, M. Gobbi, and G. Mastinu, (2011). “Structural optimization of a rubber bushing for automotive suspension,” in Proceedings of the 7th European Conference on Constitutive Models for Rubber, ECCMR VII, pp. 307– 312, Dublin, Ireland,
- K. Hasanpour, S. Ziaei-Rad, and M. Mahzoon, (2009). “A large deformation framework for compressible viscoelastic materials: Constitutive equations and finite element implementation,” International Journal of Plasticity, vol. 25, no. 6, pp. 1154– 1176.
- W. Wei, A. Liu, A. Liu, S. C.-Y. Lu, and T. Wuest, (2015). “Product requirement modeling and optimization method based on product configuration design,” Procedia CIRP, vol. 36, pp. 1–5.
Development of an Automatic Test Controller for Rubber Bushings with Elastomer Character and Monitoring with SCADA
Year 2021,
, 66 - 68, 15.12.2021
Selim Sefa Baysal
,
Muhammed Abdullah Özel
,
Mehmet Can Küçükbaşak
,
Furkan Göğer
,
Cemil Sungur
Abstract
Rubber bushings with elastomer characters are used to transmit force between the connection points of the vehicle parts, absorb vibrations and remove the clearances between parts. It is known the rubber bushings be exposed to versatile forces and torsions. Because of this most important proberties of rubber bushings are adhesion on metal housing and rubbers stiffness that used on bushing. To test adhesion and stiffness some static tests performed to rubber bushing. The force that performed on static test is determined by rubber bushings characteristics. In this study, it is aimed to control the deformation and adhesion problem and verify the stiffness values of the bushings under standard loads. The loads to be applied on the bushing are defined in the test control unit, and data collected from the sensors are transferred to artificial neural networks and a database is created. The created database compared the deformation and adhesion data collected for each bush within itself. As a result of the comparison, the test system stopped automatically when the deformation and rubber adhesion rate of the bush is 15% or more compared to the previous data, preventing the bush from breaking off from the body.
Project Number
AYD1220-01
References
- Kadlowec, J., Wineman, A. & Hulbert, G, (2003). Elastomer bushing response: experiments and finite element modeling. Acta Mechanica 163, 25–38.
- Adkins, J & Gent, A., (2002). Load-deflexion relations of rubber bush mountings. British Journal of Applied Physics. 5. 354.
- Ok, J., Yoo, W., & Sohn, J., (2007). Experimental study on the bushing characteristics under several excitation inputs for bushing modeling. International Journal of Automotive Technology, 8, 455-465.
- García Tárrago, M. J., Kari, L., Viñolas, J., & Gil-Negrete, N., (2007). Torsion stiffness of a rubber bushing: A simple engineering design formula including the amplitude dependence. The Journal of Strain Analysis for Engineering Design, 42(1), 13–21.
- Yoo, W. S., Baek, W. K., & Sohn, J. H., (2004). A practical model for bushing components for vehicle dynamic analysis. International journal of vehicle design, 36(4), 345-364.
- Heissing, B., (2011). Chassis handbook: fundamentals, driving dynamics, components, mechatronics, perspectives, (M. Ersoy, Ed), Vieweg + Teubner, 316-320.
- Kuo, E., (1997)."Testing and Characterization of Elastomeric Bushings for Large Deflection Behavior," SAE Technical Paper 970099.
- H. S. Lee J. K. Shin S. Msolli H. S. Kim (2015) Department of Mechanical, Robotics and Energy Engineering, Dongguk University-Seoul, 30 Pildong-ro 1-gil, Jung-gu, Seoul 04620
- G. Previati, M. Kaliske, M. Gobbi, and G. Mastinu, (2011). “Structural optimization of a rubber bushing for automotive suspension,” in Proceedings of the 7th European Conference on Constitutive Models for Rubber, ECCMR VII, pp. 307– 312, Dublin, Ireland,
- K. Hasanpour, S. Ziaei-Rad, and M. Mahzoon, (2009). “A large deformation framework for compressible viscoelastic materials: Constitutive equations and finite element implementation,” International Journal of Plasticity, vol. 25, no. 6, pp. 1154– 1176.
- W. Wei, A. Liu, A. Liu, S. C.-Y. Lu, and T. Wuest, (2015). “Product requirement modeling and optimization method based on product configuration design,” Procedia CIRP, vol. 36, pp. 1–5.