Review
BibTex RIS Cite

Bitkilerin Abiyotik Stres Koşullarıyla Başa Çıkmasına Yardımcı Strigolaktonlar

Year 2021, , 686 - 690, 31.12.2021
https://doi.org/10.31590/ejosat.1009438

Abstract

Bitki hormonları ya da fitohormonlar, bitkilerde az miktarda bulunan, doğal olarak oluşan, çevresel streslere (abiyotik/biyotik) karşı dayanıklılığın oluşmasına etki eden, bitki büyümesi, gelişimi, çevre ve diğer organizmalar ile bitki arasındaki etkileşimde önemli role sahip olan organik maddelerdir. Köklerde sentezlenip, sürgünlere taşınımı gerçekleşen, karotenoidlerden türevlenen strigolaktonlar (SL) ise, bitkide sürgün dallanmasını baskılayan, yaşlanma, kök büyümesi, besin elementi eksikliğinde, mineral alımını artırmak için Arbüsküler Mikorizal Fungus (AMF) ile simbiyotik ilişkiyi teşvik eden, bunun sonucunda su ve mineral madde alımını artıran yeni bir bitki hormonu olarak bilinmektedir. Ayrıca kuraklık, sıcaklık, ağır metal, tuz stresi ve mineral yetersizliği gibi çeşitli abiyotik stres koşullarında da etkili olmaktadır. Su stresi altında, SL'lar sürgün büyümesini engellerken (sitokinin ile etkileşim), su alımını artırmak için, yan kök gelişimini teşvik etmektedir. Absisik asit ile etkileşimde, SL'lar stoma yoğunluğunu düzenlemekte, tohum dormansisini ortadan kaldırarak, çimlenmeyi artırmaktadır. AMF ile olan birliktelik, bitkide strigolakton üretimine de etkide bulunarak, tuz stresinin etkilerini hafifletebilmektedir. Besin elementi, özellikle azot ve fosfor eksikliğinde, bitkide sürgün dallanmasının baskılanmasına yol açan ve simbiyotik ilişkiyi teşvik eden yüksek miktarda SL üretimine neden olmaktadır. AMF, hifler aracılığı ile suyun ve azot, fosfor gibi besin maddelerinin teminini sağlamaktadır. Ağır metal stresi koşullarında, SL'ların dışarıdan uygulanması, ağır metal kaynaklı oksidatif stresi azaltmakta, klorofil miktarını, fotosentezi, antioksidan enzim aktivitelerini artırmakta, lipid peroksidasyonu ile birlikte Reaktif oksijen türlerinin (ROS) seviyesini azaltmakta ve bitki büyümesini teşvik etmektedir. Böylece bitkiler, ağır metal ile bulaşık alanlarda fitohormonları dengeleyerek daha iyi hayatta kalabilmektedir.

References

  • Al-Babili, S., Bouwmeester, H.J. (2015). Strigolactones, a novel carotenoid-derived plant hormone. Annu Rev Plant Biol, 66:161-186.
  • Banerjee, P., Bhadra, P. (2020). Formulation of Anti-microbial and Anti-aging Oil from Natural Resources for Topical Application. International Journal of Botany Studies, 5(3): 279-284.
  • Brewer, P.B., Dun, E.A., Ferguson, B.J., Rameau, C., Beveridge, C.A. (2009). Strigolactone acts downstream of auxin to regulate bud outgrowth in pea and arabidopsis. Plant Physiology 150, 482-493.
  • Brewer, P.B., Koltai, H., Beveridge, C.A. (2013). Diverse roles of strigolactones in plant development. Mol. Plant, 6: 18-28.
  • Bucker-Neto, L., Paiva, A.L.S., Machado, R. D., Arenhart, R.A., MargisPinheiro, M. (2017). Interactions between plant hormones and heavy metals responses. Genetics and Molecular Biology. 40: 373-386.
  • Carvalhais, L.C., Rincon-Florez, V.A., Brewer, P.B., Beveridge, C.A., Dennis, P.G., Schenk, P.M. (2019). The ability of plants to produce strigolactones affects rhizosphere community composition of fungi but not bacteria. Rhizosphere, 9: 18-26.
  • Czarnecki, O., Yang, J., Weston, D.J., Tuskan, G.A., Chen, J.-G. (2013). A dual role of strigolactones in phosphate acquisition and utilization in plants. Int. J. Mol. Sci, 14: 7681-7701
  • Demirbaş, S., Dinler, B.S., Önay, E. (2015). Soya Bitkisinde GR24 Ön Uygulamasının Tuz Stresinin Oluşturduğu Hasarı İyileştirmedeki Rolü. 1. Ulusal Bitki Sempozyumu, 1-4 Eylül 2015. Erzurum, Türkiye. 43 s.
  • Druege, U., Franken, P., Hajirezai, M.R. (2016). Plant hormone homoestasis, signalling, and function during adventitious root formation in cuttings. Fronteriers in Plant Science 7, 381.
  • Ferguson, B.J., Beveridge, C.A. (2009). Roles for auxin, cytokinin, and strigolactone in regulating shoot branching. Plant Physiology 149, 1929-1944.
  • García-Garrido, J.M., Lendzemo, V., Castellanos-Morales, V., Steinkellner, S., Vierheilig H. (2009). Strigolactones, signals for parasitic plants and arbuscular mycorrhizal fungi. Mycorrhiza, 19(7):449-459.
  • Gök Özel, Ş. (2018). Strigolakton Uygulamasıyla Tuz Stresine Karşı Kum Zambağı Bitkisinin Toleransının Arttırılmasında Antioksidan Enzimlerin İşlevi. Yüksek Lisans Tezi, Tekirdağ Namık Kemal Üniversitesi Fen Bilimleri Enstitüsü, Tekirdağ. 118 s.
  • Gözükırmızı, N., Karlık, E. (2019). Bitki Biyoteknolojisinde Tarihsel Gelişmeler, In: (eds. Çiftci, Y.Ö., Uncuoğlu, A.A.) Bitki Biyotnolojisinde Güncel Yaklaşımlar, Palme Yayınevi, Ankara.
  • Kausar, F., Shahbaz, M. (2017). Influence of strigolactone (GR24) as a seed treatment on growth, gas exchange and chlorophyll fluorescence of wheat under saline conditions. International Journal of Agriculture and Biology, 19: 321 2017
  • Kohlen, W., Charnikhova, T., Liu, Q., Bours, R., Domagalska, M.A., Beguerie, S., Verstappen, F., Leyser, O., Bouwmeester, H., Ruyter-Spira, C. (2011). Strigolactones are transported through the xylem and play a key role in shoot architectural response to phosphate deficiency in nonarbuscular mycorrhizal host Arabidopsis. Plant physiology, 155(2): 974-987.
  • Kopta, T., Antal, M., Jurica, M., Volkova, J., Pokluda, R. (2017). The Influence of synthetic strigolactones and plant extracts on the morphological parameters of onion (Allium cepa). Advances in Horticultural Science, 31(4):235-240.
  • Kumlay, M., Eryiğit, T. (2011). Bitkilerde Büyüme ve Gelişmeyi Düzenleyici Maddeler: Bitki Hormonları. Iğdır Üniversitesi Fen Bilimleri Enstitüsü Dergisi 1(2): 47-56.
  • Kürtür, O.B. (2018). Tuz stresine dayanıklı ve duyarlı buğday çeşitlerinde strigolakton uygulamasına fizyolojik ve biyokimyasal yanıtlar. Çanakkale Onsekiz Mart Üniversitesi, Fen Bilimleri Enstitüsü. Biyoloji Anabilim Dalı Yüksek Lisans Tezi. Çanakkale. 45 s.
  • Ling, F.L., Su, Q.W., Jiang, H., Cui, J.J., He, X.L., Wu, Z.H., Zhang, Z.A., Liu, J., Zhao, Y.J. (2020). Effects of strigolactone on photosynthetic and physiological characteristics in salt-stressed rice seedlings. Sci. Rep, 10:6183
  • Lopez-Obando, M. Ligerot, Y., Bonhomme, S., Boyer, F., Rameau, C. (2015). Strigolactone biosynthesis and signaling in plant development. The Company of Biologists 142, 3615-3619.
  • Ma, N., Hu, C., Wan, L., Hu, Q., Xiong, J., Zhang, C. (2017). Strigolactones improve plant growth, photosynthesis, and alleviate oxidative stress under salinity in rapeseed (Brassica napus L.) by regulating gene expression. Front Plant Sci, 8. https ://doi.org/10.3389/fpls.2017.01671
  • Mashiguchi, K., Seto, Y., Yamaguchi, S. (2021). Strigolactone biosynthesis, transport and perception. Plant J, 105 (2): 335-350. https://doi/10.1111/tpj.15059
  • Mostofa, M.G., Rahman, M.M., Nguyen, K.H., Li, W., Watanabe, Y., Tran, C.D., Zhang, M., Itouga, M., Fujita, M., Tran, L.P. (2021). Strigolactones regulate arsenate uptake, vacuolar-sequestration and antioxidant defense responses to resist arsenic toxicity in rice roots. J Hazard Mater, 5; 415:125589. https ://doi.org/10.1016/j.jhazmat.2021.125589.
  • Önay, E. (2019). Strigolaktonun tuz stresine toleranslı ve duyarlı buğday çeşitlerinde askorbat-glutatyon döngüsü enzim sistemine etkisi. Tekirdağ Namık Kemal Üniversitesi, Fen Bilimleri Enstitüsü, Tarımsal Biyoteknoloji Anabilim Dalı, Yüksek Lisans Tezi. Tekirdağ, 79 s.
  • Piotrowska-Niczyporuk, A., Bajguz, A., Zambrzycka, E., Godlewska-Żyłkiewicz, B. (2012). Phytohormones as regulators of heavy metal biosorption and toxicity in green alga Chlorella vulgaris (Chlorophyceae). Plant Physiol, Biochem. 52:52-65
  • Qiu, C.W., Zhang, C., Wang, N.H., Mao, W., Wu, F. (2021). Strigolactone GR24 improves cadmium tolerance by regulating cadmium uptake, nitric oxide signaling and antioxidant metabolism in barley (Hordeum vulgare L.). Environ Pollut. 15;273:116486. https ://doi.org/10.1016/j.envpol.2021.116486.
  • Ruyter-Spira, C., Kohlen, W., Charnikhova, T., van Zeijl, A., van Bezouwen, L., de Ruijter, N., Cardoso, C., Lopez-Raez, J.A., Matusova, R., Bours, R., Verstappen, F., Bouwmeester, H. (2011). Physiological effects of the synthetic strigolactone analog GR24 on root system architecture in Arabidopsis: another belowground role for strigolactones? Plant Physiol, 155(2):721-34.
  • Saeed, W., Naseem, S., Ali, Z. (2017). Strigolactones Biosynthesis and Their Role in Abiotic Stress Resilience in Plants: A Critical Review. Front Plant Sci, 28 (8):1487.
  • Santoro, V., Schiavon, M., Gresta, F., Ertani, A., Cardinale, F., Sturrock, C.J., Celi, L., Schubert, A. (2020). Strigolactones Control Root System Architecture and Tip Anatomy in Solanum Lycopersicum L. Plants under P Starvation. Plants (Basel, Switzerland), 9(5): 612. https://doi.org/10.3390/plants9050612
  • Sarwar, Y., Shahbaz, M. (2019). GR24 triggered variations in morphophysiological attributes of sunfower (Helianthus annuus) under salinity. Int J Agric Biol, 21:34-40
  • Shindo, M., Nagasaka, S., Kashiwada, S., Shimomura, K., Umehara, M. (2021). Shoot has important roles in strigolactone production of rice roots under sulfur deficiency. Plant Signal Behav, 3;16(4):1880738. https ://doi.org/10.1080/15592324.2021.1880738.
  • Smith, S.M. (2014): Q&A: What are strigolactones and why are they important to plants and soil microbes? BMC Biol, 12: 19. https://doi.org/10.1186/1741-7007-12-19
  • Tai, Z., Yin, X., Fang, Z., Shi, G., Lou, L., Cai, Q. (2017). Exogenous GR24 alleviates cadmium toxicity by reducing cadmium uptake in switchgrass (Panicum virgatum) seedlings. Int J Environ Res Public Health, 14(8):852
  • Takahashi, I., Asami, T. (2018). Target-based selectivity of strigolactone agonists and antagonists in plants and their potential use in agriculture. J Exp Bot, 69(9):2241-2254.
  • Toh, S., Kamiya, Y., Kawakami, N., Nambara, E., McCourt, P., Tsuchiya, Y. (2012). Thermoinhibition uncovers a role for strigolactones in Arabidopsis seed germination. Plant Cell Physiol, 53(1):107-17.
  • Ueda, H., Kusaba, M. (2015). Strigolactone Regulates Leaf Senescence in Concert with Ethylene in Arabidopsis. Plant Physiology, 169: 138-147.
  • Umehara, M. (2011). Strigolactone, a key regulator of nutrient allocation in plants. Plant Biotechnology, 28: 429-437.
  • Umehara, M., Hanada, A., Magome, H., Takeda-Kamiya, N., Yamaguchi, S. (2010). Contribution of Strigolactones to the Inhibition of Tiller Bud Outgrowth under Phosphate Deficiency in Rice. Plant and Cell Physiology, 51 (7):1118-1126
  • Umehara, M., Hanada, A., Yoshida, S., Akiyama, K., Arite, T., Takeda-Kamiya, N., Magome, H., Kamiya, Y., Shirasu, K., Yoneyama, K., Kyozuka, J., Yamaguchi, S. (2008). Inhibition of shoot branching by new terpenoid plant hormones. Nature, 455:195-200
  • Van Ha, C., Leyva-Gonzálezc, A., Osakabed, Y., Trana, T.U., Nishiyama, R., Watanabea, Y., Tanakae, M., Sekie, M,. Yamaguchif, S., Dong, V., Yamaguchi-Shiozakig, K., Shinozakid, K., Herrera-Estrellac, L. (2014). Positive Regulatory Role of Strigolactone in Plant Responses to Drought and Salt Stress. Plant Biology, 111 (2): 851-856.
  • Verma, V., Ravindran, P., Kumar, P.P. (2016). Plant hormone mediated regulation of stress responses. BMC Plant Biology 16, 86.
  • Visentin, I., Vitali, M., Ferrero, M., Zhang, Y., Ruyter-Spira, C., Novák, O., Cardinale, F. (2016). Low Levels of Strigolactones in Roots as A Component of The Systemic Signal of Drought Stress in Tomato. New Phytologist, 212(4): 954-963.
  • Wang, Y., Wang, L., Yang, X., Li, X., Zang, H., Fang, B. (2021). Effects of Wheat Grain Filling and Yield Formation by Exogenous Strigolactone Under Drought Condition. Journal of Biobased Materials and Bioenergy, 15 (2): 218-223(6)
  • Waters, M.T., Gutjahr, C., Bennett, T., Nelson, D.C. (2017). Strigolactone Signaling and Evolution. Annual Review of Plant Biology, 68:1: 291-322
  • Xie, X.N., Yoneyama, K., Yoneyama, K. (2010). The strigolactone story. Annu Rev Phytopathol, 48:93-117.
  • Yoneyama, K., Yoneyama, K., Takeuchi, Y., Sekimoto, H. (2007). Phosphorus deficiency in red clover promotes exudation of orobanchol, the signal for mycorrhizal symbionts and germination stimulant for root parasites. Planta, 225: 1031-1038.
  • Zulfiqar, H., Shahbaz, M., Ahsan, M., Nafees, M., Nadeem, H., Akram, M., Maqsood, A., Ahmar, S., Kamran, M., Alamri, S., Manzer, Siddiqui, M., Shah, Fahad, S. (2020). Strigolactone (GR24) Induced Salinity Tolerance in Sunflower (Helianthus annuus L.) by Ameliorating Morpho-Physiological and Biochemical Attributes Under In Vitro Conditions. J. Plant Growth Regul, https ://doi.org/10.1007/s00344-020-10256-4

Strigolactones Help Plants to Cope with Abiotic Stress Conditions

Year 2021, , 686 - 690, 31.12.2021
https://doi.org/10.31590/ejosat.1009438

Abstract

Plant hormones or phytohormones are organic substances that are found in small amounts in plants occur naturally, have an important role in plant growth, development, the environment and the interaction between the plant and other organisms. On the other hand, strigolactones (SL) derived from carotenoids, which are synthesized in the roots and transported to the shoots, suppress shoot branching in the plant. It is known as a new plant hormone that increases water and mineral substance intake by promoting symbiotic relationship with Arbuscular Mycorrhizal Fungi (AMF) to increase mineral substance intake in senescence, root growth, nutrient deficiency. It is also effective in various abiotic stress conditions such as drought, heat, heavy metal, salt stress and mineral deficiency. Under water stress, SLs inhibit shoot growth (interaction with cytokinin) while promoting lateral root growth to increase water uptake. In interaction with abscicic acid, SLs regulate stomatal density, remove seed dormancy and increase germination. The association with AMF can alleviate the effects of salt stress by affecting the production of strigolactone in the plant. The nutrient element, especially nitrogen and phosphorus deficiency, causes the production of high amount of SL, which causes the suppression of shoot branching and promotes the symbiotic relationship in the plant. AMF provides the water and nutrients such as nitrogen and phosphorus through hyphae. Under heavy metal stress conditions, external application of SLs reduces heavy metal-induced oxidative stress, increases the amount of chlorophyll, photosynthesis, antioxidant enzyme activities, decreases the level of reactive oxygen species (ROS) together with lipid peroxidation and promotes plant growth. Thus, plants can survive better in heavy metal-contaminated areas by balancing phytohormones.

References

  • Al-Babili, S., Bouwmeester, H.J. (2015). Strigolactones, a novel carotenoid-derived plant hormone. Annu Rev Plant Biol, 66:161-186.
  • Banerjee, P., Bhadra, P. (2020). Formulation of Anti-microbial and Anti-aging Oil from Natural Resources for Topical Application. International Journal of Botany Studies, 5(3): 279-284.
  • Brewer, P.B., Dun, E.A., Ferguson, B.J., Rameau, C., Beveridge, C.A. (2009). Strigolactone acts downstream of auxin to regulate bud outgrowth in pea and arabidopsis. Plant Physiology 150, 482-493.
  • Brewer, P.B., Koltai, H., Beveridge, C.A. (2013). Diverse roles of strigolactones in plant development. Mol. Plant, 6: 18-28.
  • Bucker-Neto, L., Paiva, A.L.S., Machado, R. D., Arenhart, R.A., MargisPinheiro, M. (2017). Interactions between plant hormones and heavy metals responses. Genetics and Molecular Biology. 40: 373-386.
  • Carvalhais, L.C., Rincon-Florez, V.A., Brewer, P.B., Beveridge, C.A., Dennis, P.G., Schenk, P.M. (2019). The ability of plants to produce strigolactones affects rhizosphere community composition of fungi but not bacteria. Rhizosphere, 9: 18-26.
  • Czarnecki, O., Yang, J., Weston, D.J., Tuskan, G.A., Chen, J.-G. (2013). A dual role of strigolactones in phosphate acquisition and utilization in plants. Int. J. Mol. Sci, 14: 7681-7701
  • Demirbaş, S., Dinler, B.S., Önay, E. (2015). Soya Bitkisinde GR24 Ön Uygulamasının Tuz Stresinin Oluşturduğu Hasarı İyileştirmedeki Rolü. 1. Ulusal Bitki Sempozyumu, 1-4 Eylül 2015. Erzurum, Türkiye. 43 s.
  • Druege, U., Franken, P., Hajirezai, M.R. (2016). Plant hormone homoestasis, signalling, and function during adventitious root formation in cuttings. Fronteriers in Plant Science 7, 381.
  • Ferguson, B.J., Beveridge, C.A. (2009). Roles for auxin, cytokinin, and strigolactone in regulating shoot branching. Plant Physiology 149, 1929-1944.
  • García-Garrido, J.M., Lendzemo, V., Castellanos-Morales, V., Steinkellner, S., Vierheilig H. (2009). Strigolactones, signals for parasitic plants and arbuscular mycorrhizal fungi. Mycorrhiza, 19(7):449-459.
  • Gök Özel, Ş. (2018). Strigolakton Uygulamasıyla Tuz Stresine Karşı Kum Zambağı Bitkisinin Toleransının Arttırılmasında Antioksidan Enzimlerin İşlevi. Yüksek Lisans Tezi, Tekirdağ Namık Kemal Üniversitesi Fen Bilimleri Enstitüsü, Tekirdağ. 118 s.
  • Gözükırmızı, N., Karlık, E. (2019). Bitki Biyoteknolojisinde Tarihsel Gelişmeler, In: (eds. Çiftci, Y.Ö., Uncuoğlu, A.A.) Bitki Biyotnolojisinde Güncel Yaklaşımlar, Palme Yayınevi, Ankara.
  • Kausar, F., Shahbaz, M. (2017). Influence of strigolactone (GR24) as a seed treatment on growth, gas exchange and chlorophyll fluorescence of wheat under saline conditions. International Journal of Agriculture and Biology, 19: 321 2017
  • Kohlen, W., Charnikhova, T., Liu, Q., Bours, R., Domagalska, M.A., Beguerie, S., Verstappen, F., Leyser, O., Bouwmeester, H., Ruyter-Spira, C. (2011). Strigolactones are transported through the xylem and play a key role in shoot architectural response to phosphate deficiency in nonarbuscular mycorrhizal host Arabidopsis. Plant physiology, 155(2): 974-987.
  • Kopta, T., Antal, M., Jurica, M., Volkova, J., Pokluda, R. (2017). The Influence of synthetic strigolactones and plant extracts on the morphological parameters of onion (Allium cepa). Advances in Horticultural Science, 31(4):235-240.
  • Kumlay, M., Eryiğit, T. (2011). Bitkilerde Büyüme ve Gelişmeyi Düzenleyici Maddeler: Bitki Hormonları. Iğdır Üniversitesi Fen Bilimleri Enstitüsü Dergisi 1(2): 47-56.
  • Kürtür, O.B. (2018). Tuz stresine dayanıklı ve duyarlı buğday çeşitlerinde strigolakton uygulamasına fizyolojik ve biyokimyasal yanıtlar. Çanakkale Onsekiz Mart Üniversitesi, Fen Bilimleri Enstitüsü. Biyoloji Anabilim Dalı Yüksek Lisans Tezi. Çanakkale. 45 s.
  • Ling, F.L., Su, Q.W., Jiang, H., Cui, J.J., He, X.L., Wu, Z.H., Zhang, Z.A., Liu, J., Zhao, Y.J. (2020). Effects of strigolactone on photosynthetic and physiological characteristics in salt-stressed rice seedlings. Sci. Rep, 10:6183
  • Lopez-Obando, M. Ligerot, Y., Bonhomme, S., Boyer, F., Rameau, C. (2015). Strigolactone biosynthesis and signaling in plant development. The Company of Biologists 142, 3615-3619.
  • Ma, N., Hu, C., Wan, L., Hu, Q., Xiong, J., Zhang, C. (2017). Strigolactones improve plant growth, photosynthesis, and alleviate oxidative stress under salinity in rapeseed (Brassica napus L.) by regulating gene expression. Front Plant Sci, 8. https ://doi.org/10.3389/fpls.2017.01671
  • Mashiguchi, K., Seto, Y., Yamaguchi, S. (2021). Strigolactone biosynthesis, transport and perception. Plant J, 105 (2): 335-350. https://doi/10.1111/tpj.15059
  • Mostofa, M.G., Rahman, M.M., Nguyen, K.H., Li, W., Watanabe, Y., Tran, C.D., Zhang, M., Itouga, M., Fujita, M., Tran, L.P. (2021). Strigolactones regulate arsenate uptake, vacuolar-sequestration and antioxidant defense responses to resist arsenic toxicity in rice roots. J Hazard Mater, 5; 415:125589. https ://doi.org/10.1016/j.jhazmat.2021.125589.
  • Önay, E. (2019). Strigolaktonun tuz stresine toleranslı ve duyarlı buğday çeşitlerinde askorbat-glutatyon döngüsü enzim sistemine etkisi. Tekirdağ Namık Kemal Üniversitesi, Fen Bilimleri Enstitüsü, Tarımsal Biyoteknoloji Anabilim Dalı, Yüksek Lisans Tezi. Tekirdağ, 79 s.
  • Piotrowska-Niczyporuk, A., Bajguz, A., Zambrzycka, E., Godlewska-Żyłkiewicz, B. (2012). Phytohormones as regulators of heavy metal biosorption and toxicity in green alga Chlorella vulgaris (Chlorophyceae). Plant Physiol, Biochem. 52:52-65
  • Qiu, C.W., Zhang, C., Wang, N.H., Mao, W., Wu, F. (2021). Strigolactone GR24 improves cadmium tolerance by regulating cadmium uptake, nitric oxide signaling and antioxidant metabolism in barley (Hordeum vulgare L.). Environ Pollut. 15;273:116486. https ://doi.org/10.1016/j.envpol.2021.116486.
  • Ruyter-Spira, C., Kohlen, W., Charnikhova, T., van Zeijl, A., van Bezouwen, L., de Ruijter, N., Cardoso, C., Lopez-Raez, J.A., Matusova, R., Bours, R., Verstappen, F., Bouwmeester, H. (2011). Physiological effects of the synthetic strigolactone analog GR24 on root system architecture in Arabidopsis: another belowground role for strigolactones? Plant Physiol, 155(2):721-34.
  • Saeed, W., Naseem, S., Ali, Z. (2017). Strigolactones Biosynthesis and Their Role in Abiotic Stress Resilience in Plants: A Critical Review. Front Plant Sci, 28 (8):1487.
  • Santoro, V., Schiavon, M., Gresta, F., Ertani, A., Cardinale, F., Sturrock, C.J., Celi, L., Schubert, A. (2020). Strigolactones Control Root System Architecture and Tip Anatomy in Solanum Lycopersicum L. Plants under P Starvation. Plants (Basel, Switzerland), 9(5): 612. https://doi.org/10.3390/plants9050612
  • Sarwar, Y., Shahbaz, M. (2019). GR24 triggered variations in morphophysiological attributes of sunfower (Helianthus annuus) under salinity. Int J Agric Biol, 21:34-40
  • Shindo, M., Nagasaka, S., Kashiwada, S., Shimomura, K., Umehara, M. (2021). Shoot has important roles in strigolactone production of rice roots under sulfur deficiency. Plant Signal Behav, 3;16(4):1880738. https ://doi.org/10.1080/15592324.2021.1880738.
  • Smith, S.M. (2014): Q&A: What are strigolactones and why are they important to plants and soil microbes? BMC Biol, 12: 19. https://doi.org/10.1186/1741-7007-12-19
  • Tai, Z., Yin, X., Fang, Z., Shi, G., Lou, L., Cai, Q. (2017). Exogenous GR24 alleviates cadmium toxicity by reducing cadmium uptake in switchgrass (Panicum virgatum) seedlings. Int J Environ Res Public Health, 14(8):852
  • Takahashi, I., Asami, T. (2018). Target-based selectivity of strigolactone agonists and antagonists in plants and their potential use in agriculture. J Exp Bot, 69(9):2241-2254.
  • Toh, S., Kamiya, Y., Kawakami, N., Nambara, E., McCourt, P., Tsuchiya, Y. (2012). Thermoinhibition uncovers a role for strigolactones in Arabidopsis seed germination. Plant Cell Physiol, 53(1):107-17.
  • Ueda, H., Kusaba, M. (2015). Strigolactone Regulates Leaf Senescence in Concert with Ethylene in Arabidopsis. Plant Physiology, 169: 138-147.
  • Umehara, M. (2011). Strigolactone, a key regulator of nutrient allocation in plants. Plant Biotechnology, 28: 429-437.
  • Umehara, M., Hanada, A., Magome, H., Takeda-Kamiya, N., Yamaguchi, S. (2010). Contribution of Strigolactones to the Inhibition of Tiller Bud Outgrowth under Phosphate Deficiency in Rice. Plant and Cell Physiology, 51 (7):1118-1126
  • Umehara, M., Hanada, A., Yoshida, S., Akiyama, K., Arite, T., Takeda-Kamiya, N., Magome, H., Kamiya, Y., Shirasu, K., Yoneyama, K., Kyozuka, J., Yamaguchi, S. (2008). Inhibition of shoot branching by new terpenoid plant hormones. Nature, 455:195-200
  • Van Ha, C., Leyva-Gonzálezc, A., Osakabed, Y., Trana, T.U., Nishiyama, R., Watanabea, Y., Tanakae, M., Sekie, M,. Yamaguchif, S., Dong, V., Yamaguchi-Shiozakig, K., Shinozakid, K., Herrera-Estrellac, L. (2014). Positive Regulatory Role of Strigolactone in Plant Responses to Drought and Salt Stress. Plant Biology, 111 (2): 851-856.
  • Verma, V., Ravindran, P., Kumar, P.P. (2016). Plant hormone mediated regulation of stress responses. BMC Plant Biology 16, 86.
  • Visentin, I., Vitali, M., Ferrero, M., Zhang, Y., Ruyter-Spira, C., Novák, O., Cardinale, F. (2016). Low Levels of Strigolactones in Roots as A Component of The Systemic Signal of Drought Stress in Tomato. New Phytologist, 212(4): 954-963.
  • Wang, Y., Wang, L., Yang, X., Li, X., Zang, H., Fang, B. (2021). Effects of Wheat Grain Filling and Yield Formation by Exogenous Strigolactone Under Drought Condition. Journal of Biobased Materials and Bioenergy, 15 (2): 218-223(6)
  • Waters, M.T., Gutjahr, C., Bennett, T., Nelson, D.C. (2017). Strigolactone Signaling and Evolution. Annual Review of Plant Biology, 68:1: 291-322
  • Xie, X.N., Yoneyama, K., Yoneyama, K. (2010). The strigolactone story. Annu Rev Phytopathol, 48:93-117.
  • Yoneyama, K., Yoneyama, K., Takeuchi, Y., Sekimoto, H. (2007). Phosphorus deficiency in red clover promotes exudation of orobanchol, the signal for mycorrhizal symbionts and germination stimulant for root parasites. Planta, 225: 1031-1038.
  • Zulfiqar, H., Shahbaz, M., Ahsan, M., Nafees, M., Nadeem, H., Akram, M., Maqsood, A., Ahmar, S., Kamran, M., Alamri, S., Manzer, Siddiqui, M., Shah, Fahad, S. (2020). Strigolactone (GR24) Induced Salinity Tolerance in Sunflower (Helianthus annuus L.) by Ameliorating Morpho-Physiological and Biochemical Attributes Under In Vitro Conditions. J. Plant Growth Regul, https ://doi.org/10.1007/s00344-020-10256-4
There are 47 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Articles
Authors

İlkay Yavaş 0000-0002-6863-9631

Yelda Emek 0000-0003-1095-3908

Publication Date December 31, 2021
Published in Issue Year 2021

Cite

APA Yavaş, İ., & Emek, Y. (2021). Bitkilerin Abiyotik Stres Koşullarıyla Başa Çıkmasına Yardımcı Strigolaktonlar. Avrupa Bilim Ve Teknoloji Dergisi(31), 686-690. https://doi.org/10.31590/ejosat.1009438