Research Article
BibTex RIS Cite

Sürtünme Karıştırma İşleminin Eklemeli İmalat Yöntemi ile Üretilen AlSi10Mg Alaşımının Tribolojik Özelliklerine Etkisi

Year 2021, , 1159 - 1166, 30.11.2021
https://doi.org/10.31590/ejosat.1013345

Abstract

Eklemeli imalat yöntemi son yıllarda sıklıkla kullanılmaya başlayan imalat yöntemlerinden biri olarak göze çarpmaktadır. Bu üretim teknolojisi çelik, titanyum, kobalt, bakır ve nikel alaşımlarının yanı sıra Al-Si alaşımlarının üretiminde yaygın bir şekilde kullanılmaktadır. Al-Si alaşımlarının arasında Al-Si10Mg alaşımı yüksek mekanik ve korozyon dayanımı özellikleri ile ön plana çıkmaktadır. Günümüzde, AlSi10Mg alaşımları otomotiv ve havacılık endüstrisinde yaygın bir şekilde kullanılmaktadır. Söz konusu alaşımların uygulama alanlarında kullanım performansını geliştirmek adına bazı tane inceltme amaçlı yöntemler ön plana çıkmıştır. Bu yöntemler arasında, sürtünme karıştırma kaynağından türetilen sürtünme karıştırma işlemi, tane inceltme ve aşırı plastik deformasyon yöntemi olarak göze çarpmaktadır. Bu çalışmada sürtünme karıştırma işleminin (SKİ) eklemeli imalat yöntemiyle üretilen AlSi10Mg alaşımının mikro yapı, sertlik ve aşınma özelliklerine etkilerinin belirlenmesi amaçlanmaktadır. Bu amaç doğrultusunda, eklemeli imalat yöntemiyle üretilen AlSi10Mg alaşımlarının yüzeyine 1200 dev/dk takım dönme hızı, 40 mm/dk takım ilerleme hızı, 6000 N takım baskı kuvveti ve 2° takım açısı ile SKİ gerçekleştirilmiştir. Numunelerin yapısal analizleri, sertlik ve aşınma özellikleri sırasıyla optik mikroskop, taramalı elektron mikroskobu, mikro-sertlik test cihazı ve atmosfer ve vakum ortamında olmak üzere bilye disk tipi aşınma test cihazında belirlenmiştir. SKİ sonrasında eklemeli imalattan doğan katmanlı içyapı ortadan kaldırılmış olup daha düzgün bir yapı elde edilmiştir. İşlemsiz numunenin sertliği 104,5 HV0,01 elde edilirken, işlemli numunede bu değer 98,6 HV0,01 olarak belirlenmiştir. SKİ’nin alaşımın aşınma performansına olan etkilerine bakıldığında, atmosfer ortamında yaklaşık %40’lık bir iyileşme söz konusudur. Vakum ortamında bu değer yaklaşık %10 mertebelerindedir. Atmosfer ortamında baskın aşınma mekanizmasının abrazif aşınma olduğu, vakum ortamında ise kütle transferinin etken olduğu görülmektedir.

Supporting Institution

Karadeniz Teknik Üniversitesi Bilimsel Araştırma Projeleri Koordinasyon Birimi

Project Number

FHD-2020-8827

Thanks

Bu çalışma Karadeniz Teknik Üniversitesi Bilimsel Araştırma Projeleri Koordinasyon Birimi tarafından desteklenmiştir. Proje Numarası: FHD-2020-8827

References

  • Gibson, I., Rosen, D.W., Stucker, B., Additive Manufacturing Technologies: Rapid Prototyping to Direct Digital Manufacturing, Springer, USA, 2009.
  • Wong, K.V., Hernandez, A., A review of additive manufacturing, Int. Sch. Res. Netw. 2012: 1–12, (2012).
  • Frazier, W.E., Metal additive manufacturing: a review. J. Mater. Eng. Perform. 23: 1917–1928, (2014).
  • ASTM, Standard Terminology for Additive Manufacturing Technologies ASTM International, West Conshohocken, 2012.
  • Levy, G.N., Schindel, R., Kruth, J.P., Rapid manufacturing and rapid tooling with layer manufacturing (LM) technologies, state of the art and future perspectives. CIRP Ann. Manuf. Technol. 52: 589–609, (2003).
  • Sallica-Leva, E., Jardini, A.L., Fogagnolo, J.B., Microstructure and mechanical behavior of porous Ti– 6Al–4V parts obtained by selective laser melting. J. Mech. Behav. Biomed. Mater. 26: 98–108, (2013).
  • Gu, D.D., Meiners, W., Wissenbach, K., Poprawe, R., Laser additive manufacturing of metallic components: materials, processes and mechanisms. Int. Mater. Rev. 57: 125–131, (2012).
  • Murr, L.E., Quinones, S.A., Gaytan, S.M., Lopez, M.I., Rodela, A., Martinez, E.Y., Hernandez, D.H., Martinez, E., Medina, F., Wicker, R.B., Microstructure and mechanical behavior of Ti–6Al–4V produced by rapid-layer manufacturing, for biomedical applications. J. Mech. Behav. Biomed. Mater. 2: 20–32, (2009). Martin, J.H., Yahata, B.D., Hundley, J.M., Mayer, J.A., Schaedler, T.A., Pollock, T.M., 3D printing of high-strength aluminium alloys, Nature, 549: 365-369, (2017).
  • Le, K.Q., Tang, C., Wong, C.H., A Study on the Influence of Scanning Strategies on the Levelness of the Melt Track in Selective Laser Melting Process of Stainless Steel Powder, JOM. 70: 2082-2087, (2018).
  • AlMangour, B., Grzesiak, D., Yang, J.M., Rapid fabrication of bulk-form TiB2/316L stainless steel nanocomposites with novel reinforcement architecture and improved performance by selective laser melting J. Alloys Compd. 680: 480-493, (2016).
  • Chou, R., Milligan, J., Paliwal, M., Brochu, M., Additive Manufacturing of Al-12Si Alloy Via Pulsed Selective Laser Melting, JOM. 67: 590-596, (2015).
  • Attar, H., Haghighi, S.E., Kent, D., Wu, X.H., Dargusch, M.S., Comparative study of commercially pure titanium produced by laser engineered net shaping, selective laser melting and casting processes, Mater. Sci. Eng. A 705: 385-393, (2017).
  • Vastola, G., Zhang, G., Pei, Q.X., Zhang, Y.W., Modeling the microstructure evolution during additive manufacturing of ti6al4v: a comparison between electron beam melting and selective laser melting. JOM, 68: 1370-1375, (2016).
  • Li, J.Y., Chen, C.J., Liao, J.K., Liu, L., Ye, X.H., Lin, S.Y., Ye, J. T., J. Prosthet. Dent. 118: 69, (2017).
  • Song, C.H., Zhang, M.K., Yang, Y.Q., Wang, D., Yu, J.K., Morphology and properties of CoCrMo parts fabricated by selective laser melting, Mater. Sci. Eng. A 713: 206-213, (2018).
  • Ventura, A.P., Wade, C.A., Pawlikowski, G., Bayes, M., Watanabe, M., Misiolek, W.Z., The Effect of Aging on the Microstructure of Selective Laser Melted Cu-Ni-Si, Metall. Mater. Trans. A 48: 6070-6082, (2017).
  • Ikeshoji, T.T., Nakamura, K., Yonehara, M., Imai, K., Kyogoku, H.,Selective Laser Melting of Pure Copper JOM. 70: 396-400, (2018).
  • Covarrubias, E.E., Eshraghi, M., Effect of Build Angle on Surface Properties of Nickel Superalloys Processed by Selective Laser Melting, JOM. 70: 336-342, (2018).
  • Saedi, S., Moghaddam, N.S., Amerinatanzi, A., Elahinia, M., Karaca, H.E., On the effects of selective laser melting process parameters on microstructure and thermomechanical response of Ni-rich NiTi, Acta Mater. 144: 552-560, (2018).
  • Asgari, H., Baxter, C., Hosseinkhani, K., Mohammadi, M., On microstructure and mechanical properties of additively manufactured AlSi10Mg_200C using recycled powder, Mater. Sci. Eng. A 707: 148-158, (2017).
  • Kempen, K., Thijs, L., Humbeeck, J.V., Kruth, J.P., Mechanical Properties of AlSi10Mg Produced by Selective Laser Melting, Phys. Proc. 39: 439-446, (2012).
  • Tang, M., Pistorius, P.C., Oxides, porosity and fatigue performance of AlSi10Mg parts produced by selective laser melting, Int. J. Fatigue, 94: 192-201, (2017).
  • Yang, K., Li, W.Y., Huang, C.J., Yang, X.W., Xu, Y.X., J. Mater. Sci. Technol. 2167: 34, (2018).
  • Chen, X., Zhang, Y., Cong, M., Effect of friction stir processing on microstructure and tensile properties of as-cast Mg–8Li–3Al–2Sn (wt.%) alloy, Vacuum. 175: 109292, (2020).
  • Sharahi, H.J., Pouranvari, M., Movahedi, M., Strengthening and ductilization mechanisms of friction stir processed cast Mg–Al–Zn alloy, Mat. Sci. and Eng: A, 781: 139429, (2020).
  • Yang, T., Wang, K., Wang, W., Peng, P., Huang, L., Qıao, K., Jın, Y., Effect of Friction Stir Processing on Microstructure and Mechanical Properties of AlSi10Mg Aluminum Alloy Produced by Selective Laser Melting, JOM, 71: 1737-1747, (2019).
  • Maamoun, A. H., Veldhuis, S.C., Elbestawi, M., Friction stir processing of AlSi10Mg parts produced by selective laser melting, J. Mat. Process. Tech. 263: 308-320, (2019).
  • Moeini, A. H G., Sajadifar, S. V., Engler, T., Heider, B., Neindorf, T., Oechsner, M., Böhm, S., Effect of Friction Stir Processing on Microstructural, Mechanical, and Corrosion Properties of Al-Si12 Additive Manufactured Components, Metals, 10: 85, (2020).

Effect of the Friction Stir Processing on Tribological Properties of AlSi10Mg Alloy Produced by Additive Manufacturing Method

Year 2021, , 1159 - 1166, 30.11.2021
https://doi.org/10.31590/ejosat.1013345

Abstract

Additive manufacturing method stands out as one of the manufacturing methods that has been used frequently in recent years. This technology is widely used in the manufacture of steel, titanium, cobalt, copper and nickel alloys, as well as Al-Si alloys. Among the Al-Si alloys, the Al-Si10Mg alloy stands out with its high mechanical and corrosion resistance properties. Nowadays, AlSi10Mg alloys are widely used in the automotive and aerospace industries. In order to improve the usage performance of these alloys, some grain refinement methods have come to the fore. Among these methods, friction stir processing derived from friction stir welding, grain refinement and extreme plastic deformation method take attention. In this study, it is aimed to determine the effects of friction stir process (FSP) on microstructure, hardness and wear properties of AlSi10Mg alloy produced by additive manufacturing method. For this goal, FSP was performed on the surface of AlSi10Mg alloys with 1200 rpm tool rotation speed, 40 mm/min tool advance speed, 6000 N tool pressure force and 2° tool angle. Structural analysis, wear properties and hardness of the samples were determined by scanning electron microscope, optical microscope, micro-hardness tester and ball-disc type wear tester under ambient air and vacuum environment, respectively. After FSP, the stratified microstructure arising from additive manufacturing has been eliminated and a smoother structure has been obtained. While the hardness of the untreated sample was 104.5 HV0.01, this value was determined as 98.6 HV0.01 in the treated sample. Considering the effects of FSP on the wear performance of the alloy, there was an improvement of approximately 40% in the ambient air. In the vacuum environment, this value was around 10%. It was seen that the dominant wear mechanism was abrasive wear in the atmosphere environment, while mass transfer was the factor in the vacuum environment.

Project Number

FHD-2020-8827

References

  • Gibson, I., Rosen, D.W., Stucker, B., Additive Manufacturing Technologies: Rapid Prototyping to Direct Digital Manufacturing, Springer, USA, 2009.
  • Wong, K.V., Hernandez, A., A review of additive manufacturing, Int. Sch. Res. Netw. 2012: 1–12, (2012).
  • Frazier, W.E., Metal additive manufacturing: a review. J. Mater. Eng. Perform. 23: 1917–1928, (2014).
  • ASTM, Standard Terminology for Additive Manufacturing Technologies ASTM International, West Conshohocken, 2012.
  • Levy, G.N., Schindel, R., Kruth, J.P., Rapid manufacturing and rapid tooling with layer manufacturing (LM) technologies, state of the art and future perspectives. CIRP Ann. Manuf. Technol. 52: 589–609, (2003).
  • Sallica-Leva, E., Jardini, A.L., Fogagnolo, J.B., Microstructure and mechanical behavior of porous Ti– 6Al–4V parts obtained by selective laser melting. J. Mech. Behav. Biomed. Mater. 26: 98–108, (2013).
  • Gu, D.D., Meiners, W., Wissenbach, K., Poprawe, R., Laser additive manufacturing of metallic components: materials, processes and mechanisms. Int. Mater. Rev. 57: 125–131, (2012).
  • Murr, L.E., Quinones, S.A., Gaytan, S.M., Lopez, M.I., Rodela, A., Martinez, E.Y., Hernandez, D.H., Martinez, E., Medina, F., Wicker, R.B., Microstructure and mechanical behavior of Ti–6Al–4V produced by rapid-layer manufacturing, for biomedical applications. J. Mech. Behav. Biomed. Mater. 2: 20–32, (2009). Martin, J.H., Yahata, B.D., Hundley, J.M., Mayer, J.A., Schaedler, T.A., Pollock, T.M., 3D printing of high-strength aluminium alloys, Nature, 549: 365-369, (2017).
  • Le, K.Q., Tang, C., Wong, C.H., A Study on the Influence of Scanning Strategies on the Levelness of the Melt Track in Selective Laser Melting Process of Stainless Steel Powder, JOM. 70: 2082-2087, (2018).
  • AlMangour, B., Grzesiak, D., Yang, J.M., Rapid fabrication of bulk-form TiB2/316L stainless steel nanocomposites with novel reinforcement architecture and improved performance by selective laser melting J. Alloys Compd. 680: 480-493, (2016).
  • Chou, R., Milligan, J., Paliwal, M., Brochu, M., Additive Manufacturing of Al-12Si Alloy Via Pulsed Selective Laser Melting, JOM. 67: 590-596, (2015).
  • Attar, H., Haghighi, S.E., Kent, D., Wu, X.H., Dargusch, M.S., Comparative study of commercially pure titanium produced by laser engineered net shaping, selective laser melting and casting processes, Mater. Sci. Eng. A 705: 385-393, (2017).
  • Vastola, G., Zhang, G., Pei, Q.X., Zhang, Y.W., Modeling the microstructure evolution during additive manufacturing of ti6al4v: a comparison between electron beam melting and selective laser melting. JOM, 68: 1370-1375, (2016).
  • Li, J.Y., Chen, C.J., Liao, J.K., Liu, L., Ye, X.H., Lin, S.Y., Ye, J. T., J. Prosthet. Dent. 118: 69, (2017).
  • Song, C.H., Zhang, M.K., Yang, Y.Q., Wang, D., Yu, J.K., Morphology and properties of CoCrMo parts fabricated by selective laser melting, Mater. Sci. Eng. A 713: 206-213, (2018).
  • Ventura, A.P., Wade, C.A., Pawlikowski, G., Bayes, M., Watanabe, M., Misiolek, W.Z., The Effect of Aging on the Microstructure of Selective Laser Melted Cu-Ni-Si, Metall. Mater. Trans. A 48: 6070-6082, (2017).
  • Ikeshoji, T.T., Nakamura, K., Yonehara, M., Imai, K., Kyogoku, H.,Selective Laser Melting of Pure Copper JOM. 70: 396-400, (2018).
  • Covarrubias, E.E., Eshraghi, M., Effect of Build Angle on Surface Properties of Nickel Superalloys Processed by Selective Laser Melting, JOM. 70: 336-342, (2018).
  • Saedi, S., Moghaddam, N.S., Amerinatanzi, A., Elahinia, M., Karaca, H.E., On the effects of selective laser melting process parameters on microstructure and thermomechanical response of Ni-rich NiTi, Acta Mater. 144: 552-560, (2018).
  • Asgari, H., Baxter, C., Hosseinkhani, K., Mohammadi, M., On microstructure and mechanical properties of additively manufactured AlSi10Mg_200C using recycled powder, Mater. Sci. Eng. A 707: 148-158, (2017).
  • Kempen, K., Thijs, L., Humbeeck, J.V., Kruth, J.P., Mechanical Properties of AlSi10Mg Produced by Selective Laser Melting, Phys. Proc. 39: 439-446, (2012).
  • Tang, M., Pistorius, P.C., Oxides, porosity and fatigue performance of AlSi10Mg parts produced by selective laser melting, Int. J. Fatigue, 94: 192-201, (2017).
  • Yang, K., Li, W.Y., Huang, C.J., Yang, X.W., Xu, Y.X., J. Mater. Sci. Technol. 2167: 34, (2018).
  • Chen, X., Zhang, Y., Cong, M., Effect of friction stir processing on microstructure and tensile properties of as-cast Mg–8Li–3Al–2Sn (wt.%) alloy, Vacuum. 175: 109292, (2020).
  • Sharahi, H.J., Pouranvari, M., Movahedi, M., Strengthening and ductilization mechanisms of friction stir processed cast Mg–Al–Zn alloy, Mat. Sci. and Eng: A, 781: 139429, (2020).
  • Yang, T., Wang, K., Wang, W., Peng, P., Huang, L., Qıao, K., Jın, Y., Effect of Friction Stir Processing on Microstructure and Mechanical Properties of AlSi10Mg Aluminum Alloy Produced by Selective Laser Melting, JOM, 71: 1737-1747, (2019).
  • Maamoun, A. H., Veldhuis, S.C., Elbestawi, M., Friction stir processing of AlSi10Mg parts produced by selective laser melting, J. Mat. Process. Tech. 263: 308-320, (2019).
  • Moeini, A. H G., Sajadifar, S. V., Engler, T., Heider, B., Neindorf, T., Oechsner, M., Böhm, S., Effect of Friction Stir Processing on Microstructural, Mechanical, and Corrosion Properties of Al-Si12 Additive Manufactured Components, Metals, 10: 85, (2020).
There are 28 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Articles
Authors

Hüccet Kahramanzade 0000-0002-9078-1933

Yaşar Sert 0000-0001-7742-0335

Tevfik Küçükömeroğlu 0000-0002-4392-9966

Project Number FHD-2020-8827
Publication Date November 30, 2021
Published in Issue Year 2021

Cite

APA Kahramanzade, H., Sert, Y., & Küçükömeroğlu, T. (2021). Sürtünme Karıştırma İşleminin Eklemeli İmalat Yöntemi ile Üretilen AlSi10Mg Alaşımının Tribolojik Özelliklerine Etkisi. Avrupa Bilim Ve Teknoloji Dergisi(28), 1159-1166. https://doi.org/10.31590/ejosat.1013345