Research Article
BibTex RIS Cite

Rutenyum Katkılı Nanotüp Kullanılarak Süperkapasitör Elektrot Üretimi

Year 2021, , 326 - 330, 31.12.2021
https://doi.org/10.31590/ejosat.1009731

Abstract

Çeşitli enerji depolama malzemeleri arasında süperkapasitörler, enerjiyi daha hızlı depoladıkları ve aktardıkları için son zamanlarda daha çok tercih edilmektedirler. Bu çalışma kapsamında, Rutenyum katkılama yapılmış karbon nanotüp kullanılarak süperkapasitör elektrot aktif malzemesi hazırlanmıştır. Daha sonra bu malzeme püskürtme yöntemi kullanılarak elektrotlara dönüştürülmüş ve bir süperkapasitör hücresi hazırlanmıştır. Elektrolit çözeltisi olarak 6 M KOH seçilmiş ve süperkapassitörün elektriksel özellikleri elektrokimyasal analiz yöntemleri kullanılarak test edilmiştir. Süperkapasitörün eşdeğer seri direnci çok düşük olduğundan kapasitörün güç aktarımının yüksek seviyelerde yapılabilmesini destekler ve malzemenin iç direncinden kaynaklı enerji kayıpları ihmal edilecebilecek seviyelerdedir. 1 A/g akım yoğunluğunda elektrotların spesifik kapasitans değeri 42,24 F/g olarak hesaplanmıştır. Elektrotların kapasitesinde 100 döngü sonucunda sadece %4,1’lik bir azalma olmuştur. Elde edilen veriler ışığında hazırlanan elektrotların yüksek kapasitesi, düşük iç direnci ve yüksek kararlılığı nedeniyle enerji depolama alanında umut vaat ettiği düşünülmektedir.

Thanks

Siirt Üniversitesi Biyoteknoloji Laboratuvarına değerli katkılarından dolayı teşekkür ederiz.

References

  • Akdemir, M., Avci Hansu, T., Caglar, A., Kaya, M., & Demir Kivrak, H. (2021). Ruthenium modified defatted spent coffee catalysts for supercapacitor and methanolysis application. Energy Storage, 3(4), e243. doi:https://doi.org/10.1002/est2.243
  • Cao, X., He, J., Li, H., Kang, L., He, X., Sun, J., . . . Liu, Z. H. (2018). CoNi2S4 nanoparticle/carbon nanotube sponge cathode with ultrahigh capacitance for highly compressible asymmetric supercapacitor. Small, 14(27), 1800998.
  • Chen, M., Kang, X., Wumaier, T., Dou, J., Gao, B., Han, Y., . . . Zhang, L. (2013). Preparation of activated carbon from cotton stalk and its application in supercapacitor. Journal of solid state electrochemistry, 17(4), 1005-1012.
  • Cheng, Q., Tang, J., Ma, J., Zhang, H., Shinya, N., & Qin, L.-C. (2011). Graphene and nanostructured MnO2 composite electrodes for supercapacitors. Carbon, 49(9), 2917-2925.
  • Conway, B. E. (2013). Electrochemical supercapacitors: scientific fundamentals and technological applications: Springer Science & Business Media.
  • Elma Karakaş, D., Akdemir, M., Atabani, A. E., & Kaya, M. (2021). A dual functional material: Spirulina Platensis waste-supported Pd-Co catalyst as a novel promising supercapacitor electrode. Fuel, 304, 121334. doi:https://doi.org/10.1016/j.fuel.2021.121334
  • Farma, R., Putri, A., Taer, E., Awitdrus, A., & Apriwandi, A. (2021). Synthesis of highly porous activated carbon nanofibers derived from bamboo waste materials for application in supercapacitor. Journal of Materials Science: Materials in Electronics, 32(6), 7681-7691.
  • Fu, G., Li, Q., Ye, J., Han, J., Wang, J., Zhai, L., & Zhu, Y. (2018). Hierarchical porous carbon with high nitrogen content derived from plant waste (pomelo peel) for supercapacitor. Journal of Materials Science: Materials in Electronics, 29(9), 7707-7717.
  • Gamby, J., Taberna, P., Simon, P., Fauvarque, J., & Chesneau, M. (2001). Studies and characterisations of various activated carbons used for carbon/carbon supercapacitors. Journal of Power Sources, 101(1), 109-116.
  • Gu, W., & Yushin, G. (2014). Review of nanostructured carbon materials for electrochemical capacitor applications: advantages and limitations of activated carbon, carbide‐derived carbon, zeolite‐templated carbon, carbon aerogels, carbon nanotubes, onion‐like carbon, and graphene. Wiley Interdisciplinary Reviews: Energy and Environment, 3(5), 424-473.
  • Inal, I. I. G., Akdemir, M., & Kaya, M. (2021). Microcystis aeruginosa supported-Mn catalyst as a new promising supercapacitor electrode: A dual functional material. International Journal of Hydrogen Energy, 46, 21534-21541.
  • Lan, D., Chen, M., Liu, Y., Liang, Q., Tu, W., Chen, Y., . . . Qiu, F. (2020). Preparation and characterization of high value-added activated carbon derived from biowaste walnut shell by KOH activation for supercapacitor electrode. Journal of Materials Science: Materials in Electronics, 31(21), 18541-18553.
  • Li, D., Gong, Y., & Pan, C. (2016). Facile synthesis of hybrid CNTs/NiCo 2 S 4 composite for high performance supercapacitors. Scientific reports, 6(1), 1-7.
  • Ma, Z., Zheng, R., Liu, Y., Ying, Y., & Shi, W. (2021). Carbon nanotubes interpenetrating MOFs-derived Co-Ni-S composite spheres with interconnected architecture for high performance hybrid supercapacitor. Journal of Colloid and Interface Science, 602, 627-635. doi:https://doi.org/10.1016/j.jcis.2021.06.027
  • Mehare, M., Deshmukh, A., & Dhoble, S. (2021). Bio-waste lemon peel derived carbon based electrode in perspect of supercapacitor. Journal of Materials Science: Materials in Electronics, 32(10), 14057-14071.
  • Mohanty, A., Jaihindh, D., Fu, Y.-P., Senanayak, S. P., Mende, L. S., & Ramadoss, A. (2021). An extensive review on three dimension architectural Metal-Organic Frameworks towards supercapacitor application. Journal of Power Sources, 488, 229444.
  • Niu, H., Liu, Y., Mao, B., Xin, N., Jia, H., & Shi, W. (2020). In-situ embedding MOFs-derived copper sulfide polyhedrons in carbon nanotube networks for hybrid supercapacitor with superior energy density. Electrochimica Acta, 329, 135130. doi:https://doi.org/10.1016/j.electacta.2019.135130
  • Özarslan, S., Raşit Atelge, M., Kaya, M., & Ünalan, S. (2021). A Novel Tea factory waste metal-free catalyst as promising supercapacitor electrode for hydrogen production and energy storage: A dual functional material. Fuel, 305, 121578. doi:https://doi.org/10.1016/j.fuel.2021.121578
  • Pandolfo, A. G., & Hollenkamp, A. F. (2006). Carbon properties and their role in supercapacitors. Journal of Power Sources, 157(1), 11-27. doi:https://doi.org/10.1016/j.jpowsour.2006.02.065
  • Sharma, K., Arora, A., & Tripathi, S. K. (2019). Review of supercapacitors: Materials and devices. Journal of Energy Storage, 21, 801-825.
  • Sheberla, D., Bachman, J. C., Elias, J. S., Sun, C.-J., Shao-Horn, Y., & Dincă, M. (2017). Conductive MOF electrodes for stable supercapacitors with high areal capacitance. Nature materials, 16(2), 220-224.
  • Simon, P., & Gogotsi, Y. (2010). Materials for electrochemical capacitors. Nanoscience and technology: a collection of reviews from Nature journals, 320-329.
  • Song, X., Ma, X., Li, Y., Ding, L., & Jiang, R. (2019). Tea waste derived microporous active carbon with enhanced double-layer supercapacitor behaviors. Applied Surface Science, 487, 189-197.
  • Wang, H., & Cui, Y. (2019). Nanodiamonds for energy. Carbon Energy, 1(1), 13-18.
  • Wang, Y., Zhang, L., Hou, H., Xu, W., Duan, G., He, S., . . . Jiang, S. (2021). Recent progress in carbon-based materials for supercapacitor electrodes: a review. Journal of Materials Science, 56(1), 173-200.
  • Xu, Y., Lin, Z., Zhong, X., Huang, X., Weiss, N. O., Huang, Y., & Duan, X. (2014). Holey graphene frameworks for highly efficient capacitive energy storage. Nature communications, 5(1), 1-8.
  • Yan, X., Yu, Y., & Yang, X. (2014). Effects of electrolytes on the capacitive behavior of nitrogen/phosphorus co-doped nonporous carbon nanofibers: an insight into the role of phosphorus groups. RSC Advances, 4(48), 24986-24990.
  • Zhang, L. L., & Zhao, X. (2009). Carbon-based materials as supercapacitor electrodes. Chemical Society Reviews, 38(9), 2520-2531.
  • Zhang, W., Lin, N., Liu, D., Xu, J., Sha, J., Yin, J., . . . Lin, H. (2017). Direct carbonization of rice husk to prepare porous carbon for supercapacitor applications. Energy, 128, 618-625.
  • Zhang, Y., Liu, S., Zheng, X., Wang, X., Xu, Y., Tang, H., . . . Luo, J. (2017). Biomass organs control the porosity of their pyrolyzed carbon. Advanced functional materials, 27(3), 1604687.
  • Zhu, X., Yu, S., Xu, K., Zhang, Y., Zhang, L., Lou, G., . . . Shen, Z. (2018). Sustainable activated carbons from dead ginkgo leaves for supercapacitor electrode active materials. Chemical Engineering Science, 181, 36-45.
  • Zhu, Y., Murali, S., Stoller, M. D., Ganesh, K., Cai, W., Ferreira, P. J., . . . Thommes, M. (2011). Carbon-based supercapacitors produced by activation of graphene. science, 332(6037), 1537-1541.

Supercapacitor Electrode Production Using Ruthenium Doped Nanotube

Year 2021, , 326 - 330, 31.12.2021
https://doi.org/10.31590/ejosat.1009731

Abstract

Among the various energy storage materials, supercapacitors are more preferred recently as they store and transfer energy faster. In this study, supercapacitor electrode active material was prepared using Ruthenium-doped carbon nanotubes. Then, this material was converted into electrodes using sputtering method and a supercapacitor cell was prepared. 6 M KOH was chosen as the electrolyte solution and the electrical properties of the supercapacitor were tested using electrochemical analysis methods. Since the equivalent series resistance of the supercapacitor is very low, it supports the power transfer of the capacitor at high levels, and the energy losses due to the internal resistance of the material are at negligible levels. The specific capacitance value of the electrodes was calculated as 42.24 F/g at a current density of 1 A/g. There was only a 4.1% reduction in the capacity of the electrodes after 100 cycles. It is thought that the electrodes prepared in the light of the obtained data are promising in the field of energy storage due to their high capacity, low internal resistance and high stability.

References

  • Akdemir, M., Avci Hansu, T., Caglar, A., Kaya, M., & Demir Kivrak, H. (2021). Ruthenium modified defatted spent coffee catalysts for supercapacitor and methanolysis application. Energy Storage, 3(4), e243. doi:https://doi.org/10.1002/est2.243
  • Cao, X., He, J., Li, H., Kang, L., He, X., Sun, J., . . . Liu, Z. H. (2018). CoNi2S4 nanoparticle/carbon nanotube sponge cathode with ultrahigh capacitance for highly compressible asymmetric supercapacitor. Small, 14(27), 1800998.
  • Chen, M., Kang, X., Wumaier, T., Dou, J., Gao, B., Han, Y., . . . Zhang, L. (2013). Preparation of activated carbon from cotton stalk and its application in supercapacitor. Journal of solid state electrochemistry, 17(4), 1005-1012.
  • Cheng, Q., Tang, J., Ma, J., Zhang, H., Shinya, N., & Qin, L.-C. (2011). Graphene and nanostructured MnO2 composite electrodes for supercapacitors. Carbon, 49(9), 2917-2925.
  • Conway, B. E. (2013). Electrochemical supercapacitors: scientific fundamentals and technological applications: Springer Science & Business Media.
  • Elma Karakaş, D., Akdemir, M., Atabani, A. E., & Kaya, M. (2021). A dual functional material: Spirulina Platensis waste-supported Pd-Co catalyst as a novel promising supercapacitor electrode. Fuel, 304, 121334. doi:https://doi.org/10.1016/j.fuel.2021.121334
  • Farma, R., Putri, A., Taer, E., Awitdrus, A., & Apriwandi, A. (2021). Synthesis of highly porous activated carbon nanofibers derived from bamboo waste materials for application in supercapacitor. Journal of Materials Science: Materials in Electronics, 32(6), 7681-7691.
  • Fu, G., Li, Q., Ye, J., Han, J., Wang, J., Zhai, L., & Zhu, Y. (2018). Hierarchical porous carbon with high nitrogen content derived from plant waste (pomelo peel) for supercapacitor. Journal of Materials Science: Materials in Electronics, 29(9), 7707-7717.
  • Gamby, J., Taberna, P., Simon, P., Fauvarque, J., & Chesneau, M. (2001). Studies and characterisations of various activated carbons used for carbon/carbon supercapacitors. Journal of Power Sources, 101(1), 109-116.
  • Gu, W., & Yushin, G. (2014). Review of nanostructured carbon materials for electrochemical capacitor applications: advantages and limitations of activated carbon, carbide‐derived carbon, zeolite‐templated carbon, carbon aerogels, carbon nanotubes, onion‐like carbon, and graphene. Wiley Interdisciplinary Reviews: Energy and Environment, 3(5), 424-473.
  • Inal, I. I. G., Akdemir, M., & Kaya, M. (2021). Microcystis aeruginosa supported-Mn catalyst as a new promising supercapacitor electrode: A dual functional material. International Journal of Hydrogen Energy, 46, 21534-21541.
  • Lan, D., Chen, M., Liu, Y., Liang, Q., Tu, W., Chen, Y., . . . Qiu, F. (2020). Preparation and characterization of high value-added activated carbon derived from biowaste walnut shell by KOH activation for supercapacitor electrode. Journal of Materials Science: Materials in Electronics, 31(21), 18541-18553.
  • Li, D., Gong, Y., & Pan, C. (2016). Facile synthesis of hybrid CNTs/NiCo 2 S 4 composite for high performance supercapacitors. Scientific reports, 6(1), 1-7.
  • Ma, Z., Zheng, R., Liu, Y., Ying, Y., & Shi, W. (2021). Carbon nanotubes interpenetrating MOFs-derived Co-Ni-S composite spheres with interconnected architecture for high performance hybrid supercapacitor. Journal of Colloid and Interface Science, 602, 627-635. doi:https://doi.org/10.1016/j.jcis.2021.06.027
  • Mehare, M., Deshmukh, A., & Dhoble, S. (2021). Bio-waste lemon peel derived carbon based electrode in perspect of supercapacitor. Journal of Materials Science: Materials in Electronics, 32(10), 14057-14071.
  • Mohanty, A., Jaihindh, D., Fu, Y.-P., Senanayak, S. P., Mende, L. S., & Ramadoss, A. (2021). An extensive review on three dimension architectural Metal-Organic Frameworks towards supercapacitor application. Journal of Power Sources, 488, 229444.
  • Niu, H., Liu, Y., Mao, B., Xin, N., Jia, H., & Shi, W. (2020). In-situ embedding MOFs-derived copper sulfide polyhedrons in carbon nanotube networks for hybrid supercapacitor with superior energy density. Electrochimica Acta, 329, 135130. doi:https://doi.org/10.1016/j.electacta.2019.135130
  • Özarslan, S., Raşit Atelge, M., Kaya, M., & Ünalan, S. (2021). A Novel Tea factory waste metal-free catalyst as promising supercapacitor electrode for hydrogen production and energy storage: A dual functional material. Fuel, 305, 121578. doi:https://doi.org/10.1016/j.fuel.2021.121578
  • Pandolfo, A. G., & Hollenkamp, A. F. (2006). Carbon properties and their role in supercapacitors. Journal of Power Sources, 157(1), 11-27. doi:https://doi.org/10.1016/j.jpowsour.2006.02.065
  • Sharma, K., Arora, A., & Tripathi, S. K. (2019). Review of supercapacitors: Materials and devices. Journal of Energy Storage, 21, 801-825.
  • Sheberla, D., Bachman, J. C., Elias, J. S., Sun, C.-J., Shao-Horn, Y., & Dincă, M. (2017). Conductive MOF electrodes for stable supercapacitors with high areal capacitance. Nature materials, 16(2), 220-224.
  • Simon, P., & Gogotsi, Y. (2010). Materials for electrochemical capacitors. Nanoscience and technology: a collection of reviews from Nature journals, 320-329.
  • Song, X., Ma, X., Li, Y., Ding, L., & Jiang, R. (2019). Tea waste derived microporous active carbon with enhanced double-layer supercapacitor behaviors. Applied Surface Science, 487, 189-197.
  • Wang, H., & Cui, Y. (2019). Nanodiamonds for energy. Carbon Energy, 1(1), 13-18.
  • Wang, Y., Zhang, L., Hou, H., Xu, W., Duan, G., He, S., . . . Jiang, S. (2021). Recent progress in carbon-based materials for supercapacitor electrodes: a review. Journal of Materials Science, 56(1), 173-200.
  • Xu, Y., Lin, Z., Zhong, X., Huang, X., Weiss, N. O., Huang, Y., & Duan, X. (2014). Holey graphene frameworks for highly efficient capacitive energy storage. Nature communications, 5(1), 1-8.
  • Yan, X., Yu, Y., & Yang, X. (2014). Effects of electrolytes on the capacitive behavior of nitrogen/phosphorus co-doped nonporous carbon nanofibers: an insight into the role of phosphorus groups. RSC Advances, 4(48), 24986-24990.
  • Zhang, L. L., & Zhao, X. (2009). Carbon-based materials as supercapacitor electrodes. Chemical Society Reviews, 38(9), 2520-2531.
  • Zhang, W., Lin, N., Liu, D., Xu, J., Sha, J., Yin, J., . . . Lin, H. (2017). Direct carbonization of rice husk to prepare porous carbon for supercapacitor applications. Energy, 128, 618-625.
  • Zhang, Y., Liu, S., Zheng, X., Wang, X., Xu, Y., Tang, H., . . . Luo, J. (2017). Biomass organs control the porosity of their pyrolyzed carbon. Advanced functional materials, 27(3), 1604687.
  • Zhu, X., Yu, S., Xu, K., Zhang, Y., Zhang, L., Lou, G., . . . Shen, Z. (2018). Sustainable activated carbons from dead ginkgo leaves for supercapacitor electrode active materials. Chemical Engineering Science, 181, 36-45.
  • Zhu, Y., Murali, S., Stoller, M. D., Ganesh, K., Cai, W., Ferreira, P. J., . . . Thommes, M. (2011). Carbon-based supercapacitors produced by activation of graphene. science, 332(6037), 1537-1541.
There are 32 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Articles
Authors

Murat Akdemir 0000-0001-9235-1913

Publication Date December 31, 2021
Published in Issue Year 2021

Cite

APA Akdemir, M. (2021). Rutenyum Katkılı Nanotüp Kullanılarak Süperkapasitör Elektrot Üretimi. Avrupa Bilim Ve Teknoloji Dergisi(31), 326-330. https://doi.org/10.31590/ejosat.1009731