Modifiye Hummers Yöntemi ile Elde Edilen Grafen Oksit Sentezleri İçin: Kısım 2, X Işını Fotoelektron Spektroskopisi Analizi
Year 2021,
, 978 - 984, 30.11.2021
Ömer Laçin
,
Bünyamin Dönmez
Abstract
Bu çalışmada, X Işını Fotoelektron Spektroskopisi analizi ile Hummers yönteminde bir reaktif olarak kullanılan sodyum nitrat konsantrasyonunun değiştirilmesi ile elde edilen sentezlerin grafen okside dönüşüp dönüşmediği ve değişen yapısal özellikleri incelenmiştir. Kimyasal oksidasyondan sonra, 284,8 eV’de asimetrik olarak merkezlenmiş C1s genel spektrumuna uygulanan Gaussian veya Lorentz dağılım analizleriyle, yapıda farklı sayıda oksijen içeren fonksiyonel grupları (epoksi ve fenolik karbon (C-O), karbonil (C=O) ve karboksil (O-C=O)) temsil eden yeni sinyaller belirlenmiştir. Bu grupların, grafitteki sp2 hibridize karbon atomu (C-C/C=C) pikinde oluşturduğu kusur ve bozukluk nedeniyle pik yoğunluğunda önemli bir düşüşe yol açtığı gözlenmiştir. Grafit için C/O atom oranı 42,48 iken, grafen oksit numunelerinde bu değerin 1,74’e düşmesi ve grafit bazal düzlemine bağlanmış farklı oksijen içerikli fonksiyonel grupların ortaya çıkması, kimyasal oksidasyonun başarılı denecek şekilde gerçekleştiğini göstermiştir. Sentezlenen numunelerde N1s pikine hiç rastlanmaması, ürünlerin saf olduğunu ortaya koymaktadır. Sentez analizleri sonucunda, yapıdaki grupların bağ enerji değerlerinin literatür ile uyum içerisinde olduğu gözlenmiştir. Tüm bu sonuçlar ışığında farklı özelliklere sahip grafen oksit örneklerinin başarılı bir şekilde sentezlendikleri ifade edilebilir.
Supporting Institution
Atatürk Üniversitesi BAPSİS
Thanks
Bu çalışma, Atatürk Üniversitesi BAPSİS Birimi tarafından Temel Araştırma Projesi olarak desteklenmiştir.
References
- Moosa, A., and Abed, M. (2021). Graphene preparation and grapfite exfoliation. Turkish journal of Chemistry, 45(3),493-519.
- Dresselhaus, G., Dresselhaus, M. S., & Saito, R. (1998). Physical properties of carbon nanotubes. World scientific.
- Chen, J., Yao, B., Li, C., & Shi, G. (2013). An improved Hummers method for eco-friendly synthesis of graphene oxide. Carbon, 64, 225-229.
- Huang, X., Qi, X., Boey, F., & Zhang, H. (2012). Graphene-based composites. Chemical Society Reviews, 41(2), 666-686.
- Paulchamy, B., Arthi, G., & Lignesh, B. D. (2015). A simple approach to stepwise synthesis of graphene oxide nanomaterial. J Nanomed Nanotechnol, 6(1), 1.
- Tiyek, İ., Dönmez, U., Yıldırım, B., Alma, M. H., Ersoy, M. S., & Karataş, Ş. (2016). Kimyasal yöntem ile indirgenmiş grafen oksit sentezi ve karakterizasyonu. Sakarya University Journal of Science, 20(2), 349-357.
- Sun, L., & Fugetsu, B. (2013). Mass production of graphene oxide from expanded graphite. Materials Letters, 109, 207-210.
- Brisebois, P. P., & Siaj, M. (2020). Harvesting graphene oxide–years 1859 to 2019: a review of its structure, synthesis, properties and exfoliation. Journal of Materials Chemistry C, 8(5), 1517-1547.
- Shamaila, S., Sajjad, A. K. L., & Iqbal, A. (2016). Modifications in development of graphene oxide synthetic routes. Chemical Engineering Journal, 294, 458-477.
- Hummers Jr, W. S., & Offeman, R. E. (1958). Preparation of graphitic oxide. Journal of the american chemical society, 80(6), 1339-1339.
- Dreyer, D. R., Park, S., Bielawski, C. W., & Ruoff, R. S. (2010). The chemistry of graphene oxide. Chemical society reviews, 39(1), 228-240.
- Lavin-Lopez, M. D. P., Romero, A., Garrido, J., Sanchez-Silva, L., & Valverde, J. L. (2016). Influence of different improved hummers method modifications on the characteristics of graphite oxide in order to make a more easily scalable method. Industrial & Engineering Chemistry Research, 55(50), 12836-12847.
- Marcano, D. C., Kosynkin, D. V., Berlin, J. M., Sinitskii, A., Sun, Z., Slesarev, A., ... & Tour, J. M. (2010). Improved synthesis of graphene oxide. ACS nano, 4(8), 4806-4814.
- Peng, L., Xu, Z., Liu, Z., Wei, Y., Sun, H., Li, Z., ... & Gao, C. (2015). An iron-based green approach to 1-h production of single-layer graphene oxide. Nature communications, 6(1), 1-9.
- Eigler, S., & Dimiev, A. M. (2016). Characterization techniques. Graphene Oxide: Fundamentals and Applications. Chichester, UK: John Wiley and Sons.
- Paynter, R. Royston Paynter INRS-Énergie, Matériaux et Télécommunications 1650 boul. Lionel-Boulet Varennes Québec J3X 1S2.
- Muralikrishna, S., Sureshkumar, K., Varley, T. S., Nagaraju, D. H., & Ramakrishnappa, T. (2014). In situ reduction and functionalization of graphene oxide with L-cysteine for simultaneous electrochemical determination of cadmium (II), lead (II), copper (II), and mercury (II) ions. Analytical Methods, 6(21), 8698-8705.
- Shulga, Y. M., Shulga, N. Y., & Parkhomenko, Y. N. (2015). Carbon nanostructures reduced from graphite oxide as electrode materials for supercapacitors. Modern Electronic Materials, 1(1), 1-9.
- [19] Al-Gaashani, R., Najjar, A., Zakaria, Y., Mansour, S., & Atieh, M. A. (2019). XPS and structural studies of high quality graphene oxide and reduced graphene oxide prepared by different chemical oxidation methods. Ceramics International, 45(11), 14439-14448.
- Johra, F. T., Lee, J. W., & Jung, W. G. (2014). Facile and safe graphene preparation on solution based platform. Journal of Industrial and Engineering Chemistry, 20(5), 2883-2887.
- JRani, J. R., Lim, J., Oh, J., Kim, D., Lee, D., Kim, J. W., ... & Jun, S. C. (2013). Substrate and buffer layer effect on the structural and optical properties of graphene oxide thin films. RSC advances, 3(17), 5926-5936.
- Zhao, J., Liu, L., & Li, F. (2015). Graphene oxide: physics and applications (Vol. 1, p. 161). London, UK:: Springer.
- Fujimoto, A., Yamada, Y., Koinuma, M., & Sato, S. (2016). Origins of sp3C peaks in C1s X-ray photoelectron spectra of carbon materials. Analytical chemistry, 88(12), 6110-6114.
- Weippert, J., Ulas, S., Strelnikov, D., Böttcher, A., & Kappes, M. M. (2018). Formation of sublimable nanographene oxides by reacting coronene films with atomic oxygen. The Journal of Physical Chemistry C, 122(50), 28588-28600.
- Barinov, A., Malcioglu, O. B., Fabris, S., Sun, T., Gregoratti, L., Dalmiglio, M., & Kiskinova, M. (2009). Initial stages of oxidation on graphitic surfaces: photoemission study and density functional theory calculations. The Journal of Physical Chemistry C, 113(21), 9009-9013.
- Aliyev, E., Filiz, V., Khan, M. M., Lee, Y. J., Abetz, C., & Abetz, V. (2019). Structural characterization of graphene oxide: Surface functional groups and fractionated oxidative debris. Nanomaterials, 9(8), 1180.
- Krishnamoorthy, K., Veerapandian, M., Yun, K., & Kim, S. J. (2013). The chemical and structural analysis of graphene oxide with different degrees of oxidation. Carbon, 53, 38-49.
- Eigler, S., Grimm, S., Hof, F., & Hirsch, A. (2013). Graphene oxide: a stable carbon framework for functionalization. Journal of Materials Chemistry A, 1(38), 11559-11562.
For Graphene Oxide Synthesis Obtained by Modified Hummers Method: Part 2, X-Ray Photoelectron Spectroscopy Analysis
Year 2021,
, 978 - 984, 30.11.2021
Ömer Laçin
,
Bünyamin Dönmez
Abstract
In this study, whether the syntheses obtained by changing the sodium nitrate concentration used as a reagent in the Hummers method by X-Ray Photoelectron Spectroscopy analysis convert to graphene oxide and its changing structural properties were investigated. After chemical oxidation, new signals representing different numbers of oxygen-containing functional groups (epoxy and phenolic carbon (C-O), carbonyl (C=O) and carboxyl (O-C=O)) were determined by Gaussian or Lorentz distribution analyses applied to the C1s general spectrum asymmetrically centered at 284.8 EV. It has been observed that these groups lead to a significant decrease in the peak density due to the defect and disorder caused by the sp2 hybridized carbon atom (C-C/C=C) peak in graphite. While the C/O atomic ratio for graphite was 42.48, a decrease in this value to 1.74 in graphene oxide samples and the appearance of functional groups with different oxygen content connected to the graphite basal plane showed that chemical oxidation had occurred successfully. The fact that no N1s peak was observed in the synthesized samples indicates that the products are pure. As a result of the synthesis analyses, it was observed that the bond energy values of the groups in the structure were in harmony with the literature. In the light of all these results, it can be stated that graphene oxide samples with different properties have been successfully synthesized.
References
- Moosa, A., and Abed, M. (2021). Graphene preparation and grapfite exfoliation. Turkish journal of Chemistry, 45(3),493-519.
- Dresselhaus, G., Dresselhaus, M. S., & Saito, R. (1998). Physical properties of carbon nanotubes. World scientific.
- Chen, J., Yao, B., Li, C., & Shi, G. (2013). An improved Hummers method for eco-friendly synthesis of graphene oxide. Carbon, 64, 225-229.
- Huang, X., Qi, X., Boey, F., & Zhang, H. (2012). Graphene-based composites. Chemical Society Reviews, 41(2), 666-686.
- Paulchamy, B., Arthi, G., & Lignesh, B. D. (2015). A simple approach to stepwise synthesis of graphene oxide nanomaterial. J Nanomed Nanotechnol, 6(1), 1.
- Tiyek, İ., Dönmez, U., Yıldırım, B., Alma, M. H., Ersoy, M. S., & Karataş, Ş. (2016). Kimyasal yöntem ile indirgenmiş grafen oksit sentezi ve karakterizasyonu. Sakarya University Journal of Science, 20(2), 349-357.
- Sun, L., & Fugetsu, B. (2013). Mass production of graphene oxide from expanded graphite. Materials Letters, 109, 207-210.
- Brisebois, P. P., & Siaj, M. (2020). Harvesting graphene oxide–years 1859 to 2019: a review of its structure, synthesis, properties and exfoliation. Journal of Materials Chemistry C, 8(5), 1517-1547.
- Shamaila, S., Sajjad, A. K. L., & Iqbal, A. (2016). Modifications in development of graphene oxide synthetic routes. Chemical Engineering Journal, 294, 458-477.
- Hummers Jr, W. S., & Offeman, R. E. (1958). Preparation of graphitic oxide. Journal of the american chemical society, 80(6), 1339-1339.
- Dreyer, D. R., Park, S., Bielawski, C. W., & Ruoff, R. S. (2010). The chemistry of graphene oxide. Chemical society reviews, 39(1), 228-240.
- Lavin-Lopez, M. D. P., Romero, A., Garrido, J., Sanchez-Silva, L., & Valverde, J. L. (2016). Influence of different improved hummers method modifications on the characteristics of graphite oxide in order to make a more easily scalable method. Industrial & Engineering Chemistry Research, 55(50), 12836-12847.
- Marcano, D. C., Kosynkin, D. V., Berlin, J. M., Sinitskii, A., Sun, Z., Slesarev, A., ... & Tour, J. M. (2010). Improved synthesis of graphene oxide. ACS nano, 4(8), 4806-4814.
- Peng, L., Xu, Z., Liu, Z., Wei, Y., Sun, H., Li, Z., ... & Gao, C. (2015). An iron-based green approach to 1-h production of single-layer graphene oxide. Nature communications, 6(1), 1-9.
- Eigler, S., & Dimiev, A. M. (2016). Characterization techniques. Graphene Oxide: Fundamentals and Applications. Chichester, UK: John Wiley and Sons.
- Paynter, R. Royston Paynter INRS-Énergie, Matériaux et Télécommunications 1650 boul. Lionel-Boulet Varennes Québec J3X 1S2.
- Muralikrishna, S., Sureshkumar, K., Varley, T. S., Nagaraju, D. H., & Ramakrishnappa, T. (2014). In situ reduction and functionalization of graphene oxide with L-cysteine for simultaneous electrochemical determination of cadmium (II), lead (II), copper (II), and mercury (II) ions. Analytical Methods, 6(21), 8698-8705.
- Shulga, Y. M., Shulga, N. Y., & Parkhomenko, Y. N. (2015). Carbon nanostructures reduced from graphite oxide as electrode materials for supercapacitors. Modern Electronic Materials, 1(1), 1-9.
- [19] Al-Gaashani, R., Najjar, A., Zakaria, Y., Mansour, S., & Atieh, M. A. (2019). XPS and structural studies of high quality graphene oxide and reduced graphene oxide prepared by different chemical oxidation methods. Ceramics International, 45(11), 14439-14448.
- Johra, F. T., Lee, J. W., & Jung, W. G. (2014). Facile and safe graphene preparation on solution based platform. Journal of Industrial and Engineering Chemistry, 20(5), 2883-2887.
- JRani, J. R., Lim, J., Oh, J., Kim, D., Lee, D., Kim, J. W., ... & Jun, S. C. (2013). Substrate and buffer layer effect on the structural and optical properties of graphene oxide thin films. RSC advances, 3(17), 5926-5936.
- Zhao, J., Liu, L., & Li, F. (2015). Graphene oxide: physics and applications (Vol. 1, p. 161). London, UK:: Springer.
- Fujimoto, A., Yamada, Y., Koinuma, M., & Sato, S. (2016). Origins of sp3C peaks in C1s X-ray photoelectron spectra of carbon materials. Analytical chemistry, 88(12), 6110-6114.
- Weippert, J., Ulas, S., Strelnikov, D., Böttcher, A., & Kappes, M. M. (2018). Formation of sublimable nanographene oxides by reacting coronene films with atomic oxygen. The Journal of Physical Chemistry C, 122(50), 28588-28600.
- Barinov, A., Malcioglu, O. B., Fabris, S., Sun, T., Gregoratti, L., Dalmiglio, M., & Kiskinova, M. (2009). Initial stages of oxidation on graphitic surfaces: photoemission study and density functional theory calculations. The Journal of Physical Chemistry C, 113(21), 9009-9013.
- Aliyev, E., Filiz, V., Khan, M. M., Lee, Y. J., Abetz, C., & Abetz, V. (2019). Structural characterization of graphene oxide: Surface functional groups and fractionated oxidative debris. Nanomaterials, 9(8), 1180.
- Krishnamoorthy, K., Veerapandian, M., Yun, K., & Kim, S. J. (2013). The chemical and structural analysis of graphene oxide with different degrees of oxidation. Carbon, 53, 38-49.
- Eigler, S., Grimm, S., Hof, F., & Hirsch, A. (2013). Graphene oxide: a stable carbon framework for functionalization. Journal of Materials Chemistry A, 1(38), 11559-11562.