Research Article
BibTex RIS Cite

Compact Embedding Theorems for The Space of Functions with Wavelet Transform in Amalgam Spaces

Year 2021, , 568 - 572, 30.11.2021
https://doi.org/10.31590/ejosat.1009444

Abstract

This paper is motivated to define the space 〖 A〗_s (W)_(ω,ϑ)^(p,q,r) (R) using the wavelet transform, and is also motivated to consider the inclusion and compact embedding theorems in this space.

References

  • Daubechies, I. (1992). Ten Lectures on Wavelets, CBMS-NSF, SIAM, Philadelphia.
  • Feichtinger, H.G. (1980). Banach convolution algebras of Wiener type, In: Proc. Conf. Functions, Series, Operators, Budapest. Colloq. Math. Soc. Janos Bolyai, vol. 35, pp. 509-524.
  • Fischer, R.H. Gürkanlı, A.T. & Liu, T. S. (1996). On a family of weighted spaces, Math. Slovaca, 46, 1, 71-82.
  • Gasquet C. & Witomski, P. (1999). Fourier Analysis and Applications, Springer, New York.
  • Gröchenig, K. (2001). Foundations of Time-Frequency Analysis, Birkhauser, Boston
  • Gürkanlı, A.T. (2008). Compact embeddings of the spaces A_(w,ω)^p (R^d ), Taiwanese Journal of Mathematics, 12, 7, 1757-1767.
  • Heil, C. (2003). An introduction to weighted Wiener amalgams, In: Wavelets and Their Applications, pp. 183-216. Allied Publishers, New Delhi.
  • Kulak, Ö. & Gürkanlı, A.T. (2011). On function spaces with wavelet transform in L_ω^p (R^d×R^+ ), Hacettepe Journal of Mathematics and Statistics, 40, 2, 163 – 177.
  • Kulak Ö. & Gürkanlı, A.T. (2013). Bilinear multipliers of weighted Lebesgue spaces and variable exponent Lebesgue spaces, Journal of Inequalities and Applications, 2013:259.
  • Kulak Ö. & Gürkanlı, A.T. (2014). Bilinear multipliers of weighted Wiener amalgam spaces and variable exponent Wiener amalgam spaces, Journal of Inequalities and Applications, 2014:476
  • Mallat, S. (1998). A wavelet tour of signal processing, Academic Press, San Diego, CA.
  • Reiter, H. (1968). Classical Harmonic Analysis and Locally Compact Group, Oxford Universty Pres, Oxford.
  • Ünal C. & Aydın, İ. (2019). Compact embeddings on a subspace of weighted variable exponent Sobolev spaces, Advances in operator theory, 4, 2, 388-405.

Dalgacık Dönüşümleri Amalgam Uzaylarında Olan Fonksiyon Uzayları için Kompakt Gömülme Teoremleri

Year 2021, , 568 - 572, 30.11.2021
https://doi.org/10.31590/ejosat.1009444

Abstract

Bu çalışma dalgacık dönüşümü kullanarak 〖 A〗_s (W)_(ω,ϑ)^(p,q,r) (R) uzayını tanımlamak ve ayrıca bu uzayda kapsama, kompakt gömülme teoremlerini incelemek için motive edilmiştir.

References

  • Daubechies, I. (1992). Ten Lectures on Wavelets, CBMS-NSF, SIAM, Philadelphia.
  • Feichtinger, H.G. (1980). Banach convolution algebras of Wiener type, In: Proc. Conf. Functions, Series, Operators, Budapest. Colloq. Math. Soc. Janos Bolyai, vol. 35, pp. 509-524.
  • Fischer, R.H. Gürkanlı, A.T. & Liu, T. S. (1996). On a family of weighted spaces, Math. Slovaca, 46, 1, 71-82.
  • Gasquet C. & Witomski, P. (1999). Fourier Analysis and Applications, Springer, New York.
  • Gröchenig, K. (2001). Foundations of Time-Frequency Analysis, Birkhauser, Boston
  • Gürkanlı, A.T. (2008). Compact embeddings of the spaces A_(w,ω)^p (R^d ), Taiwanese Journal of Mathematics, 12, 7, 1757-1767.
  • Heil, C. (2003). An introduction to weighted Wiener amalgams, In: Wavelets and Their Applications, pp. 183-216. Allied Publishers, New Delhi.
  • Kulak, Ö. & Gürkanlı, A.T. (2011). On function spaces with wavelet transform in L_ω^p (R^d×R^+ ), Hacettepe Journal of Mathematics and Statistics, 40, 2, 163 – 177.
  • Kulak Ö. & Gürkanlı, A.T. (2013). Bilinear multipliers of weighted Lebesgue spaces and variable exponent Lebesgue spaces, Journal of Inequalities and Applications, 2013:259.
  • Kulak Ö. & Gürkanlı, A.T. (2014). Bilinear multipliers of weighted Wiener amalgam spaces and variable exponent Wiener amalgam spaces, Journal of Inequalities and Applications, 2014:476
  • Mallat, S. (1998). A wavelet tour of signal processing, Academic Press, San Diego, CA.
  • Reiter, H. (1968). Classical Harmonic Analysis and Locally Compact Group, Oxford Universty Pres, Oxford.
  • Ünal C. & Aydın, İ. (2019). Compact embeddings on a subspace of weighted variable exponent Sobolev spaces, Advances in operator theory, 4, 2, 388-405.
There are 13 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Öznur Kulak 0000-0003-1433-3159

Publication Date November 30, 2021
Published in Issue Year 2021

Cite

APA Kulak, Ö. (2021). Compact Embedding Theorems for The Space of Functions with Wavelet Transform in Amalgam Spaces. Avrupa Bilim Ve Teknoloji Dergisi(28), 568-572. https://doi.org/10.31590/ejosat.1009444