Research Article
BibTex RIS Cite

Kayma Altında Katılaşan Sıvıların Reolojik Özelliklerinin ve Dispersiyon Kalitesinin Belirlenmesi

Year 2021, , 781 - 784, 30.11.2021
https://doi.org/10.31590/ejosat.1011245

Abstract

Kayma altında katılaşan sıvılar (KAKS), sıvı ortamda dağıtılmış nano boyutlu katı partiküllerden oluşan Newtonyan olmayan özel bir akışkan çeşididir. KAKS’ların viskozitesinde artan kayma hızı ile birlikte ani bir artış görülür, sahip oldukları bu özellik tersinirdir ve viskoziteyi artıran gerilim ortadan kalktığında viskoziteleri ilk hallerine geri döner. KAKS’ların üretimi için katı ortam olarak kullanılan silika partiküller polietilen içerisinde üç farklı yöntem kullanılarak dağıtılmış ve üretim yönteminin dispersiyon kalitesine ve reolojik özelliklere olan etkisi incelenmiştir. Reolojik ölçümler sırasında plakalar arasındaki boşluk da değiştirilmiş ve süspansiyonun reolojik karakterine olan etkisi gözlenmiştir. Yapılan incelemelerde dispersiyon kalitesi en yüksek numunelerin ultrasonik karıştırıcı kullanılarak yapılanlar olduğu ancak reolojik özellikleri negatif etkilediği tespit edilmiştir. Reolojik ölçümlerde paralel plakalar arasındaki boşluk değişiminin grafik karakteristiğine etki etmediği gözlenmiştir.

Supporting Institution

FIRAT ÜNİVERSİTESİ (FÜBAP)

Project Number

MF.19.44

References

  • R.L. Hoffman, Discontinuous and Dilatant Viscosity Behavior in Concentrated Suspensions--1. Observation of a Flow Instability, Trans Soc Rheol. 1972.
  • R.L. Hoffman, Discontinuous and dilatant viscosity behavior in concentrated suspensions. II. Theory and experimental tests, J. Colloid Interface Sci. 1974. W.H. Boersma, J. Laven, H.N. Stein, Viscoelastic properties of concentrated shear-thickening dispersions, J. Colloid Interface Sci. 1992. G. Bossis, J.F. Brady, The rheology of Brownian suspensions, J. Chem. Phys. 1989.
  • V.A. Chatterjee, S.K. Verma, D. Bhattacharjee, I. Biswas, S. Neogi, Enhancement of energy absorption by incorporation of shear thickening fluids in 3D-mat sandwich composite panels upon ballistic impact, Compos. Struct. 225, 2019.
  • S. Arora, A. Majumdar, B.S. Butola, Structure induced effectiveness of shear thickening fluid for modulating impact resistance of UHMWPE fabrics, Compos. Struct. 210: 41–48, 2019.
  • A. Majumdar, A. Laha, D. Bhattacharjee, I. Biswas, S. Verma, Soft body armour development by silica particle based shear thickening fluid coated p-aramid fabrics, J. Text. Inst. 110: 1515–1518, 2019.
  • Y.H. Kim, S.K. Sathish Kumar, Y. Park, H. Kwon, C.G. Kim, High-velocity impact onto a high-frictional fabric treated with adhesive spray coating and shear thickening fluid impregnation, Compos. Part B Eng. 185, 2020.
  • L. Liu, Z. Yang, Z. Zhao, X. Liu, W. Chen, The influences of rheological property on the impact performance of kevlar fabrics impregnated with SiO2/PEG shear thickening fluid, Thin-Walled Struct. 151, 2020.
  • C. Fischer, S.A. Braun, P.E. Bourban, V. Michaud, C.J.G. Plummer, J.A.E. Månson, Dynamic properties of sandwich structures with integrated shear-thickening fluids, Smart Mater. Struct. 15: 1467–1475, 2006.
  • F.J. Galindo-Rosales, Complex fluids in energy dissipating systems, Appl. Sci. 2016.
  • S. Gürgen, M.A. Sofuoğlu, Vibration attenuation of sandwich structures filled with shear thickening fluids, Compos. Part B Eng. 186, 2020.
  • S. Gürgen, M.A. Sofuoğlu, Experimental investigation on vibration characteristics of shear thickening fluid filled CFRP tubes, Compos. Struct. 2019.
  • L.-L. Sun, D.-S. Xiong, C.-Y. Xu, Application of shear thickening fluid in ultrahigh molecular weight polyethylene fabric, J. Appl. Polym. Sci. 129: 1922–1928, 2013.
  • H.R. Baharvandi, P. Khaksari, M. Alebouyeh, M. Alizadeh, J. Khojasteh, N. Kordani, Investigating the quasi-static puncture resistance of p-aramid nanocomposite impregnated with the shear thickening fluid, J. Reinf. Plast. Compos. 33: 2064–2072, 2014.
  • Y. Xu, X. Chen, Y. Wang, Z. Yuan, Stabbing resistance of body armour panels impregnated with shear thickening fluid, Compos. Struct. 2017.
  • Y. Xu, Stabbing Resistance of Soft Ballistic Body Armour Impregnated with Shear Thickening Fluid, 2016.
  • C. Yanen, Investigation the Use of Hybrid Nanoparticle Reinforced Shear Thickening Fluid in Ballistic Applications, Fırat University, 2021.
  • D.P. Kalman, R.L. Merrill, N.J. Wagner, E.D. Wetzel, Effect of particle hardness on the penetration behavior of fabrics intercalated with dry particles and concentrated particle-fluid suspensions, ACS Appl. Mater. Interfaces. 2009.
  • J. Qin, G. Zhang, X. Shi, Study of a shear thickening fluid: the suspensions of monodisperse polystyrene microspheres in polyethylene glycol, J. Dispers. Sci. Technol. 38: 935–942, 2017.
  • H.R. Baharvandi, M. Alebooyeh, M. Alizadeh, P. Khaksari, N. Kordani, Effect of silica weight fraction on rheological and quasi-static puncture characteristics of shear thickening fluid-treated Twaron composite, J. Ind. Text. 46: 473–494, 2016.
  • S. Gürgen, W. Li, M.C. Kuşhan, The rheology of shear thickening fluids with various ceramic particle additives, Mater. Des. 104: 312–319, 2016.
  • C. Yanen, E. Aydoğmuş, M.Y. Solmaz, Determination of suitable rheological model for polyethylene glycols and silica particle mixtures, Middle East J. Sci. (MEJS). 6: 85–93, 2020.
  • S. Gürgen, M.C. Kuşhan, The stab resistance of fabrics impregnated with shear thickening fluids including various particle size of additives, Compos. Part A Appl. Sci. Manuf. 94: 50–60, 2017.
  • X.Z. Zhang, W.H. Li, X.L. Gong, The rheology of shear thickening fluid (STF) and the dynamic performance of anSTF-filled damper, Smart Mater. Struct. 17. 2008.

Determination of Rheological Properties and Dispersion Quality of Shear Thickening Fluid

Year 2021, , 781 - 784, 30.11.2021
https://doi.org/10.31590/ejosat.1011245

Abstract

In this research, the rheological properties of non-Newtonian shear thickening fluid (STF) composed of nano-sized solid particles have been investigated. The best conditions have been determined by optimizing both the experimental production method and the rheological measurement system of STFs. Mechanical, ultrasonic, and both mechanical and ultrasonic mixing methods were used in the production of STFs that nano-sized silica particle (solid: aerosil) and polyethylene glycol (liquid medium: PEG). Also, the spacing between the plates was changed during the rheological measurements and the effect on the rheological character of the suspension was also compared. Although the best homogenization was obtained with the ultrasonic mixer in the produced STFs, the lowest performance was observed in the rheological measurements of these samples. In STFs obtained at high mixing speed with a mechanical mixer, the viscosity of the fluid increased abruptly with increasing shear rate. In the measurements, it was observed that the gap change between the parallel plates did not affect the rheological characteristics much.

Project Number

MF.19.44

References

  • R.L. Hoffman, Discontinuous and Dilatant Viscosity Behavior in Concentrated Suspensions--1. Observation of a Flow Instability, Trans Soc Rheol. 1972.
  • R.L. Hoffman, Discontinuous and dilatant viscosity behavior in concentrated suspensions. II. Theory and experimental tests, J. Colloid Interface Sci. 1974. W.H. Boersma, J. Laven, H.N. Stein, Viscoelastic properties of concentrated shear-thickening dispersions, J. Colloid Interface Sci. 1992. G. Bossis, J.F. Brady, The rheology of Brownian suspensions, J. Chem. Phys. 1989.
  • V.A. Chatterjee, S.K. Verma, D. Bhattacharjee, I. Biswas, S. Neogi, Enhancement of energy absorption by incorporation of shear thickening fluids in 3D-mat sandwich composite panels upon ballistic impact, Compos. Struct. 225, 2019.
  • S. Arora, A. Majumdar, B.S. Butola, Structure induced effectiveness of shear thickening fluid for modulating impact resistance of UHMWPE fabrics, Compos. Struct. 210: 41–48, 2019.
  • A. Majumdar, A. Laha, D. Bhattacharjee, I. Biswas, S. Verma, Soft body armour development by silica particle based shear thickening fluid coated p-aramid fabrics, J. Text. Inst. 110: 1515–1518, 2019.
  • Y.H. Kim, S.K. Sathish Kumar, Y. Park, H. Kwon, C.G. Kim, High-velocity impact onto a high-frictional fabric treated with adhesive spray coating and shear thickening fluid impregnation, Compos. Part B Eng. 185, 2020.
  • L. Liu, Z. Yang, Z. Zhao, X. Liu, W. Chen, The influences of rheological property on the impact performance of kevlar fabrics impregnated with SiO2/PEG shear thickening fluid, Thin-Walled Struct. 151, 2020.
  • C. Fischer, S.A. Braun, P.E. Bourban, V. Michaud, C.J.G. Plummer, J.A.E. Månson, Dynamic properties of sandwich structures with integrated shear-thickening fluids, Smart Mater. Struct. 15: 1467–1475, 2006.
  • F.J. Galindo-Rosales, Complex fluids in energy dissipating systems, Appl. Sci. 2016.
  • S. Gürgen, M.A. Sofuoğlu, Vibration attenuation of sandwich structures filled with shear thickening fluids, Compos. Part B Eng. 186, 2020.
  • S. Gürgen, M.A. Sofuoğlu, Experimental investigation on vibration characteristics of shear thickening fluid filled CFRP tubes, Compos. Struct. 2019.
  • L.-L. Sun, D.-S. Xiong, C.-Y. Xu, Application of shear thickening fluid in ultrahigh molecular weight polyethylene fabric, J. Appl. Polym. Sci. 129: 1922–1928, 2013.
  • H.R. Baharvandi, P. Khaksari, M. Alebouyeh, M. Alizadeh, J. Khojasteh, N. Kordani, Investigating the quasi-static puncture resistance of p-aramid nanocomposite impregnated with the shear thickening fluid, J. Reinf. Plast. Compos. 33: 2064–2072, 2014.
  • Y. Xu, X. Chen, Y. Wang, Z. Yuan, Stabbing resistance of body armour panels impregnated with shear thickening fluid, Compos. Struct. 2017.
  • Y. Xu, Stabbing Resistance of Soft Ballistic Body Armour Impregnated with Shear Thickening Fluid, 2016.
  • C. Yanen, Investigation the Use of Hybrid Nanoparticle Reinforced Shear Thickening Fluid in Ballistic Applications, Fırat University, 2021.
  • D.P. Kalman, R.L. Merrill, N.J. Wagner, E.D. Wetzel, Effect of particle hardness on the penetration behavior of fabrics intercalated with dry particles and concentrated particle-fluid suspensions, ACS Appl. Mater. Interfaces. 2009.
  • J. Qin, G. Zhang, X. Shi, Study of a shear thickening fluid: the suspensions of monodisperse polystyrene microspheres in polyethylene glycol, J. Dispers. Sci. Technol. 38: 935–942, 2017.
  • H.R. Baharvandi, M. Alebooyeh, M. Alizadeh, P. Khaksari, N. Kordani, Effect of silica weight fraction on rheological and quasi-static puncture characteristics of shear thickening fluid-treated Twaron composite, J. Ind. Text. 46: 473–494, 2016.
  • S. Gürgen, W. Li, M.C. Kuşhan, The rheology of shear thickening fluids with various ceramic particle additives, Mater. Des. 104: 312–319, 2016.
  • C. Yanen, E. Aydoğmuş, M.Y. Solmaz, Determination of suitable rheological model for polyethylene glycols and silica particle mixtures, Middle East J. Sci. (MEJS). 6: 85–93, 2020.
  • S. Gürgen, M.C. Kuşhan, The stab resistance of fabrics impregnated with shear thickening fluids including various particle size of additives, Compos. Part A Appl. Sci. Manuf. 94: 50–60, 2017.
  • X.Z. Zhang, W.H. Li, X.L. Gong, The rheology of shear thickening fluid (STF) and the dynamic performance of anSTF-filled damper, Smart Mater. Struct. 17. 2008.
There are 23 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Cenk Yanen 0000-0002-5092-8734

Murat Yavuz Solmaz 0000-0001-6394-0313

Ercan Aydoğmuş 0000-0002-1643-2487

Project Number MF.19.44
Publication Date November 30, 2021
Published in Issue Year 2021

Cite

APA Yanen, C., Solmaz, M. Y., & Aydoğmuş, E. (2021). Determination of Rheological Properties and Dispersion Quality of Shear Thickening Fluid. Avrupa Bilim Ve Teknoloji Dergisi(28), 781-784. https://doi.org/10.31590/ejosat.1011245