Research Article
BibTex RIS Cite

Çift Bantlı RF Enerji Hasadı İçin Toplu Eleman Devre Yapıları

Year 2021, , 670 - 674, 30.11.2021
https://doi.org/10.31590/ejosat.1010030

Abstract

RF enerji hasadı, ortamda bulunan elektromagnetik sinyalleri kullanarak DC enerji üretmektedir. Günümüzde elde edilen enerjiyi arttırmak amacıyla çoklu frekansta RF enerji hasadı çalışmaları yapılmaktadır. Bu çalışmada, çift bantlı RF enerji hasadı için tek empedans uyumlama yapısı ve her bir frekans için ayrı ayrı L tipi empedans uyumlama yapısı çıkış voltaj ve verimleri göz önüne alınarak karşılaştırılmıştır. Simülasyonu yapılan frekans bantları ortamda bulunma yoğunluğu yüksek olan GSM 900 ve GSM 1800 bantlarıdır, bu nedenle 900 MHz ve 1800 MHz frekansları kullanılmıştır ve gerilim çoklayıcı olarak iki kademe Dickson gerilim çoklayıcı seçilmiştir. Çoklu bant empedans dönüştürücü için indüktör ve kapasitörlerden oluşan toplu eleman devre yapıları seçilmiştir. Böylece empedans uyumlama devresi çift bantta yükten kaynağa olan yansımaları bastırmıştır ve maksimum güç transferi sağlanmıştır. Bu yapı için maksimum verimler 900 MHz, 1800 MHz ve çift bant (900&1800 MHz) için sırasıyla 41.947 %, 29.259 %, ve 74.427 % olarak bulunmuştur.

References

  • Agrawal, S., Pandey, S. K., Singh, J., & Parihar, M. S. (2014). Realization of efficient RF energy harvesting circuits employing different matching technique. Fifteenth International Symposium on Quality Electronic Design, c, 754–761.
  • Agrawal, S., Parihar, M. S., & Kondekar, P. N. (2018). A quad-band antenna for multi-band radio frequency energy harvesting circuit. AEU - International Journal of Electronics and Communications, 85(October 2017), 99–107.
  • Akhtar, F., & Husain, M. (2015). Energy replenishment using renewable and traditional energy resources for sustainable wireless sensor networks : A review. Renewable and Sustainable Energy Reviews, 45, 769–784.
  • Al-Azawy, M. M., & Sari, F. (2019). Analysis of Dickson Voltage Multiplier for RF Energy Harvesting. 2019 1st Global Power, Energy and Communication Conference (GPECOM), July, 10–14.
  • Chaour, I., Fakhfakh, A., & Kanoun, O. (2017). Enhanced passive RF-DC converter circuit efficiency for low RF energy harvesting. Sensors (Switzerland), 17(3), 1–14.
  • David M. Pozar. (2011). Microwave Engineering. Wiley.
  • Di Cataldo, G., & Palumbo, G. (1996). Design of an Nth order Dickson voltage multiplier. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, 43(5), 414–418.
  • Ho, D., Kharrat, I., Vuong, V. N. T., Nguyen, Q., & Le, M. (2016). Dual-Band Rectenna for Ambient RF Energy Harvesting at GSM 900 MHz and 1800 MHz. 1, 306–310.
  • Keyrouz, S., Visser, H. J., & Tijhuis, A. G. (2013). Multi-band Simultaneous Radio Frequency Energy Harvesting. 2013 7th European Conference on Antennas and Propagation (EuCAP), Eucap, 3058–3061.
  • Kim, P., Chaudhary, G., & Jeong, Y. (2013). A Dual Band RF Energy Harvesting Using Frequency Limited Dual-Band Impedance Matching. Progress In Electromagnetics Research, 141(July), 443–461.
  • Li, P., Long, Z., & Yang, Z. (2021). RF Energy Harvesting for Batteryless and Maintenance-Free Condition Monitoring of Railway Tracks. IEEE Internet of Things Journal, 8(5), 3512–3523.
  • Liu, J., Huang, M., & Du, Z. (2020). Design of Compact Dual-Band RF Rectifiers for Wireless Power Transfer and Energy Harvesting. IEEE Access, 8, 184901–184908.
  • Liu, Y., Zhao, Y.-J., & Zhou, Y. (2012). Lumped Dual-Frequency Impedance Transformers for Frequency-dependent Complex Loads. Progress In Electromagnetics Research, 126(December 2011), 121–138.
  • Lu, X., Wang, P., Niyato, D., Kim, D. I., & Han, Z. (2015). Wireless Networks With RF Energy Harvesting: A Contemporary Survey. IEEE Communications Surveys & Tutorials, 17(2), 757–789.
  • Mantiply, E. D., Pohl, K. R., Poppell, S. W., & Murphy, J. A. (1997). Summary of measured radio frequency electric and magnetic fields (10 kHz to 30 GHz) in the general and work environment. Bioelectromagnetics, 18(8), 563–577.
  • Ozkaya, U., & Seyfi, L. (2015). Dimension optimization of microstrip patch antenna in X/Ku band via artificial neural network. Procedia-Social and Behavioral Sciences, 195, 2520-2526.
  • Rhea, R. (2006). The Yin-Yang of Matching : Part 1 — Basic Matching. Matching Networks.
  • Papadopoulou, M. S., Boursianis, A. D., Skoufa, A., Volos, C. K., Stouboulos, I. N., Nikolaidis, S., & Goudos, S. K. (2020). Dual-Band RF-to-DC Rectifier with High Efficiency for RF Energy Harvesting Applications. 2020 9th International Conference on Modern Circuits and Systems Technologies (MOCAST), 1–4.
  • Pham, B. L., & Pham, A. V. (2013). Triple bands antenna and high efficiency rectifier design for RF energy harvesting at 900, 1900 and 2400 MHz. IEEE MTT-S International Microwave Symposium Digest, 13–15.
  • Sari, F., & Uzun, Y. (2019). a Comparative Study: Voltage Multipliers for Rf Energy Harvesting System. Commun.Fac.Sci.Univ.Ank.Series A2-A3, 61(1), 12–23.
  • Saxena, A., Banerjee, D., Hashmi, M., & Auyenur, M. (2019). A Dual-Band Impedance Transfomer for Matching Frequency Dependent Complex Source and Load Impedances. 2019 15th Conference on Ph.D Research in Microelectronics and Electronics (PRIME), July, 173–176.
  • Selim, K. K., Wu, S., Saleeb, D. A., & Ghoneim, S. S. M. (2021). A Quad-Band RF Circuit for Enhancement of Energy Harvesting. Electronics, 10(10), 1160.
  • Tafekirt, H., Pelegri-Sebastia, J., Bouajaj, A., & Reda, B. M. (2020). A Sensitive Triple-Band Rectifier for Energy Harvesting Applications. IEEE Access, 8, 73659–73664.
  • Tran, L. G., Cha, H. K., & Park, W. T. (2017). RF power harvesting : a review on designing methodologies and applications. Micro and Nano Systems Letters.
  • Yalçın, A. B., & Sari, F. (2021). Efficiency Analysis For Triple Band Rf Energy Harvesting. Aksaray University Journal of Science and Engineering, 5(1), 36–45.
  • Zeng, M., Li, Z., Andrenko, A. S., Zeng, Y., & Tan, H. (2018). Research Article A Compact Dual-Band Rectenna for GSM900 and GSM1800 Energy Harvesting. 2018, 1–10.

Lumped Element Circuit Structures for Dual-band RF Energy Harvesting

Year 2021, , 670 - 674, 30.11.2021
https://doi.org/10.31590/ejosat.1010030

Abstract

RF energy harvesting generates DC energy using electromagnetic signals in the environment. Today, multi-frequency RF energy harvesting studies are carried out to increase the energy obtained. In this study, single impedance matching structure for dual band RF energy harvesting and L type impedance matching structure for each frequency are compared considering output voltage and efficiency. The simulated frequency bands are the GSM 900 and GSM 1800 bands, which have a high presence in the environment, so 900 MHz and 1800 MHz frequencies are used and two-stage Dickson voltage multiplier is chosen as the voltage multiplier.Lumped element circuit structures consisting of inductors and capacitors are selected for the multiband impedance converter. Thus, the impedance matching circuit suppress the reflections from the load to the source in the dual band and maximum power transfer was achieved. The maximum efficiencies for this structure are found to be 41.947%, 29.259% and 74.427% for the 900 MHz, 1800 MHz and dual bands (900 & 1800 MHz), respectively.

References

  • Agrawal, S., Pandey, S. K., Singh, J., & Parihar, M. S. (2014). Realization of efficient RF energy harvesting circuits employing different matching technique. Fifteenth International Symposium on Quality Electronic Design, c, 754–761.
  • Agrawal, S., Parihar, M. S., & Kondekar, P. N. (2018). A quad-band antenna for multi-band radio frequency energy harvesting circuit. AEU - International Journal of Electronics and Communications, 85(October 2017), 99–107.
  • Akhtar, F., & Husain, M. (2015). Energy replenishment using renewable and traditional energy resources for sustainable wireless sensor networks : A review. Renewable and Sustainable Energy Reviews, 45, 769–784.
  • Al-Azawy, M. M., & Sari, F. (2019). Analysis of Dickson Voltage Multiplier for RF Energy Harvesting. 2019 1st Global Power, Energy and Communication Conference (GPECOM), July, 10–14.
  • Chaour, I., Fakhfakh, A., & Kanoun, O. (2017). Enhanced passive RF-DC converter circuit efficiency for low RF energy harvesting. Sensors (Switzerland), 17(3), 1–14.
  • David M. Pozar. (2011). Microwave Engineering. Wiley.
  • Di Cataldo, G., & Palumbo, G. (1996). Design of an Nth order Dickson voltage multiplier. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, 43(5), 414–418.
  • Ho, D., Kharrat, I., Vuong, V. N. T., Nguyen, Q., & Le, M. (2016). Dual-Band Rectenna for Ambient RF Energy Harvesting at GSM 900 MHz and 1800 MHz. 1, 306–310.
  • Keyrouz, S., Visser, H. J., & Tijhuis, A. G. (2013). Multi-band Simultaneous Radio Frequency Energy Harvesting. 2013 7th European Conference on Antennas and Propagation (EuCAP), Eucap, 3058–3061.
  • Kim, P., Chaudhary, G., & Jeong, Y. (2013). A Dual Band RF Energy Harvesting Using Frequency Limited Dual-Band Impedance Matching. Progress In Electromagnetics Research, 141(July), 443–461.
  • Li, P., Long, Z., & Yang, Z. (2021). RF Energy Harvesting for Batteryless and Maintenance-Free Condition Monitoring of Railway Tracks. IEEE Internet of Things Journal, 8(5), 3512–3523.
  • Liu, J., Huang, M., & Du, Z. (2020). Design of Compact Dual-Band RF Rectifiers for Wireless Power Transfer and Energy Harvesting. IEEE Access, 8, 184901–184908.
  • Liu, Y., Zhao, Y.-J., & Zhou, Y. (2012). Lumped Dual-Frequency Impedance Transformers for Frequency-dependent Complex Loads. Progress In Electromagnetics Research, 126(December 2011), 121–138.
  • Lu, X., Wang, P., Niyato, D., Kim, D. I., & Han, Z. (2015). Wireless Networks With RF Energy Harvesting: A Contemporary Survey. IEEE Communications Surveys & Tutorials, 17(2), 757–789.
  • Mantiply, E. D., Pohl, K. R., Poppell, S. W., & Murphy, J. A. (1997). Summary of measured radio frequency electric and magnetic fields (10 kHz to 30 GHz) in the general and work environment. Bioelectromagnetics, 18(8), 563–577.
  • Ozkaya, U., & Seyfi, L. (2015). Dimension optimization of microstrip patch antenna in X/Ku band via artificial neural network. Procedia-Social and Behavioral Sciences, 195, 2520-2526.
  • Rhea, R. (2006). The Yin-Yang of Matching : Part 1 — Basic Matching. Matching Networks.
  • Papadopoulou, M. S., Boursianis, A. D., Skoufa, A., Volos, C. K., Stouboulos, I. N., Nikolaidis, S., & Goudos, S. K. (2020). Dual-Band RF-to-DC Rectifier with High Efficiency for RF Energy Harvesting Applications. 2020 9th International Conference on Modern Circuits and Systems Technologies (MOCAST), 1–4.
  • Pham, B. L., & Pham, A. V. (2013). Triple bands antenna and high efficiency rectifier design for RF energy harvesting at 900, 1900 and 2400 MHz. IEEE MTT-S International Microwave Symposium Digest, 13–15.
  • Sari, F., & Uzun, Y. (2019). a Comparative Study: Voltage Multipliers for Rf Energy Harvesting System. Commun.Fac.Sci.Univ.Ank.Series A2-A3, 61(1), 12–23.
  • Saxena, A., Banerjee, D., Hashmi, M., & Auyenur, M. (2019). A Dual-Band Impedance Transfomer for Matching Frequency Dependent Complex Source and Load Impedances. 2019 15th Conference on Ph.D Research in Microelectronics and Electronics (PRIME), July, 173–176.
  • Selim, K. K., Wu, S., Saleeb, D. A., & Ghoneim, S. S. M. (2021). A Quad-Band RF Circuit for Enhancement of Energy Harvesting. Electronics, 10(10), 1160.
  • Tafekirt, H., Pelegri-Sebastia, J., Bouajaj, A., & Reda, B. M. (2020). A Sensitive Triple-Band Rectifier for Energy Harvesting Applications. IEEE Access, 8, 73659–73664.
  • Tran, L. G., Cha, H. K., & Park, W. T. (2017). RF power harvesting : a review on designing methodologies and applications. Micro and Nano Systems Letters.
  • Yalçın, A. B., & Sari, F. (2021). Efficiency Analysis For Triple Band Rf Energy Harvesting. Aksaray University Journal of Science and Engineering, 5(1), 36–45.
  • Zeng, M., Li, Z., Andrenko, A. S., Zeng, Y., & Tan, H. (2018). Research Article A Compact Dual-Band Rectenna for GSM900 and GSM1800 Energy Harvesting. 2018, 1–10.
There are 26 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Articles
Authors

Filiz Sarı 0000-0001-8462-175X

Publication Date November 30, 2021
Published in Issue Year 2021

Cite

APA Sarı, F. (2021). Çift Bantlı RF Enerji Hasadı İçin Toplu Eleman Devre Yapıları. Avrupa Bilim Ve Teknoloji Dergisi(28), 670-674. https://doi.org/10.31590/ejosat.1010030