Review
BibTex RIS Cite

Su Dağıtım Şebekeleri Tasarımının Evrimsel Optimizasyon Teknikleriyle Çözümü

Year 2021, , 638 - 642, 30.11.2021
https://doi.org/10.31590/ejosat.1009768

Abstract

Yaşamsal önemi nedeniyle su, hem uygarlığın hem de toplumsal gelişmenin kaynaklarından biri olarak bilinmektedir. Bütün medeniyetler yerleşimlerini su kaynaklarının yakınına kurmuşlardır. Ancak yerleşim yerlerinde suyun kaynağından alınarak kullanıcılara iletilmesi, yani su şebekelerinin kurulması işi maliyetli bir süreç olduğundan, geçmişten günümüze en önemli mühendislik problemlerinden biri olmuştur. Bu çalışmada, su dağıtım şebekesi tasarımlarının çözümünde kullanılan evrimsel optimizasyon algoritmaları hakkında kapsamlı bir literatür taraması sunulmaktadır. İlk olarak tasarım probleminin açıklanması, karar değişkenleri ve matematiksel tanımı üzerinde durulmuştur. Daha sonra konuyla ilgili bugüne kadar yapılan çalışmalar kronolojik olarak incelenmiştir. Son olarak, bulgulardan elde edilen sonuçlar yorumlanarak problemin çözümü için ileri sürülen yöntemlerin avantaj ve dezavantajları ortaya konulmuştur. Ayrıca ileride yapılacak çalışmalar için tespitler yapılmaktadır.

References

  • Alperovits E. & Shamir U. (1977), "Design of optimal water distribution systems," Water Resources Research, 13(6), 885-900.
  • Quindry G. E., Liebman J. C., & Brill E. D. (1981), "Optimization of looped water distribution systems," Journal of the Environmental Engineering Division, 107(4), 665-679.
  • Kessler A. and Shamir U. (1989), "Analysis of the linear programming gradient method for optimal design of water supply networks," Water Resources Research, 25(7), 1469-1480.
  • Su Y.C., Mays L. W., Duan N. & Lansey K. E. (1987), "Reliability-based optimization model for water distribution systems," J Hydraul Eng, 113(12), 1539-1556.
  • Sevük A. S. & Altınbilek D. (1977), Su Dağıtım Şebekleri Projelendirme ve Bilgisayarla Çözüm Esasları. Orta Doğu Teknik Üniversitesi.
  • Schaake J. C. & Lai F. H. (1969), Linear programming and dynamic programming application to water distribution network design. MIT Hydrodynamics Laboratory.
  • Raad D.N. (2011), "Multi-objective optimisation of water distribution systems design using metaheuristics," Stellenbosch: University of Stellenbosch.
  • Simpson A. R., Dandy G. C. & Murphy L. J. (1994), "Genetic algorithms compared to other techniques for pipe optimization," J Water Res Plan Man, 120(4), 423-443.
  • Dandy G. C., Simpson A. R. & Murphy L. J. (1996), "An improved genetic algorithm for pipe network optimization," Water Resour Res, 32(2), 449-458.
  • Savic D. A. & Walters G. A. (1997), "Genetic algorithms for least-cost design of water distribution networks," J Water Res Plan Man, 123(2), 67-77.
  • Wu Z.Y. & Simpson A.R. (2001), "Competent genetic-evolutionary optimization of water distribution systems," J Comput Civil Eng, 15(2), 89-101.
  • Afshar M. (2005), "A convergent genetic algorithm for pipe network optimization," Sci Iran, 12(4).
  • Özdağlar D., Benzeden E. & Kahraman A.M. (2006), "Kompleks Su Dağıtım Şebekelerinin Genetik Algoritma ile Optimizasyonu," Teknik Dergi, 17(82), 3851-3867.
  • Kadu M.S., Gupta R. & Bhave P.R. (2008), "Optimal design of water networks using a modified genetic algorithm with reduction in search space," J Water Res Plan Man, 134(2), 147-160.
  • Conceicao Cunha M. & Ribeiro L. (2004), "Tabu search algorithms for water network optimization," Eur J Oper Res, 157(3), 746-758.
  • Suribabu C. and Neelakantan T. (2006), "Design of water distribution networks using particle swarm optimization," Urban Water J, 3(2), 111-120.
  • Montalvo I., Izquierdo J., Pérez R. & Tung M.M. (2008), "Particle swarm optimization applied to the design of water supply systems," Comput Math Appl, 56(3), 769-776.
  • Ezzeldin R., Djebedjian B. & Saafan T. (2013), "Integer discrete particle swarm optimization of water distribution networks," J Pipeline Syst Eng, 5(1), 04013013.
  • Suribabu C. (2009), "Differential evolution algorithm for optimal design of water distribution networks," J Hydroinform, 12(1), 66-82.
  • Vasan A. & Simonovic S.P. (2010), "Optimization of water distribution network design using differential evolution," J Water Res Plan Man, 136(2), 279-287.
  • Zheng F., Simpson A.R. & Zecchin A. (2012), "A performance comparison of differential evolution and genetic algorithm variants applied to water distribution system optimization," in World Environmental and Water Resources Congress 2012: Crossing Boundaries, 2954-2963.
  • Yılmaz V. (2015), "Su Dağıtım Şebekelerinin Metasezgisel Yöntemlerle Optimizasyonu," (yayımlanmamış doktora tezi) Selçuk Üniversitesi Fen Bilimleri Enstitüsü, Konya.
  • Zeybekoğlu U. (2017), "Metasezgisel Optimizasyon Yöntemlerin Performanslarının Basit Bir Su Dağıtım Şebekesi Kullanılarak Araştırılması," Karadeniz Fen Bilimleri Dergisi, 7(2), 57-67.
  • Noori M. (2021), "İnşaat projelerinde meta-sezgisel algoritmalar ile süre-maliyet-kalite ödünleşim problemlerinin optimizasyonu," Bursa Uludag University.
  • Karpuzcu, M. (1985). Su temini ve çevre sağlığı, Boğaziçi Üniversitesi.
  • Cura, T. (2008). Modern sezgisel teknikler ve uygulamaları, Papatya Yayıncılık Eğitim.
  • Karaboğa, D. (2004). "Yapay Zeka Optimizasyon Algoritmaları, Atlas Yayın Dağıtım, 1." Basım, İstanbul.
  • Kaveh, A. and T. Bakhshpoori (2016). "A new metaheuristic for continuous structural optimization: water evaporation optimization." Structural and Multidisciplinary Optimization 54(1): 23-43.
  • Öztürk, Ş., Yiğit, E., & Özkaya, U. (2021). “Fused Deep Features Based Classification Framework for COVID-19 Classification with Optimized MLP.” Konya Mühendislik Bilimleri Dergisi, 8, 15-27.
  • Rashedi, E. (2009). "GSA: a gravitational search algorithm." Information sciences 179(13): 2232-2248.
  • Selim, S. Z. & Alsultan K. (1991). "A simulated annealing algorithm for the clustering problem." Pattern recognition 24(10): 1003-1008.
  • Dorigo M. & Stützle T. (2019). "Ant colony optimization: overview and recent advances." Handbook of metaheuristics: 311-351.
  • Mareli M. & Twala B. (2018). "An adaptive Cuckoo search algorithm for optimisation." Applied computing and informatics 14(2): 107-115.

Solution of Water Distribution Networks Design with Evolutionary Optimization Techniques

Year 2021, , 638 - 642, 30.11.2021
https://doi.org/10.31590/ejosat.1009768

Abstract

Due to its vital importance, water is known as one of the sources of both civilization and social development. All civilizations have established their settlements near water sources. However, since the work of taking water from its source and transmitting it to the users in the settlements, that is, the establishment of water networks, is a costly process, it has been one of the most important Engineering problems from the past to the present. In this study, a comprehensive literature review on evolutionary optimization algorithms used in solving water distribution network designs is presented. First, the explanation of the design problem, the decision variables, and its mathematical definition are emphasized. Then, the studies on the subject so far are examined chronologically. Finally, the results obtained from the findings are interpreted and the advantages and disadvantages of the methods put forward for the solution of the problem are revealed. In addition, determinations are made for future studies.

References

  • Alperovits E. & Shamir U. (1977), "Design of optimal water distribution systems," Water Resources Research, 13(6), 885-900.
  • Quindry G. E., Liebman J. C., & Brill E. D. (1981), "Optimization of looped water distribution systems," Journal of the Environmental Engineering Division, 107(4), 665-679.
  • Kessler A. and Shamir U. (1989), "Analysis of the linear programming gradient method for optimal design of water supply networks," Water Resources Research, 25(7), 1469-1480.
  • Su Y.C., Mays L. W., Duan N. & Lansey K. E. (1987), "Reliability-based optimization model for water distribution systems," J Hydraul Eng, 113(12), 1539-1556.
  • Sevük A. S. & Altınbilek D. (1977), Su Dağıtım Şebekleri Projelendirme ve Bilgisayarla Çözüm Esasları. Orta Doğu Teknik Üniversitesi.
  • Schaake J. C. & Lai F. H. (1969), Linear programming and dynamic programming application to water distribution network design. MIT Hydrodynamics Laboratory.
  • Raad D.N. (2011), "Multi-objective optimisation of water distribution systems design using metaheuristics," Stellenbosch: University of Stellenbosch.
  • Simpson A. R., Dandy G. C. & Murphy L. J. (1994), "Genetic algorithms compared to other techniques for pipe optimization," J Water Res Plan Man, 120(4), 423-443.
  • Dandy G. C., Simpson A. R. & Murphy L. J. (1996), "An improved genetic algorithm for pipe network optimization," Water Resour Res, 32(2), 449-458.
  • Savic D. A. & Walters G. A. (1997), "Genetic algorithms for least-cost design of water distribution networks," J Water Res Plan Man, 123(2), 67-77.
  • Wu Z.Y. & Simpson A.R. (2001), "Competent genetic-evolutionary optimization of water distribution systems," J Comput Civil Eng, 15(2), 89-101.
  • Afshar M. (2005), "A convergent genetic algorithm for pipe network optimization," Sci Iran, 12(4).
  • Özdağlar D., Benzeden E. & Kahraman A.M. (2006), "Kompleks Su Dağıtım Şebekelerinin Genetik Algoritma ile Optimizasyonu," Teknik Dergi, 17(82), 3851-3867.
  • Kadu M.S., Gupta R. & Bhave P.R. (2008), "Optimal design of water networks using a modified genetic algorithm with reduction in search space," J Water Res Plan Man, 134(2), 147-160.
  • Conceicao Cunha M. & Ribeiro L. (2004), "Tabu search algorithms for water network optimization," Eur J Oper Res, 157(3), 746-758.
  • Suribabu C. and Neelakantan T. (2006), "Design of water distribution networks using particle swarm optimization," Urban Water J, 3(2), 111-120.
  • Montalvo I., Izquierdo J., Pérez R. & Tung M.M. (2008), "Particle swarm optimization applied to the design of water supply systems," Comput Math Appl, 56(3), 769-776.
  • Ezzeldin R., Djebedjian B. & Saafan T. (2013), "Integer discrete particle swarm optimization of water distribution networks," J Pipeline Syst Eng, 5(1), 04013013.
  • Suribabu C. (2009), "Differential evolution algorithm for optimal design of water distribution networks," J Hydroinform, 12(1), 66-82.
  • Vasan A. & Simonovic S.P. (2010), "Optimization of water distribution network design using differential evolution," J Water Res Plan Man, 136(2), 279-287.
  • Zheng F., Simpson A.R. & Zecchin A. (2012), "A performance comparison of differential evolution and genetic algorithm variants applied to water distribution system optimization," in World Environmental and Water Resources Congress 2012: Crossing Boundaries, 2954-2963.
  • Yılmaz V. (2015), "Su Dağıtım Şebekelerinin Metasezgisel Yöntemlerle Optimizasyonu," (yayımlanmamış doktora tezi) Selçuk Üniversitesi Fen Bilimleri Enstitüsü, Konya.
  • Zeybekoğlu U. (2017), "Metasezgisel Optimizasyon Yöntemlerin Performanslarının Basit Bir Su Dağıtım Şebekesi Kullanılarak Araştırılması," Karadeniz Fen Bilimleri Dergisi, 7(2), 57-67.
  • Noori M. (2021), "İnşaat projelerinde meta-sezgisel algoritmalar ile süre-maliyet-kalite ödünleşim problemlerinin optimizasyonu," Bursa Uludag University.
  • Karpuzcu, M. (1985). Su temini ve çevre sağlığı, Boğaziçi Üniversitesi.
  • Cura, T. (2008). Modern sezgisel teknikler ve uygulamaları, Papatya Yayıncılık Eğitim.
  • Karaboğa, D. (2004). "Yapay Zeka Optimizasyon Algoritmaları, Atlas Yayın Dağıtım, 1." Basım, İstanbul.
  • Kaveh, A. and T. Bakhshpoori (2016). "A new metaheuristic for continuous structural optimization: water evaporation optimization." Structural and Multidisciplinary Optimization 54(1): 23-43.
  • Öztürk, Ş., Yiğit, E., & Özkaya, U. (2021). “Fused Deep Features Based Classification Framework for COVID-19 Classification with Optimized MLP.” Konya Mühendislik Bilimleri Dergisi, 8, 15-27.
  • Rashedi, E. (2009). "GSA: a gravitational search algorithm." Information sciences 179(13): 2232-2248.
  • Selim, S. Z. & Alsultan K. (1991). "A simulated annealing algorithm for the clustering problem." Pattern recognition 24(10): 1003-1008.
  • Dorigo M. & Stützle T. (2019). "Ant colony optimization: overview and recent advances." Handbook of metaheuristics: 311-351.
  • Mareli M. & Twala B. (2018). "An adaptive Cuckoo search algorithm for optimisation." Applied computing and informatics 14(2): 107-115.
There are 33 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Büşra Seval Doğan 0000-0002-5969-2860

Tahir Sag 0000-0001-8266-7148

Publication Date November 30, 2021
Published in Issue Year 2021

Cite

APA Doğan, B. S., & Sag, T. (2021). Solution of Water Distribution Networks Design with Evolutionary Optimization Techniques. Avrupa Bilim Ve Teknoloji Dergisi(28), 638-642. https://doi.org/10.31590/ejosat.1009768