Research Article
BibTex RIS Cite

İnce Taneli Zeminlerin Kimyasal ve Fiziksel Özelliklerine Atık Suyun Etkileri

Year 2021, , 771 - 775, 31.12.2021
https://doi.org/10.31590/ejosat.1010488

Abstract

Bu çalışmanın amacı, farklı yönetim ve arazi kullanımının zeminlerin kimyasal ve fiziksel özellikleri üzerindeki etkilerini değerlendirmek ve ayrıca zeminin sızıntı suyuna karşı duyarlılığını doğrulamaktır. Bu amaçla, atık su arıtma kapasitesinden yararlanılarak zemine deşarj edilen atık suların, zemin özellikleri üzerindeki etkisi incelenmiştir. Çalışmada, SA, SG, SK ve SU olarak adlandırılan farklı doğal zeminler, 100 cm uzunluğunda ve 20 cm çapında pleksi-glass borulara yerleştirildi ve kesintisiz akışla 21 gün boyunca atık su ile beslendi. 21 gün sonunda zemin örnekleri toplandı ve zemin yapısına etkisini değerlendirmek için birtakım özellikleri incelendi. Sonuç olarak, doğal zeminlerin mevcut kimyasal ve fiziksel özelliklerinin atık sudan etkilendiği belirlendi. Atık su sızıntısından sonra, SG zemini hariç, zeminlerin pH değerleri hafif bir ölçüde artma eğilimdeydi. Zeminlerin Na+ ve K+ içeriği sırasıyla yaklaşık %283 ve %390'a kadar arttı. Ek olarak, zeminlerin SAR değerinde %118.18-%180.70 oranında artış olduğu hesaplandı. EC değeri, SA zemininde %8.77 oranında azalırken SG zemininde %189 oranında arttı. Atık su sızdırılan zeminlerin N ve H içeriği azalırken Mg, Ca, P, Al, Pb, Zn ve C içerikleri zemin tipine göre farklılık gösterdi. Zeminlerin ince dane yüzdesi arttıkça, Na absorpsiyon kapasiteleri artmıştır (r2=0.96).

References

  • Bixio, D., Thoeye, C., De Koning, J., Joksimovic, D., Savic, D., Wintgens, T., & Melin, T. (2006). Wastewater reuse in Europe. Desalination, 187(1-3), 89-101.
  • Baykuş, N. (2021). Treatment of wastewater by infiltration and its effect on the engineering properties of natural soils. Department of Civil Engineering, Graduate School of Natural and Applied Sciences, Hasan Kalyoncu University, Ph.D. Thesis.
  • Wang, X. H., Zhang, Y., & Huang, C. H. (2014). Experimental study on the treatment of sewage by soil. In Applied Mechanics and Materials (Vol. 464, pp. 179-183). Trans Tech Publications Ltd.
  • Cheremisinoff, N. P. (2001). Handbook of water and wastewater treatment technologies. Butterworth-Heinemann. ISBN: 0-7506-7498-9.
  • Mohamed, O. M. A., and Antia, E. H. (1998). Geoenvironmental Engineering, Vol.82, 1st Edition, Imprint: Elsevier Science, ISBN: 9780080532448, 706.
  • Sparks, D. L. (2019). Fundamentals of soil chemistry. Encyclopedia of Water: Science, Technology, and Society, 1-11.
  • Acir, N. & Günal, H. (2019). Toprak katyon değişimin kapasitesi tahmininde pedotransfer fonksiyonlarının kullanımı. Ispec Uluslararası Tarım ve Kırsal Kalkınma Kongresi, 10-12 Haziran 2019, 437-443.
  • Odlare, M., Pell, M., & Svensson, K. (2008). Changes in soil chemical and microbiological properties during 4 years of application of various organic residues. Waste management, 28(7), 1246-1253.
  • Suarez, L. D. and Gonzalez-Rubio, A. (2017). Effects of the dissolved organic carbon of treated municipal wastewater on soil infiltration as related to sodium adsorption ratio and pH. Soil Science Society of America Journal, (2017)81:602-611, DOI:10.2136/sssaj2016.09.0310.
  • Richards, L. A. (Ed.) (1954). Diagnosis and improvement of saline and alkali soils, Agriculture Handbook No. 60, U.S. Department of Agriculture, Washington, D.C.
  • Husson, O., Brunet, A., Babre, D., Charpentier, H., Durand, M., & Sarthou, J. P. (2018). Conservation agriculture systems alter the electrical characteristics (Eh, pH, and EC) of four soil types in France. Soil and Tillage Research, 176, 57-68.
  • Temizel, K. E., & Sedat, T. O. K. (2019). Farklı sodyum adsorbsiyon oranı değerlerine sahip sulama sularının bazı toprak özelliklerine etkisi. Journal of the Institute of Science and Technology, 9(3), 1729-1736.
  • Läuchli, A. and Epstein, E. (1990). Plant responses to saline and sodic conditions. Agricultural salinity assessment and management, 71, 113-137.
  • Jnad, I. (2000). Characterizing soil hydraulic properties in the drainfield of a subsurface drip distribution system. Texas A&M University, Doctor of Philosophy Thesis, Civil Engineering, December 2000.
  • Tejada, M., & Gonzalez, J. L. (2005). Beet vinasse applied to wheat under dryland conditions affects soil properties and yield. European Journal of Agronomy, 23(4), 336-347.
  • Sparks, D. L. (2019). Fundamentals of soil chemistry. Encyclopedia of Water: Science, Technology, and Society, 1-11.
  • Rezaei, S. A., & Gilkes, R. J. (2005). The effects of landscape attributes and plant community on soil chemical properties in rangelands. Geoderma, 125(1-2), 167-176.
  • Abd-Elwahed, M. S. (2018). Influence of long-term wastewater irrigation on soil quality and its spatial distribution. Annals of Agricultural Sciences, 63(2), 191-199.
  • Khaskhoussy, K., Kahlaoui, B., Nefzi, B. M., Jozdan, O., Dakheel, A., & Hachicha, M. (2015). Effect of treated wastewater irrigation on heavy metals distribution in a Tunisian soil. Engineering, Technology & Applied Science Research, 5(3), 805-810.
  • Galavi, M., Jalali, A., Ramroodi, M., Mousavi, S. R., & Galavi, H. (2010). Effects of treated municipal wastewater on soil chemical properties and heavy metal uptake by sorghum (Sorghum bicolor L.). Journal of Agricultural Science, 2(3), 235.
  • Oluremi, J. R., Adedokun, S. I., Olaoye, R. A., Ajamu, S. O., & Eng, M. (2012). Assessment of cassava wastewater on the geotechnical properties of lateritic soil. Pacific Journal of Science and Technology, 13(1), 631-639.
  • Abedi-Koupai, J., Mostafazadeh-Fard, B., Afyuni, M., & Bagheri, M. R. (2006). Effect of treated wastewater on soil chemical and physical properties in an arid region. Plant Soil and Environment, 52(8), 335.
  • Karpuzcu, M., Baykuş, N., & Yurtsever, A. (2020). An experimental study on treatment of domestic wastewater by natural soil. Engineering Sciences, 15(4), 196-208.
  • Irfan, M., Chen, Y., Ali, M., Abrar, M., Qadri, A., and Bhutta, O. (2018). Geotechnical properties of effluent-contaminated cohesive soils and their stabilization using industrial by-products. Processes, 6(2018), 203, DOİ:10.3390/pr6100203.
  • Asik, B. B., Aydinalp, C., Katkat, A. V., & Sagban, F. O. T. (2015). Effect of the application of various wastewater sludges on the properties of sandy soil. Environmental monitoring and assessment, 187(2), 1-11.
  • Sparks, D. L., Page, A. L., Helmke, P. A., Loeppert, R. H., & Rhoades, J. D. (1996). Salinity: Electrical Conductivity and Total Dissolved Solids. Methods of Soil Analysis Part 3-Chemical Methods.
  • Hasan, H., Battikhi, A., & Qrunfleh, M. (2014). Impacts of treated wastewater reuse on some soil properties and production of Gladiolus communis. Journal of Horticulture, 1-9.
  • Mohammad Rusan, M. J., Hinnawi, S., & Rousan, L. (2007). Long term effect of wastewater irrigation of forage crops on soil and plant quality parameters. Desalination, 215(1-3), 143–152.
  • Dawes, L., & Goonetilleke, A. (2003). An investigation into the role of site and soil characteristics in onsite sewage treatment. Environmental Geology, 44(4), 467-477.
  • Thompson, A., & Goyne, K. W. (2012). Introduction to the sorption of chemical constituents in soils. Nature Education Knowledge, 4(4), 7.

The Effects of Wastewater on The Chemical and Physical Properties of Fine-grained Soils

Year 2021, , 771 - 775, 31.12.2021
https://doi.org/10.31590/ejosat.1010488

Abstract

The objective of this study was to evaluate the effects of different management and land use on soil chemical and physical properties as well as to validate the sensitivity of the soil to leachate. For this purpose, the effect of the wastewater discharged to the soil on the soil's properties taking advantage of the wastewater treatment capacity of the soil was investigated. In this study, different natural soils named SA, SG, SK, and SU were placed in plexiglass pipes with a length of 100 cm and a diameter of 20 cm and fed with wastewater for 21 days with an uninterrupted flow. Soil samples were collected from pipes after 21 days and some parameters were analyzed in order to evaluate the effect on soil structure. As a result, it was revealed that the existing chemical and physical properties of natural soils were affected by wastewater. The pH values of the soils showed a slight tendency to increase after wastewater leachate, except for the SG soil. The Na and K contents of soils increased up to approximately 283% and 390%, respectively. Additionally, it was calculated that the SAR of the soils increased by 118.18%-180.70%. The EC value decreased by 8.77% in SA soil after wastewater leakage, while it increased by 189% in SG soil. While the N and H contents of soils decreased after the wastewater leachate, the Mg, Ca, P, Al, Pb, Zn, and C contents varied according to the soil type. As the fine-grain percentage of the soils increased, their Na adsorption capacity increased (r2=0.96).

References

  • Bixio, D., Thoeye, C., De Koning, J., Joksimovic, D., Savic, D., Wintgens, T., & Melin, T. (2006). Wastewater reuse in Europe. Desalination, 187(1-3), 89-101.
  • Baykuş, N. (2021). Treatment of wastewater by infiltration and its effect on the engineering properties of natural soils. Department of Civil Engineering, Graduate School of Natural and Applied Sciences, Hasan Kalyoncu University, Ph.D. Thesis.
  • Wang, X. H., Zhang, Y., & Huang, C. H. (2014). Experimental study on the treatment of sewage by soil. In Applied Mechanics and Materials (Vol. 464, pp. 179-183). Trans Tech Publications Ltd.
  • Cheremisinoff, N. P. (2001). Handbook of water and wastewater treatment technologies. Butterworth-Heinemann. ISBN: 0-7506-7498-9.
  • Mohamed, O. M. A., and Antia, E. H. (1998). Geoenvironmental Engineering, Vol.82, 1st Edition, Imprint: Elsevier Science, ISBN: 9780080532448, 706.
  • Sparks, D. L. (2019). Fundamentals of soil chemistry. Encyclopedia of Water: Science, Technology, and Society, 1-11.
  • Acir, N. & Günal, H. (2019). Toprak katyon değişimin kapasitesi tahmininde pedotransfer fonksiyonlarının kullanımı. Ispec Uluslararası Tarım ve Kırsal Kalkınma Kongresi, 10-12 Haziran 2019, 437-443.
  • Odlare, M., Pell, M., & Svensson, K. (2008). Changes in soil chemical and microbiological properties during 4 years of application of various organic residues. Waste management, 28(7), 1246-1253.
  • Suarez, L. D. and Gonzalez-Rubio, A. (2017). Effects of the dissolved organic carbon of treated municipal wastewater on soil infiltration as related to sodium adsorption ratio and pH. Soil Science Society of America Journal, (2017)81:602-611, DOI:10.2136/sssaj2016.09.0310.
  • Richards, L. A. (Ed.) (1954). Diagnosis and improvement of saline and alkali soils, Agriculture Handbook No. 60, U.S. Department of Agriculture, Washington, D.C.
  • Husson, O., Brunet, A., Babre, D., Charpentier, H., Durand, M., & Sarthou, J. P. (2018). Conservation agriculture systems alter the electrical characteristics (Eh, pH, and EC) of four soil types in France. Soil and Tillage Research, 176, 57-68.
  • Temizel, K. E., & Sedat, T. O. K. (2019). Farklı sodyum adsorbsiyon oranı değerlerine sahip sulama sularının bazı toprak özelliklerine etkisi. Journal of the Institute of Science and Technology, 9(3), 1729-1736.
  • Läuchli, A. and Epstein, E. (1990). Plant responses to saline and sodic conditions. Agricultural salinity assessment and management, 71, 113-137.
  • Jnad, I. (2000). Characterizing soil hydraulic properties in the drainfield of a subsurface drip distribution system. Texas A&M University, Doctor of Philosophy Thesis, Civil Engineering, December 2000.
  • Tejada, M., & Gonzalez, J. L. (2005). Beet vinasse applied to wheat under dryland conditions affects soil properties and yield. European Journal of Agronomy, 23(4), 336-347.
  • Sparks, D. L. (2019). Fundamentals of soil chemistry. Encyclopedia of Water: Science, Technology, and Society, 1-11.
  • Rezaei, S. A., & Gilkes, R. J. (2005). The effects of landscape attributes and plant community on soil chemical properties in rangelands. Geoderma, 125(1-2), 167-176.
  • Abd-Elwahed, M. S. (2018). Influence of long-term wastewater irrigation on soil quality and its spatial distribution. Annals of Agricultural Sciences, 63(2), 191-199.
  • Khaskhoussy, K., Kahlaoui, B., Nefzi, B. M., Jozdan, O., Dakheel, A., & Hachicha, M. (2015). Effect of treated wastewater irrigation on heavy metals distribution in a Tunisian soil. Engineering, Technology & Applied Science Research, 5(3), 805-810.
  • Galavi, M., Jalali, A., Ramroodi, M., Mousavi, S. R., & Galavi, H. (2010). Effects of treated municipal wastewater on soil chemical properties and heavy metal uptake by sorghum (Sorghum bicolor L.). Journal of Agricultural Science, 2(3), 235.
  • Oluremi, J. R., Adedokun, S. I., Olaoye, R. A., Ajamu, S. O., & Eng, M. (2012). Assessment of cassava wastewater on the geotechnical properties of lateritic soil. Pacific Journal of Science and Technology, 13(1), 631-639.
  • Abedi-Koupai, J., Mostafazadeh-Fard, B., Afyuni, M., & Bagheri, M. R. (2006). Effect of treated wastewater on soil chemical and physical properties in an arid region. Plant Soil and Environment, 52(8), 335.
  • Karpuzcu, M., Baykuş, N., & Yurtsever, A. (2020). An experimental study on treatment of domestic wastewater by natural soil. Engineering Sciences, 15(4), 196-208.
  • Irfan, M., Chen, Y., Ali, M., Abrar, M., Qadri, A., and Bhutta, O. (2018). Geotechnical properties of effluent-contaminated cohesive soils and their stabilization using industrial by-products. Processes, 6(2018), 203, DOİ:10.3390/pr6100203.
  • Asik, B. B., Aydinalp, C., Katkat, A. V., & Sagban, F. O. T. (2015). Effect of the application of various wastewater sludges on the properties of sandy soil. Environmental monitoring and assessment, 187(2), 1-11.
  • Sparks, D. L., Page, A. L., Helmke, P. A., Loeppert, R. H., & Rhoades, J. D. (1996). Salinity: Electrical Conductivity and Total Dissolved Solids. Methods of Soil Analysis Part 3-Chemical Methods.
  • Hasan, H., Battikhi, A., & Qrunfleh, M. (2014). Impacts of treated wastewater reuse on some soil properties and production of Gladiolus communis. Journal of Horticulture, 1-9.
  • Mohammad Rusan, M. J., Hinnawi, S., & Rousan, L. (2007). Long term effect of wastewater irrigation of forage crops on soil and plant quality parameters. Desalination, 215(1-3), 143–152.
  • Dawes, L., & Goonetilleke, A. (2003). An investigation into the role of site and soil characteristics in onsite sewage treatment. Environmental Geology, 44(4), 467-477.
  • Thompson, A., & Goyne, K. W. (2012). Introduction to the sorption of chemical constituents in soils. Nature Education Knowledge, 4(4), 7.
There are 30 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Nurdan Baykuş 0000-0002-6199-3363

Mehmet Karpuzcu 0000-0001-7488-0977

Publication Date December 31, 2021
Published in Issue Year 2021

Cite

APA Baykuş, N., & Karpuzcu, M. (2021). The Effects of Wastewater on The Chemical and Physical Properties of Fine-grained Soils. Avrupa Bilim Ve Teknoloji Dergisi(31), 771-775. https://doi.org/10.31590/ejosat.1010488